- Allocate memory for wakeup code after ACPI bus is attached. The early
memory allocation hack was inherited from i386 but amd64 does not need it.
- Exclude real mode IVT and BDA explicitly. Improve comments about memory
allocation and reason for the exclusions. It is a no-op in reality, though.
- Remove an unnecessary CLD from wakeup code and re-align.
startup and genericize it so it can be reused to map other tables as well:
- Add a routine to walk a list of ACPI subtables such as those used in the
APIC and SRAT tables in the MI acpi(4) driver.
- Move the routines for mapping and unmapping an ACPI table as well as
mapping the RSDT or XSDT and searching for a table with a given signature
out into acpica_machdep.c for both amd64 and i386.
the kernel on amd64. Fill and read segment registers for mcontext and
signals. Handle traps caused by restoration of the
invalidated selectors.
Implement user-mode creation and manipulation of the process-specific
LDT descriptors for amd64, see sysarch(2).
Implement support for TSS i/o port access permission bitmap for amd64.
Context-switch LDT and TSS. Do not save and restore segment registers on
the context switch, that is handled by kernel enter/leave trampolines
now. Remove segment restore code from the signal trampolines for
freebsd/amd64, freebsd/ia32 and linux/i386 for the same reason.
Implement amd64-specific compat shims for sysarch.
Linuxolator (temporary ?) switched to use gsbase for thread_area pointer.
TODO:
Currently, gdb is not adapted to show segment registers from struct reg.
Also, no machine-depended ptrace command is added to set segment
registers for debugged process.
In collaboration with: pho
Discussed with: peter
Reviewed by: jhb
Linuxolator tested by: dchagin
- Call acpi_resync_clock() to reset system time before hardclock is ready
to tick. Note we assume the current timecounter hardware and RTC are
already available for read operation.
Tested by: mav
This code is heavily inspired by Takanori Watanabe's experimental SMP patch
for i386 and large portion was shamelessly cut and pasted from Peter Wemm's
AP boot code.
bogus entries have a starting IRQ that is invalid (> 255, so won't fit
into a PCI intline config register). It had the side effect of breaking
MSI by "claiming" several IRQs in the MSI range. Fix this by ignoring such
I/O APICs.
MFC after: 2 weeks
after each SYSINIT() macro invocation. This makes a number of
lightweight C parsers much happier with the FreeBSD kernel
source, including cflow's prcc and lxr.
MFC after: 1 month
Discussed with: imp, rink
different "platforms" on x86 machines. The existing code already handles
having two platforms: ACPI and legacy. However, the existing approach was
rather hardcoded and difficult to extend. These changes take the approach
that each x86 hardware platform should provide its own nexus(4) driver (it
can inherit most of its behavior from the default legacy nexus(4) driver)
which is responsible for probing for the platform and performing
appropriate platform-specific setup during attach (such as adding a
platform-specific bus device). This does mean changing the x86 platform
busses to no longer use an identify routine for probing, but to move that
logic into their matching nexus(4) driver instead.
- Make the default nexus(4) driver in nexus.c on i386 and amd64 handle the
legacy platform. It's probe routine now returns BUS_PROBE_GENERIC so it
can be overriden.
- Expose a nexus_init_resources() routine which initializes the various
resource managers so that subclassed nexus(4) drivers can invoke it from
their attach routine.
- The legacy nexus(4) driver explicitly adds a legacy0 device in its
attach routine.
- The ACPI driver no longer contains an new-bus identify method. Instead
it exposes a public function (acpi_identify()) which is a probe routine
that the MD nexus(4) drivers can use to probe for ACPI. All of the
probe logic in acpi_probe() is now moved into acpi_identify() and
acpi_probe() is just a stub.
- On i386 and amd64, an ACPI-specific nexus(4) driver checks for ACPI via
acpi_identify() and claims the nexus0 device if the probe succeeds. It
then explicitly adds an acpi0 device in its attach routine.
- The legacy(4) driver no longer knows anything about the acpi0 device.
- On ia64 if acpi_identify() fails you basically end up with no devices.
This matches the previous behavior where the old acpi_identify() would
fail to add an acpi0 device again leaving you with no devices.
Discussed with: imp
Silence on: arch@
aligned (or at least not cross a page boundary). However, it turns out
that on at least one machine one table header does cross a page boundary.
This caused problems with the MADT early probe as it uses the crash dump
map to load ACPI tables by loading the RSDT/XSDT into pages 1 ... N and
loading the header of each ACPI table header into page 0 looking for the
MADT. However, if a table header crossed a page boundary, then page 1
would get trashed resulting in a panic. Fix this by reserving the first
2 pages for ACPI table headers (headers are less than a page in size,
so 2 pages will be sufficient) and use pages 2 .. N for the RSDT and XSDT.
Note: amd64 should probably be simplified to just use pmap_mapbios()
for all these tables which will use the direct map and not need the
crash dump hack.
MFC after: 5 days
Tested on: i386
Reported by: Pete French petefrench of ticketswitch.com
an APIC ID of 38 for its second CPU):
- Add a new MAX_APIC_ID constant for the highest valid APIC ID for modern
systems.
- Size the various arrays in the MADT, MP Table, and SMP code that are
indexed by APIC IDs to allow for up to MAX_APIC_ID.
- Explicitly go through and assign logical cpu ids to local APICs before
starting any of the APs up rather than doing it while starting up the
APs. This step is now where we honor MAXCPU.
MFC after: 1 week
WB (write-back) on x86 via control bits in PTEs and PDEs (including making
use of the PAT MSR). Changes include:
- A new pmap_mapdev_attr() function for amd64 and i386 which takes an
additional parameter (relative to pmap_mapdev()) specifying the cache
mode for this mapping. Note that on amd64 only WB mappings are done with
the direct map, all other modes result in a private mapping.
- pmap_mapdev() on i386 and amd64 now defaults to using UC (uncached)
mappings rather than WB. Previously we relied on the BIOS setting up
MTRR's to enforce memio regions being treated as UC. This might make
hw.cbb_start_memory unnecessary in some cases now for example.
- A new pmap_mapbios()/pmap_unmapbios() API has been added to allow places
that used pmap_mapdev() to map non-device memory (such as ACPI tables)
to do so using WB as before.
- A new pmap_change_attr() function for amd64 and i386 that changes the
caching mode for a range of KVA.
Reviewed by: alc
back to using the RSDT instead. ACPI-CA already follows this same strategy
as a workaround for yet another instance of brain-damaged BIOS writers.
PR: i386/93963
Submitted by: Masayuki FUKUI <fukui.FreeBSD@fanet.net>
- Prefer '_' to ' ', as it results in more easily parsed results in
memory monitoring tools such as vmstat.
- Remove punctuation that is incompatible with using memory type names
as file names, such as '/' characters.
- Disambiguate some collisions by adding subsystem prefixes to some
memory types.
- Generally prefer lower case to upper case.
- If the same type is defined in multiple architecture directories,
attempt to use the same name in additional cases.
Not all instances were caught in this change, so more work is required to
finish this conversion. Similar changes are required for UMA zone names.
IRQ 0 and not an ExtINT pin. The MADT enumerators ignore the PC-AT flag
and ignore overrides that map IRQ 0 to pin 2 when this quirk is present.
- Add a block comment above the quirks to document each quirk so that we
can use more verbose descriptions quirks.
MFC after: 2 weeks
interrupt such as IRQ 22 or 19. However, the ACPI BIOS still routes
interrupts from some PCI devices to the same intpin calling the pin
IRQ 22. Thus, ACPI expects to address a single interrupt source via two
different names. To work around this, if the SCI is remapped to a non-ISA
interrupt (i.e., greater than 15), then we use
acpi_OverrideInterruptLevel() function to tell ACPI to use IRQ 22 or 19
rather than IRQ 9 for the SCI.
Previously we would change IRQ 22 or 19's name to IRQ 9 when we encountered
such an Interrupt Source Override entry in the MADT which routed the SCI
properly but left PCI devices mapped to IRQ 22 or 19 w/o a routable
interrupt.
Tested by: sos
pin that is used by the default identity mapping if it still maps to the
old vector. The ACPI case might need some tweaking for the SCI interrupt
case since ACPI likes to address the intpin using both the IRQ remapped to
it as well as the previous existing PCI IRQ mapped to it.
Reported by: kan
APIC Descriptor Table to enumerate both I/O APICs and local APICs. ACPI
does not embed PCI interrupt routing information in the MADT like the MP
Table does. Instead, ACPI stores the PCI interrupt routing information
in the _PRT object under each PCI bus device. The MADT table simply
provides hints about which interrupt vectors map to which I/O APICs. Thus
when using ACPI, the existing ACPI PCI bridge drivers are sufficient to
route PCI interrupts.
a heavily stripped down FreeBSD/i386 (brutally stripped down actually) to
attempt to get a stable base to start from. There is a lot missing still.
Worth noting:
- The kernel runs at 1GB in order to cheat with the pmap code. pmap uses
a variation of the PAE code in order to avoid having to worry about 4
levels of page tables yet.
- It boots in 64 bit "long mode" with a tiny trampoline embedded in the
i386 loader. This simplifies locore.s greatly.
- There are still quite a few fragments of i386-specific code that have
not been translated yet, and some that I cheated and wrote dumb C
versions of (bcopy etc).
- It has both int 0x80 for syscalls (but using registers for argument
passing, as is native on the amd64 ABI), and the 'syscall' instruction
for syscalls. int 0x80 preserves all registers, 'syscall' does not.
- I have tried to minimize looking at the NetBSD code, except in a couple
of places (eg: to find which register they use to replace the trashed
%rcx register in the syscall instruction). As a result, there is not a
lot of similarity. I did look at NetBSD a few times while debugging to
get some ideas about what I might have done wrong in my first attempt.
where physical addresses larger than virtual addresses, such as i386s
with PAE.
- Use this to represent physical addresses in the MI vm system and in the
i386 pmap code. This also changes the paddr parameter to d_mmap_t.
- Fix printf formats to handle physical addresses >4G in the i386 memory
detection code, and due to kvtop returning vm_paddr_t instead of u_long.
Note that this is a name change only; vm_paddr_t is still the same as
vm_offset_t on all currently supported platforms.
Sponsored by: DARPA, Network Associates Laboratories
Discussed with: re, phk (cdevsw change)
branches:
Initialize struct cdevsw using C99 sparse initializtion and remove
all initializations to default values.
This patch is automatically generated and has been tested by compiling
LINT with all the fields in struct cdevsw in reverse order on alpha,
sparc64 and i386.
Approved by: re(scottl)
of the `machdep.acpi_root' sysctl. This is required on ia64
because the root pointer hardly ever, if at all, lives in the
first MB of memory and also because scanning the first MB of
memory can cause machine checks.
This provides a save and reliable way for ACPI tools to work
with the tables if ACPI support is present in the kernel. On
ia64 ACPI is non-optional.
macro for use when parsing MADT tables, thus we always tried to set the
interrupt model to APIC. This proved to be harmful on UP machines with
IO APIC's (or for UP kernels on SMP machines) since the wrong interrupt
routing information would be returned.
Pointy hat to: jhb
Approved by: re (rwatson)
and attach routines have succeeded so that if they fail we can still use
the PnP BIOS to find ISA on-board devices. The fact that we do this here
is gross but fixing it properly involves a lot more work.
- clean up wakeup routing fixup code by using macros.
- allocate pte object temporary for kernel thread to avoid kernel
panic by events from sleep button or lid switch.
- Add S4BIOS sleep implementation. This will works well if MIB
hw.acpi.s4bios is set (and of course BIOS supports it and hibernation
is enabled correctly).
- Add DSDT overriding support which is submitted by takawata originally.
If loader tunable acpi_dsdt_load="YES" and DSDT file is set to
acpi_dsdt_name (default DSDT file name is /boot/acpi_dsdt.aml),
ACPI CA core loads DSDT from given file rather than BIOS memory block.
DSDT file can be generated by iasl in ports/devel/acpicatools/.
- Add new files so that we can add our proposed additional code to Intel
ACPI CA into these files temporary. They will be removed when
similar code is added into ACPI CA officially.
This emulates APM device node interface APIs (mainly ioctl) and
provides APM services for the applications. The goal is to support
most of APM applications without any changes.
Implemented ioctls in this commit are:
- APMIO_SUSPEND (mapped ACPI S3 as default but changable by sysctl)
- APMIO_STANDBY (mapped ACPI S1 as default but changable by sysctl)
- APMIO_GETINFO and APMIO_GETINFO_OLD
- APMIO_GETPWSTATUS
With above, many APM applications which get batteries, ac-line
info. and transition the system into suspend/standby mode (such as
wmapm, xbatt) should work with ACPI enabled kernel (if ACPI works well :-)
Reviewed by: arch@, audit@ and some guys