Decouple the send and receive limits on the amount of data in a single
iSCSI PDU. MaxRecvDataSegmentLength is declarative, not negotiated, and
is direction-specific so there is no reason for both ends to limit
themselves to the same min(initiator, target) value in both directions.
Allow iSCSI drivers to report their send, receive, first burst, and max
burst limits explicitly instead of using hardcoded values or trying to
derive all of them from the receive limit (which was the only limit
reported by the drivers prior to this change).
Display the send and receive limits separately in the userspace iSCSI
utilities.
Reviewed by: jpaetzel@ (earlier version), trasz@
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D7279
[set] notation. This fixes pattern matching for recently added drives
that would set the NCQ Trim being broken incorrectly.
PR: 210686
Tested-by: Tomoaki AOKI
MFC After: 3 days
Uses of commas instead of a semicolons can easily go undetected. The comma
can serve as a statement separator but this shouldn't be abused when
statements are meant to be standalone.
Detected with devel/coccinelle following a hint from DragonFlyBSD.
MFC after: 1 month
per-protocol. This reduces the number scsi symbols references by
cam_xpt significantly, and eliminates all ata / nvme symbols. There's
still some NVME / ATA specific code for dealing with XPT_NVME_IO and
XPT_ATA_IO respectively, and a bunch of scsi-specific code, but this
is progress.
Differential Revision: https://reviews.freebsd.org/D7289
eliminates the need to special case everything in cam_xpt for new
transports. It is now a failure to not have a transport object when
registering the bus as well. You can still, however, create a
transport that's unspecified (XPT_)
Differential Revision: https://reviews.freebsd.org/D7289
cam_periph_releaes_locked() at the end of nvme_probe_start because we
hit an assertion which may be bogus. Instead, leak a periph until we
sort it out. Since these devices don't arrive and depart often, so
this is the lessor of two evils.
MFC after: 1 week
In the case where cam_iosched_init() fails, the ada and da softcs were leaked.
Instead, free them.
Reported by: Coverity
CID: 1356039
Sponsored by: EMC / Isilon Storage Division
sys/cam/scsi/scsi_xpt.c
Strip leading spaces off of a SCSI disk's reported serial number
when populating the CAM serial number. This affects the output of
"diskinfo -v" and the names of /dev/diskid/DISK-* device nodes,
among other things.
SPC5r05 says that the Product Serial Number field from the Unit
Serial Number VPD page is right-aligned. So any leading spaces are
not part of the actual serial number. Most devices don't left-pad
their serial numbers, but some do. In particular, the SN VPD page
that an LSI HBA emulates for a SATA drive contains enough
left-padding to fill a 20-byte field.
UPDATING
Add a note to UPDATING, because some users may have to update
/etc/fstab or geom labels.
Reviewed by: ken, mav
MFC after: Never
Sponsored by: Spectra Logic Corp
Differential Revision: https://reviews.freebsd.org/D6516
o Some Samsung drives do not support the ATA READ LOG EXT or READ
LOG DMA EXT commands, despite indicating that they do in their
IDENTIFY data. So, fix this in two ways:
1. Only start the log directory probe (ADA_STATE_LOGDIR) if
the drive claims to be an SMR drive in the first place.
We don't need to do the extra probing for other devices.
This will also serve to prevent problems with other
drives that have the same issue.
2. Add quirks for the two Samsung drives that have been
reported so far (thanks to Oleg Nauman and Alex Petrov).
If there is a reason to do a Read Log later on, we will
know that it doesn't work on these drives.
o Add a quirk entry to mark Seagate Lamarr Drive Managed drives as
drive managed. They don't report this in their Identify data.
sys/cam/ata/ata_da.c:
Add two new quirks:
1. ADA_Q_LOG_BROKEN, for drives that claim to support Read
Log but don't really.
2. ADA_Q_SMR_DM, for drives that are Drive Managed SMR, but
don't report it. This can matter for software that
wants to know when it should make an extra effort to
write sequentially.
Record two Samsung drives that don't support Read Log, and
one Seagate drive that doesn't report that it is a SMR drive.
The Seagate drive is already recorded in the da(4) driver.
We may have to come up with a similar solution in the da(4)
driver for SATA drives that don't properly support Read Log.
In adasetflags(), Dont' set the ADA_FLAG_CAN_LOG bit if the
device has the LOG_BROKEN quirk set. Also, look at the
SMR_DM quirk and set the device type accordingly if it is
actually a drive managed drive.
When deciding whether to go into the LOGDIR probe state,
look to see whether the device claims to be an SMR device.
If not, don't bother with the LOGDIR probe state.
Sponsored by: Spectra Logic
The currently used idiom for clearing the part of a ccb after its
header generates one or two Coverity errors for each time it is
used. All instances generate an Out-of-bounds access (ARRAY_VS_SINGLETON)
error because of the treatment of the header as a two element array,
with a pointer to the non-existent second element being passed as
the starting address to bzero(). Some instances also alsp generate
Out-of-bounds access (OVERRUN) errors, probably because the space
being cleared is larger than the sizeofstruct ccb_hdr).
In addition, this idiom is difficult for humans to understand and
it is error prone. The user has to chose the proper struct ccb_*
type (which does not appear in the surrounding code) for the sizeof()
in the length calculation. I found several instances where the
length was incorrect, which could cause either an actual out of
bounds write, or incompletely clear the ccb.
A better way is to write the code to clear the ccb itself starting
at sizeof(ccb_hdr) bytes from the start of the ccb, and calculate
the length based on the specific type of struct ccb_* being cleared
as specified by the union ccb member being used. The latter can
normally be seen in the nearby code. This is friendlier for Coverity
and other static analysis tools because they will see that the
intent is to clear the trailing part of the ccb.
Wrap all of the boilerplate code in a convenient macro that only
requires a pointer to the desired union ccb member (or a pointer
to the union ccb itself) as an argument.
Reported by: Coverity
CID: 1007578, 1008684, 1009724, 1009773, 1011304, 1011306
CID: 1011307, 1011308, 1011309, 1011310, 1011311, 1011312
CID: 1011313, 1011314, 1011315, 1011316, 1011317, 1011318
CID: 1011319, 1011320, 1011321, 1011322, 1011324, 1011325
CID: 1011326, 1011327, 1011328, 1011329, 1011330, 1011374
CID: 1011390, 1011391, 1011392, 1011393, 1011394, 1011395
CID: 1011396, 1011397, 1011398, 1011399, 1011400, 1011401
CID: 1011402, 1011403, 1011404, 1011405, 1011406, 1011408
CID: 1011409, 1011410, 1011411, 1011412, 1011413, 1011414
CID: 1017461, 1018387, 1086860, 1086874, 1194257, 1229897
CID: 1229968, 1306229, 1306234, 1331282, 1331283, 1331294
CID: 1331295, 1331535, 1331536, 1331539, 1331540, 1341623
CID: 1341624, 1341637, 1341638, 1355264, 1355324
Reviewed by: scottl, ken, delphij, imp
MFH: 1 month
Differential Revision: https://reviews.freebsd.org/D6496
I broke broke the quirk in the ada(4) driver disabling NCQ trim support
in revision 300207. The support flags were set before the quirks were
loaded.
sys/cam/ata/ata_da.c:
Call adasetflags() after loading quirks, so that we'll set the
flags accurately.
Sponsored by: Spectra Logic
utilizing previously unused arg field of struct ccb_notify_acknowledge.
This makes new QUERY TASK, QUERY TASK SET and QUERY ASYNC EVENT requests
really functional for CAM target mode drivers.
This change includes support for SCSI SMR drives (which conform to the
Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to
the Zoned ATA Command Set or ZAC spec) behind SAS expanders.
This includes full management support through the GEOM BIO interface, and
through a new userland utility, zonectl(8), and through camcontrol(8).
This is now ready for filesystems to use to detect and manage zoned drives.
(There is no work in progress that I know of to use this for ZFS or UFS, if
anyone is interested, let me know and I may have some suggestions.)
Also, improve ATA command passthrough and dispatch support, both via ATA
and ATA passthrough over SCSI.
Also, add support to camcontrol(8) for the ATA Extended Power Conditions
feature set. You can now manage ATA device power states, and set various
idle time thresholds for a drive to enter lower power states.
Note that this change cannot be MFCed in full, because it depends on
changes to the struct bio API that break compatilibity. In order to
avoid breaking the stable API, only changes that don't touch or depend on
the struct bio changes can be merged. For example, the camcontrol(8)
changes don't depend on the new bio API, but zonectl(8) and the probe
changes to the da(4) and ada(4) drivers do depend on it.
Also note that the SMR changes have not yet been tested with an actual
SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports
ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT
layer, so any testing help would be appreciated. These changes have been
tested with Seagate Host Aware SATA drives attached to both SAS and SATA
controllers. Also, I do not have any SATA Host Managed devices, and I
suspect that it may take additional (hopefully minor) changes to support
them.
Thanks to Seagate for supplying the test hardware and answering questions.
sbin/camcontrol/Makefile:
Add epc.c and zone.c.
sbin/camcontrol/camcontrol.8:
Document the zone and epc subcommands.
sbin/camcontrol/camcontrol.c:
Add the zone and epc subcommands.
Add auxiliary register support to build_ata_cmd(). Make sure to
set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA
flags as appropriate for ATA commands.
Add a new get_ata_status() function to parse ATA result from SCSI
sense descriptors (for ATA passthrough over SCSI) and ATA I/O
requests.
sbin/camcontrol/camcontrol.h:
Update the build_ata_cmd() prototype
Add get_ata_status(), zone(), and epc().
sbin/camcontrol/epc.c:
Support for ATA Extended Power Conditions features. This includes
support for all features documented in the ACS-4 Revision 12
specification from t13.org (dated February 18, 2016).
The EPC feature set allows putting a drive into a power power mode
immediately, or setting timeouts so that the drive will
automatically enter progressively lower power states after various
idle times.
sbin/camcontrol/fwdownload.c:
Update the firmware download code for the new build_ata_cmd()
arguments.
sbin/camcontrol/zone.c:
Implement support for Shingled Magnetic Recording (SMR) drives
via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA
Command Set (ZAC).
These specs were developed in concert, and are functionally
identical. The primary differences are due to SCSI and ATA
differences. (SCSI is big endian, ATA is little endian, for
example.)
This includes support for all commands defined in the ZBC and
ZAC specs.
sys/cam/ata/ata_all.c:
Decode a number of additional ATA command names in ata_op_string().
Add a new CCB building function, ata_read_log().
Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building
functions. These support both DMA and NCQ encapsulation.
sys/cam/ata/ata_all.h:
Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and
ata_zac_mgmt_in().
sys/cam/ata/ata_da.c:
Revamp the ada(4) driver to support zoned devices.
Add four new probe states to gather information needed for zone
support.
Add a new adasetflags() function to avoid duplication of large
blocks of flag setting between the async handler and register
functions.
Add new sysctl variables that describe zone support and paramters.
Add support for the new BIO_ZONE bio, and all of its subcommands:
DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP,
DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS.
sys/cam/scsi/scsi_all.c:
Add command descriptions for the ZBC IN/OUT commands.
Add descriptions for ZBC Host Managed devices.
Add a new function, scsi_ata_pass() to do ATA passthrough over
SCSI. This will eventually replace scsi_ata_pass_16() -- it
can create the 12, 16, and 32-byte variants of the ATA
PASS-THROUGH command, and supports setting all of the
registers defined as of SAT-4, Revision 5 (March 11, 2016).
Change scsi_ata_identify() to use scsi_ata_pass() instead of
scsi_ata_pass_16().
Add a new scsi_ata_read_log() function to facilitate reading
ATA logs via SCSI.
sys/cam/scsi/scsi_all.h:
Add the new ATA PASS-THROUGH(32) command CDB. Add extended and
variable CDB opcodes.
Add Zoned Block Device Characteristics VPD page.
Add ATA Return SCSI sense descriptor.
Add prototypes for scsi_ata_read_log() and scsi_ata_pass().
sys/cam/scsi/scsi_da.c:
Revamp the da(4) driver to support zoned devices.
Add five new probe states, four of which are needed for ATA
devices.
Add five new sysctl variables that describe zone support and
parameters.
The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC
devices when they are attached via a SCSI to ATA Translation (SAT)
layer. Since ZBC -> ZAC translation is a new feature in the T10
SAT-4 spec, most SATA drives will be supported via ATA commands
sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will
prefer the ZBC interface, if it is available, for performance
reasons, but will use the ATA PASS-THROUGH interface to the ZAC
command set if the SAT layer doesn't support translation yet.
As I mentioned above, ZBC command support is untested.
Add support for the new BIO_ZONE bio, and all of its subcommands:
DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP,
DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS.
Add scsi_zbc_in() and scsi_zbc_out() CCB building functions.
Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB
building functions. Note that these have return values, unlike
almost all other CCB building functions in CAM. The reason is
that they can fail, depending upon the particular combination
of input parameters. The primary failure case is if the user
wants NCQ, but fails to specify additional CDB storage. NCQ
requires using the 32-byte version of the SCSI ATA PASS-THROUGH
command, and the current CAM CDB size is 16 bytes.
sys/cam/scsi/scsi_da.h:
Add ZBC IN and ZBC OUT CDBs and opcodes.
Add SCSI Report Zones data structures.
Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and
scsi_ata_zac_mgmt_in() prototypes.
sys/dev/ahci/ahci.c:
Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver.
ahci_setup_fis() previously set the top bits of the sector count
register in the FIS to 0 for FPDMA commands. This is okay for
read and write, because the PRIO field is in the only thing in
those bits, and we don't implement that further up the stack.
But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that
byte, so it needs to be transmitted to the drive.
In ahci_setup_fis(), always set the the top 8 bits of the
sector count register. We need it in both the standard
and NCQ / FPDMA cases.
sys/geom/eli/g_eli.c:
Pass BIO_ZONE commands through the GELI class.
sys/geom/geom.h:
Add g_io_zonecmd() prototype.
sys/geom/geom_dev.c:
Add new DIOCZONECMD ioctl, which allows sending zone commands to
disks.
sys/geom/geom_disk.c:
Add support for BIO_ZONE commands.
sys/geom/geom_disk.h:
Add a new flag, DISKFLAG_CANZONE, that indicates that a given
GEOM disk client can handle BIO_ZONE commands.
sys/geom/geom_io.c:
Add a new function, g_io_zonecmd(), that handles execution of
BIO_ZONE commands.
Add permissions check for BIO_ZONE commands.
Add command decoding for BIO_ZONE commands.
sys/geom/geom_subr.c:
Add DDB command decoding for BIO_ZONE commands.
sys/kern/subr_devstat.c:
Record statistics for REPORT ZONES commands. Note that the
number of bytes transferred for REPORT ZONES won't quite match
what is received from the harware. This is because we're
necessarily counting bytes coming from the da(4) / ada(4) drivers,
which are using the disk_zone.h interface to communicate up
the stack. The structure sizes it uses are slightly different
than the SCSI and ATA structure sizes.
sys/sys/ata.h:
Add many bit and structure definitions for ZAC, NCQ, and EPC
command support.
sys/sys/bio.h:
Convert the bio_cmd field to a straight enumeration. This will
yield more space for additional commands in the future. After
change r297955 and other related changes, this is now possible.
Converting to an enumeration will also prevent use as a bitmask
in the future.
sys/sys/disk.h:
Define the DIOCZONECMD ioctl.
sys/sys/disk_zone.h:
Add a new API for managing zoned disks. This is very close to
the SCSI ZBC and ATA ZAC standards, but uses integers in native
byte order instead of big endian (SCSI) or little endian (ATA)
byte arrays.
This is intended to offer to the complete feature set of the ZBC
and ZAC disk management without requiring the application developer
to include SCSI or ATA headers. We also use one set of headers
for ioctl consumers and kernel bio-level consumers.
sys/sys/param.h:
Bump __FreeBSD_version for sys/bio.h command changes, and inclusion
of SMR support.
usr.sbin/Makefile:
Add the zonectl utility.
usr.sbin/diskinfo/diskinfo.c
Add disk zoning capability to the 'diskinfo -v' output.
usr.sbin/zonectl/Makefile:
Add zonectl makefile.
usr.sbin/zonectl/zonectl.8
zonectl(8) man page.
usr.sbin/zonectl/zonectl.c
The zonectl(8) utility. This allows managing SCSI or ATA zoned
disks via the disk_zone.h API. You can report zones, reset write
pointers, get parameters, etc.
Sponsored by: Spectra Logic
Differential Revision: https://reviews.freebsd.org/D6147
Reviewed by: wblock (documentation)
There were at least two places where M_NOWAIT was used without NULL check.
This change should fix NULL-dereference panic there and possibly improve
operation in other ways under memory pressure.
MFC after: 2 weeks
This makes it possible to manually force updating capacity data
after the disk got resized. Without it it might be neccessary to
reboot before FreeBSD notices updated disk size under eg VMWare.
Discussed with: imp@
MFC after: 1 month
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.freebsd.org/D6108
Although usually small, values produced by nitems() are unsigned.
By unsigning the corresponding indexes we avoid signed vs unsigned
comparisons. This may have some effect on performance, although given the
small sizes the effect will not be perceivable and it makes the code
clearer.