I got a report of this source file not building on Raspberry Pi. It's
interesting that this only fails for that target and not for others.
Again, that's no reason not to include the right headers.
PR: 217969
Reported by: Johannes Jost Meixner
MFC after: 1 week
Similar to the change for sendmsg(), create a pointer size independent
implementation of recvmsg() and let cloudabi32 and cloudabi64 call into
it. In case userspace requests one or more file descriptors, call
kern_recvit() in such a way that we get the control message headers in
an mbuf. Iterate over all of the headers and copy the file descriptors
to userspace.
Reduce the potential amount of code duplication between cloudabi32 and
cloudabi64 by creating a cloudabi_sock_recv() utility function. The
cloudabi32 and cloudabi64 modules will then only contain code to convert
the iovecs to the native pointer size.
In cloudabi_sock_recv(), we can now construct an SCM_RIGHTS cmsghdr in
an mbuf and pass that on to kern_sendit().
Rename kern_vm_* functions to kern_*. Move the prototypes to
syscallsubr.h. Also change Mach VM types to uintptr_t/size_t as
needed, to avoid headers pollution.
Requested by: alc, jhb
Reviewed by: alc
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
Differential revision: https://reviews.freebsd.org/D9535
kern_vm_munmap(), and kern_vm_madvise(), and use them in various compats
instead of their sys_*() counterparts.
Reviewed by: ed, dchagin, kib
MFC after: 2 weeks
Sponsored by: DARPA, AFRL
Differential Revision: https://reviews.freebsd.org/D9378
instead of their sys_*() counterparts in various compats. The svr4
is left untouched, because there's no point.
Reviewed by: ed@, kib@
MFC after: 2 weeks
Sponsored by: DARPA, AFRL
Differential Revision: https://reviews.freebsd.org/D9367
Descriptor returned by accept(2) should inherits capabilities rights from
the listening socket.
PR: 201052
Reviewed by: emaste, jonathan
Discussed with: many
Differential Revision: https://reviews.freebsd.org/D7724
On 32-bit platforms, our 64-bit timestamps need to be split up across
two registers. A simple assignment to td_retval[0] will cause the top 32
bits to get lost. By using memcpy(), we will automatically either use 1
or 2 registers depending on the size of register_t.
Now that we've switched over to using the vDSO on CloudABI, it becomes a
lot easier for us to phase out old features. System call numbering is no
longer something that's part of the ABI. It's fully based on names. As
long as the numbering used by the kernel and the vDSO is consistent
(which it always is), it's all right.
Let's put this to the test by removing a system call (thread_tcb_set())
that's already unused for quite some time now, but was only left intact
to serve as a placeholder. Sync in the new system call table that uses
alphabetic sorting of system calls.
Obtained from: https://github.com/NuxiNL/cloudabi
Make the kern_fsync() function public, so that it can be used by other
parts of the kernel. Fix up existing consumers to make use of it.
Requested by: kib
CloudABI executables already provide support for passing in vDSOs. This
functionality is used by the emulator for OS X to inject system call
handlers. On FreeBSD, we could use it to optimize calls to
gettimeofday(), etc.
Though I don't have any plans to optimize any system calls right now,
let's go ahead and already pass in a vDSO. This will allow us to
simplify the executables, as the traditional "syscall" shims can be
removed entirely. It also means that we gain more flexibility with
regards to adding and removing system calls.
Reviewed by: kib
Differential Revision: https://reviews.freebsd.org/D7438
intention of the POSIX IEEE Std 1003.1TM-2008/Cor 1-2013.
A robust mutex is guaranteed to be cleared by the system upon either
thread or process owner termination while the mutex is held. The next
mutex locker is then notified about inconsistent mutex state and can
execute (or abandon) corrective actions.
The patch mostly consists of small changes here and there, adding
neccessary checks for the inconsistent and abandoned conditions into
existing paths. Additionally, the thread exit handler was extended to
iterate over the userspace-maintained list of owned robust mutexes,
unlocking and marking as terminated each of them.
The list of owned robust mutexes cannot be maintained atomically
synchronous with the mutex lock state (it is possible in kernel, but
is too expensive). Instead, for the duration of lock or unlock
operation, the current mutex is remembered in a special slot that is
also checked by the kernel at thread termination.
Kernel must be aware about the per-thread location of the heads of
robust mutex lists and the current active mutex slot. When a thread
touches a robust mutex for the first time, a new umtx op syscall is
issued which informs about location of lists heads.
The umtx sleep queues for PP and PI mutexes are split between
non-robust and robust.
Somewhat unrelated changes in the patch:
1. Style.
2. The fix for proper tdfind() call use in umtxq_sleep_pi() for shared
pi mutexes.
3. Removal of the userspace struct pthread_mutex m_owner field.
4. The sysctl kern.ipc.umtx_vnode_persistent is added, which controls
the lifetime of the shared mutex associated with a vnode' page.
Reviewed by: jilles (previous version, supposedly the objection was fixed)
Discussed with: brooks, Martin Simmons <martin@lispworks.com> (some aspects)
Tested by: pho
Sponsored by: The FreeBSD Foundation
Some time ago I made a change to merge together the memory scope
definitions used by mmap (MAP_{PRIVATE,SHARED}) and lock objects
(PTHREAD_PROCESS_{PRIVATE,SHARED}). Though that sounded pretty smart
back then, it's backfiring. In the case of mmap it's used with other
flags in a bitmask, but for locking it's an enumeration. As our plan is
to automatically generate bindings for other languages, that looks a bit
sloppy.
Change all of the locking functions to use separate flags instead.
Obtained from: https://github.com/NuxiNL/cloudabi
The type definitions and constants that were used by COMPAT_CLOUDABI64
are a literal copy of some headers stored inside of CloudABI's C
library, cloudlibc. What is annoying is that we can't make use of
cloudlibc's system call list, as the format is completely different and
doesn't provide enough information. It had to be synced in manually.
We recently decided to solve this (and some other problems) by moving
the ABI definitions into a separate file:
https://github.com/NuxiNL/cloudabi/blob/master/cloudabi.txt
This file is processed by a pile of Python scripts to generate the
header files like before, documentation (markdown), but in our case more
importantly: a FreeBSD system call table.
This change discards the old files in sys/contrib/cloudabi and replaces
them by the latest copies, which requires some minor changes here and
there. Because cloudabi.txt also enforces consistent names of the system
call arguments, we have to patch up a small number of system call
implementations to use the new argument names.
The new header files can also be included directly in FreeBSD kernel
space without needing any includes/defines, so we can now remove
cloudabi_syscalldefs.h and cloudabi64_syscalldefs.h. Patch up the
sources to include the definitions directly from sys/contrib/cloudabi
instead.
- Make the system call fail if prot contains bits other than read, write
and exec.
- Similar to OpenBSD's W^X, don't allow write and exec to be set at the
same time. I'd like to see for now what happens if we enforce this
policy unconditionally. If it turns out that this is far too strict,
we'll loosen this requirement.
fork1 required its callers to pass a pointer to struct proc * which would
be set to the new process (if any). procdesc and racct manipulation also
used said pointer.
However, the process could have exited prior to do_fork return and be
automatically reaped, thus making this a use-after-free.
Fix the problem by letting callers indicate whether they want the pid or
the struct proc, return the process in stopped state for the latter case.
Reviewed by: kib
CloudABI has approximately 50 system calls that do not depend on the
pointer size of the system. As the ABI is pretty compact, it takes
little effort to each truss(8) the formatting rules for these system
calls. Start off by formatting pointer size independent system calls.
Changes:
- Make it possible to include the CloudABI system call definitions in
FreeBSD userspace builds. Add ${root}/sys to the truss(8) Makefile so
we can pull in <compat/cloudabi/cloudabi_syscalldefs.h>.
- Refactoring: patch up amd64-cloudabi64.c to use the CLOUDABI_*
constants instead of rolling our own table.
- Add table entries for all of the system calls.
- Add new generic formatting types (UInt, IntArray) that we'll be using
to format unsigned integers and arrays of integers.
- Add CloudABI specific formatting types.
Approved by: jhb
Differential Revision: https://reviews.freebsd.org/D3836
To make it easier to understand how Capsicum interacts with linkat() and
renameat(), rename the rights to CAP_{LINK,RENAME}AT_{SOURCE,TARGET}.
This also addresses a shortcoming in Capsicum, where it isn't possible
to disable linking to files stored in a directory. Creating hardlinks
essentially makes it possible to access files with additional rights.
Reviewed by: rwatson, wblock
Differential Revision: https://reviews.freebsd.org/D3411
The cloudlibc pdwait() function ends up using FreeBSD's kqueue() in
combination with EVFILT_PROCDESC. This depends on CAP_EVENT -- not
CAP_PDWAIT.
Obtained from: https://github.com/NuxiNL/freebsd
If CloudABI processes open files with a set of requested rights that do
not match any of the privileges granted by O_RDONLY, O_WRONLY or O_RDWR,
we'd better fall back to O_RDONLY -- not O_WRONLY.
CloudABI purely operates on file descriptor rights (CAP_*). File
descriptor access modes (O_ACCMODE) are emulated on top of rights.
Instead of accepting the traditional flags argument, file_open() copies
in an fdstat_t object that contains the initial rights the descriptor
should have, but also file descriptor flags that should persist after
opening (APPEND, NONBLOCK, *SYNC). Only flags that don't persist (EXCL,
TRUNC, CREAT, DIRECTORY) are passed in as an argument.
file_open() first converts the rights, the persistent flags and the
non-persistent flags to fflags. It then calls into vn_open(). If
successful, it installs the file descriptor with the requested
rights, trimming off rights that don't apply to the type of
the file that has been opened.
Unlike kern_openat(), this function does not support /dev/fd/*. I can't
think of a reason why we need to support this for CloudABI.
Obtained from: https://github.com/NuxiNL/freebsd
Differential Revision: https://reviews.freebsd.org/D3235
It looks like a MODULE_VERSION() can also appear on its own -- there is
no need to use explicitly use DECLARE_MODULE(). Looking at other
modules, this seems common practice.
This kernel module does not require any explicit initialization, but a
module declaration is needed to let the "cloudabi64" kernel module
automatically pull this in.
Obtained from: https://github.com/NuxiNL/freebsd
The stat_put() system call can be used to modify file descriptor
attributes, such as flags, but also Capsicum permission bits. Support
for changing Capsicum bits will be added as soon as its dependent
changes have been pushed through code review.
Obtained from: https://github.com/NuxiNL/freebsd
CloudABI uses a structure called cloudabi_sockstat_t. Think of it as
'struct stat' for sockets. It is used by functions such as
getsockname(), getpeername(), some of the getsockopt() values, etc.
This change implements the sock_stat_get() system call that returns a
copy of this structure. The accept() system call should also return a
full copy of this structure eventually, but for now we're only
interested in the peer address. Add a TODO() to make sure this is
patched up later on.
Differential Revision: https://reviews.freebsd.org/D3218
Summary:
Use the newly created `kern_shm_open()` function to create objects with
just the rights that are actually needed.
Reviewers: jhb, kib
Subscribers: imp
Differential Revision: https://reviews.freebsd.org/D3260
On CloudABI, the rights bits returned by cap_rights_get() match up with
the operations that you can actually perform on the file descriptor.
Limiting the rights is good, because it makes it easier to get uniform
behaviour across different operating systems. If process descriptors on
FreeBSD would suddenly gain support for any new file operation, this
wouldn't become exposed to CloudABI processes without first extending
the rights.
Extend fork1() to gain a 'struct filecaps' argument that allows you to
construct process descriptors with custom rights. Use this in
cloudabi_sys_proc_fork() to limit the rights to just fstat() and
pdwait().
Obtained from: https://github.com/NuxiNL/freebsd
Summary:
Pipes in CloudABI are unidirectional. The reason for this is that
CloudABI attempts to provide a uniform runtime environment across
different flavours of UNIX.
Instead of implementing a custom pipe that is unidirectional, we can
simply reuse Capsicum permission bits to support this. This is nice,
because CloudABI already attempts to restrict permission bits to
correspond with the operations that apply to a certain file descriptor.
Replace kern_pipe() and kern_pipe2() by a single kern_pipe() that takes
a pair of filecaps. These filecaps are passed to the newly introduced
falloc_caps() function that creates the descriptors with rights in
place.
Test Plan:
CloudABI pipes seem to be created with proper rights in place:
https://github.com/NuxiNL/cloudlibc/blob/master/src/libc/unistd/pipe_test.c#L44
Reviewers: jilles, mjg
Reviewed By: mjg
Subscribers: imp
Differential Revision: https://reviews.freebsd.org/D3236
CloudABI's openat() ensures that files are opened with the smallest set
of relevant rights. For example, when opening a FIFO, unrelated rights
like CAP_RECV are automatically removed. To remove unrelated rights, we
can just reuse the code for this that was already present in the rights
conversion function.
Summary:
CloudABI's readdir() system call could be thought of as a mixture
between FreeBSD's getdents(2) and pread(). Instead of using the file
descriptor offset, userspace provides a 64-bit cloudabi_dircookie_t
continue reading at a given point. CLOUDABI_DIRCOOKIE_START, having
value 0, can be used to return entries at the start of the directory.
The file descriptor offset is not used to store the cookie for the
reason that in a file descriptor centric environment, it would make
sense to allow concurrent use of a single file descriptor.
The remaining space returned by the system call should be filled with a
partially truncated copy of the next entry. The advantage of doing this
is that it gracefully deals with long filenames. If the C library
provides a buffer that is too small to hold a single entry, it can still
extract the directory entry header, meaning that it can retry the read
with a larger buffer or skip it using the cookie.
Test Plan:
This implementation passes the cloudlibc unit tests at:
https://github.com/NuxiNL/cloudlibc/tree/master/src/libc/dirent
Reviewers: marcel, kib
Reviewed By: kib
Subscribers: imp
Differential Revision: https://reviews.freebsd.org/D3226
CloudABI uses a system call interface to modify file attributes that is
more similar to KPI's/FUSE, namely where a stat structure is passed back
to the kernel, together with a bitmask of attributes that should be
changed. This would allow us to update any set of attributes atomically.
That said, I'd rather not go as far as to actually implement it that
way, as it would require us to duplicate more code than strictly needed.
Let's just stick to the combinations that are actually used by
cloudlibc.
Obtained from: https://github.com/NuxiNL/freebsd
The file_create() system call can be used to create files of a given
type. Right now it can only be used to create directories and FIFOs. As
CloudABI does not expose filesystem permissions, this system call lacks
a mode argument. Simply use 0777 or 0666 depending on the file type.
Summary:
CloudABI provides access to two different stat structures:
- fdstat, containing file descriptor level status: oflags, file
descriptor type and Capsicum rights, used by cap_rights_get(),
fcntl(F_GETFL), getsockopt(SO_TYPE).
- filestat, containing your regular file status: timestamps, inode
number, used by fstat().
Unlike FreeBSD's stat::st_mode, CloudABI file descriptor types don't
have overloaded meanings (e.g., returning S_ISCHR() for kqueues). Add a
utility function to extract the type of a file descriptor accurately.
CloudABI does not work with O_ACCMODEs. File descriptors have two sets
of Capsicum-style rights: rights that apply to the file descriptor
itself ('base') and rights that apply to any new file descriptors
yielded through openat() ('inheriting'). Though not perfect, we can
pretty safely decompose Capsicum rights to such a pair. This is done in
convert_capabilities().
Test Plan: Tests for these system calls are fairly extensive in cloudlibc.
Reviewers: jonathan, mjg, #manpages
Reviewed By: mjg
Subscribers: imp
Differential Revision: https://reviews.freebsd.org/D3171
Summary:
CloudABI provides two different types of futex objects: read-write locks
and condition variables. There is no need to provide separate support
for once objects and thread joining, as these are efficiently simulated
by blocking on a read-write lock. Mutexes simply use read-write locks.
Condition variables always have a lock object associated to them. They
always know to which lock a thread needs to be migrated if woken up.
This allows us to implement requeueing. A broadcast on a condition
variable will never cause multiple threads to be woken up at once. They
will be woken up iteratively.
This implementation still has lots of room for improvement. Locking is
coarse and right now we use linked lists to store all of the locks and
condition variables, instead of using a hash table. The primary goal of
this implementation was to behave correctly. Performance will be
improved as we go.
Test Plan:
This futex implementation has been in use for the last couple of months
and seems to work pretty well. All of the cloudlibc and libc++ unit
tests seem to pass.
Reviewers: dchagin, kib, vangyzen
Subscribers: imp
Differential Revision: https://reviews.freebsd.org/D3148
Summary:
Unlike FreeBSD, CloudABI does not use null terminated strings for its
pathnames. Introduce a function called copyin_path() that can be used by
all of the filesystem system calls that use pathnames. This change
already implements the system calls that don't depend on any additional
functionality (e.g., conversion of struct stat).
Also implement the socket system calls that operate on pathnames, namely
the ones used by the C library functions bindat() and connectat(). These
don't receive a 'struct sockaddr_un', but just the pathname, meaning
they could be implemented in such a way that they don't depend on the
size of sun_path. For now, just use the existing interfaces.
Add a missing #include to cloudabi_syscalldefs.h to get this code to
build, as one of its macros depends on UINT64_C().
Test Plan:
These implementations have already been tested in the CloudABI branch on
GitHub. They pass all of the tests.
Reviewers: kib, pjd
Subscribers: imp
Differential Revision: https://reviews.freebsd.org/D3097