This symptom is "calibrations don't ever run", which may cause some
pretty spectacularly bad behaviour in noisy environments or with longer
uptimes.
Thanks to dtrace to make it easy to check if specific non-inlined functions
are getting called by things like the ANI and calibration HAL methods.
Grr.
Tested:
* AR9380, STA mode
which showed up after I started changing addresses this early.
It turns out that there's some other malarky going on behind the scenes
in the HAL and merely setting the net80211/ifp mac address this early
isn't enough. If the MAC is set from kenv at attach time, the HAL
also needs to be programmed early.
Without this, the VAP wouldn't work enough for finishing association -
probe requests would be fine as they're broadcast, but association
request would fail.
This is used by the AR71xx platform code to choose a local MAC based on
the "board MAC address", versus whatever potentially invalid/garbage
values are stored in the Atheros calibration data.
the CPU nexus.
* Add ahb as a possible bus attachment
* Lay a comment down to remind me or whoever else ends up trying
to debug why the EEPROM isn't mapped in as to what's going on.
interrupts are enabled and the NIC is awake (think: loading a module)
then there's a not-quite-zero window where we'll get an interrupt
for the device before the attach method is called to finish setting
up the hardware.
Since I grab locks in ath_intr() to check various things, the locks
need to be ready much earlier.
doesn't get truncated to 32 bits.
Without this, 3x3 NICs transmitting at an MCS rate whose rix (rate
index) in the rate table is > 31 end up returning errors, as the
sample rate code doesn't think the rate is set in the rate table.
Tested:
* AR9380, STA, speaking 3x3 to an AP
in prep for the next NF calibration pass.
Totally missing braces. Damn you C.
Submitted by: Sascha Wildner <swildner@dragonflybsd.org>
MFC after: 1 week
MCI bluetooth coexistence method for WB222.
The rest of MCI requires a bunch more work, including adding a DMA buffer
for the MCI hardware to bounce messages in/out of and handling MCI
interrupts. But the more important part here is telling the HAL
the btcoex is enabled and MCI is in use so it configures the correct
initial bluetooth parameters in the wireless NIC and configures
things like bluetooth traffic weights and such.
So, this at least gets the HAL to do some of the right things in
configuring the inital bluetooth coexistence stuff, but doesn't
actually do full btcoex. That'll take.. some effort.
Tested:
* AR9462 (WB222), STA mode
AR5416 and later NICs have more than 8 (Well, more than 6) GPIO pins.
So to support rfkill on these NICs we need to bump this up or the
rfkill GPIO pin may get reset to the wrong value.
Noticed by: Anthony Jenkins <scoobi_doo@yahoo.com>
ath kernel module:
sys/dev/ath/ath_hal/ar5212/ar5212_reset.c:2642:7: error: taking the absolute value of unsigned type 'unsigned int' has no effect [-Werror,-Wabsolute-value]
if (abs(lp[0] * EEP_SCALE - target) < EEP_DELTA) {
^
sys/dev/ath/ah_osdep.h:74:18: note: expanded from macro 'abs'
#define abs(_a) __builtin_abs(_a)
^
sys/dev/ath/ath_hal/ar5212/ar5212_reset.c:2642:7: note: remove the call to '__builtin_abs' since unsigned values cannot be negative
sys/dev/ath/ah_osdep.h:74:18: note: expanded from macro 'abs'
#define abs(_a) __builtin_abs(_a)
^
1 error generated.
This warning occurs because both lp[0] and target are unsigned, so the
subtraction expression is also unsigned, and calling abs() is a no-op.
However, the intention was to look at the absolute difference between
the two unsigned quantities. Introduce a small static function to
clarify what we're doing, and call that instead.
Reviewed by: adrian
MFC after: 3 days
Differential Revision: https://reviews.freebsd.org/D1212
I did this wrong - I should've included a state flag for each callout
to see if it was supposed to run or not. I didn't do that.
Instead, just use mutexes anyway.
Suggested by: jhb
These variants have a few differences from the default AR9485 NIC,
namely:
* a non-default antenna switch config;
* slightly different RX gain table setup;
* an external XLNA hooked up to a GPIO pin;
* (and not yet done) RSSI threshold differences when
doing slow diversity.
To make this possible:
* Add the PCI device list from Linux ath9k, complete with vendor and
sub-vendor IDs for various things to be enabled;
* .. and until FreeBSD learns about a PCI device list like this,
write a search function inspired by the USB device enumeration code;
* add HAL_OPS_CONFIG to the HAL attach methods; the HAL can use this
to initialise its local driver parameters upon attach;
* copy these parameters over in the AR9300 HAL;
* don't default to override the antenna switch - only do it for
the chips that require it;
* I brought over ar9300_attenuation_apply() from ath9k which is cleaner
and easier to read for this particular NIC.
This is a work in progress. I'm worried that there's some post-AR9380
NIC out there which doesn't work without the antenna override set as
I currently haven't implemented bluetooth coexistence for the AR9380
and later HAL. But I'd rather have this code in the tree and fix it
up before 11.0-RELEASE happens versus having a set of newer NICs
in laptops be effectively RX deaf.
Tested:
* AR9380 (STA)
* AR9485 CUS198 (STA)
Obtained from: Qualcomm Atheros, Linux ath9k
The original code was .. well, slightly more than incorrect.
It showed up as stalled RX queues if the NIC needed to be frequently
reinitialised (eg during scans.)
This is inspired by work done by Matt Dillon over at the DragonflyBSD
project.
So:
* track when EDMA RX has been stopped and when the MAC has been reset;
* re-initialise the ring only after a reset;
* track whether RX has been stopped/started - just for debugging now;
* don't bother with the RX EOL stuff for EDMA - we don't need the
interrupt at all. We also don't need to disable/enable the interrupt
or start DMA - once new frames are pushed into the ring via the
normal RX path, it'll just restart RX DMA on its own.
Tested:
* AR9380, STA mode
* AR9380, AP mode
* AR9485, STA mode
* AR9462, STA mode
to get upset.
The Qualcomm Atheros reference design code goes through significant
hacks to shut down RX before TX. It doesn't even try do do it in the
driver - it actually makes the DMA stop routines in the HAL shut down
RX before shutting down TX.
So, to make this work for chips that aren't the AR9380 and later, do
it in the driver. Shuffle the TX stop/drain HAL calls to be called
*after* the RX stop HAL call.
Tested:
* AR5413 (STA)
* AR5212 (STA)
* AR5416 (STA)
* AR9380 (STA)
* AR9331 (AP)
* AR9341 (AP)
TODO:
* test ar92xx series NIC and the AR5210/AR5211, in case there's something
even odder about those.
The AR9380 and later chips have a 128KiB register window, so the register
read diag api needs changing.
The tools are about to be updated as well. No, they're not backwards
compatible.
This includes:
o All directories named *ia64*
o All files named *ia64*
o All ia64-specific code guarded by __ia64__
o All ia64-specific makefile logic
o Mention of ia64 in comments and documentation
This excludes:
o Everything under contrib/
o Everything under crypto/
o sys/xen/interface
o sys/sys/elf_common.h
Discussed at: BSDcan
These changes prevent sysctl(8) from returning proper output,
such as:
1) no output from sysctl(8)
2) erroneously returning ENOMEM with tools like truss(1)
or uname(1)
truss: can not get etype: Cannot allocate memory
there is an environment variable which shall initialize the SYSCTL
during early boot. This works for all SYSCTL types both statically and
dynamically created ones, except for the SYSCTL NODE type and SYSCTLs
which belong to VNETs. A new flag, CTLFLAG_NOFETCH, has been added to
be used in the case a tunable sysctl has a custom initialisation
function allowing the sysctl to still be marked as a tunable. The
kernel SYSCTL API is mostly the same, with a few exceptions for some
special operations like iterating childrens of a static/extern SYSCTL
node. This operation should probably be made into a factored out
common macro, hence some device drivers use this. The reason for
changing the SYSCTL API was the need for a SYSCTL parent OID pointer
and not only the SYSCTL parent OID list pointer in order to quickly
generate the sysctl path. The motivation behind this patch is to avoid
parameter loading cludges inside the OFED driver subsystem. Instead of
adding special code to the OFED driver subsystem to post-load tunables
into dynamically created sysctls, we generalize this in the kernel.
Other changes:
- Corrected a possibly incorrect sysctl name from "hw.cbb.intr_mask"
to "hw.pcic.intr_mask".
- Removed redundant TUNABLE statements throughout the kernel.
- Some minor code rewrites in connection to removing not needed
TUNABLE statements.
- Added a missing SYSCTL_DECL().
- Wrapped two very long lines.
- Avoid malloc()/free() inside sysctl string handling, in case it is
called to initialize a sysctl from a tunable, hence malloc()/free() is
not ready when sysctls from the sysctl dataset are registered.
- Bumped FreeBSD version to indicate SYSCTL API change.
MFC after: 2 weeks
Sponsored by: Mellanox Technologies
used.
It turns out that the RX DMA engine does the same last-descriptor-link-
pointer-re-reading trick that the TX DMA engine. That is, the hardware
re-reads the link pointer before it moves onto the next descriptor.
Thus we can't free a descriptor before we move on; it's possible the
hardware will need to re-read the link pointer before we overwrite
it with a new one.
Tested:
* AR5416, STA mode
TODO:
* more thorough AP and STA mode testing!
* test on other pre-AR9380 NICs, just to be sure.
* Break out the RX descriptor grabbing bits from the RX completion
bits, like what is done in the RX EDMA code, so ..
* .. the RX lock can be held during ath_rx_proc(), but not across
packet input.
call, which assumes the hardware is awake.
Turn ath_update_mcast() into a routine that's only called from the
net80211 layer - and it forces the hardware awake first.
This fixes a LOR from the EDMA RX path which calls ath_mode_init()
with the RX lock held - the driver lock can't also be grabbed.
This path assumes that the ath_mode_init() callers all wake up
the NIC first.
Tested:
* AR9485, STA mode, powersave
This seems to probe/attach as an AR9485 and thus nothing else besides
adding the device id seems to be required.
ath0: <Atheros AR1111> mem 0xf4800000-0xf487ffff irq 19 at device 0.0 on pci5
ath0: [HT] enabling HT modes
ath0: [HT] enabling short-GI in 20MHz mode
ath0: [HT] 1 stream STBC receive enabled
ath0: [HT] 1 RX streams; 1 TX streams
ath0: AR9485 mac 576.1 RF5110 phy 1926.8
ath0: 2GHz radio: 0x0000; 5GHz radio: 0x0000
The NIC I have here is a 1 antenna, 2GHz only device.
Thankyou to Jim Thompson <jim@netgate.com> for the AR1111 NIC.
Tested:
* AR1111 (pretending not to be an AR9485, but failing miserably);
STA mode with powersave.
Relnotes: yes
Sponsored by: Netgate
The hardware can generate its own frames (eg RTS/CTS exchanges, other
kinds of 802.11 management stuff, especially when it comes to 802.11n)
and these also have PWRMGT flags. So if the VAP is asleep but the
NIC is in force-awake for some reason, ensure that the self-generated
frames have PWRMGT set to 1.
Now, this (like basically everything to do with powersave) is still
racy - the only way to guarantee that it's all actually consistent
is to pause transmit and let it finish before transitioning the VAP
to sleep, but this at least gets the basic method of tracking and
updating the state debugged.
Tested:
* AR5416, STA mode
* AR9380, STA mode
fixes and beacon programming / debugging into the ath(4) driver.
The basic power save tracking:
* Add some new code to track the current desired powersave state; and
* Add some reference count tracking so we know when the NIC is awake; then
* Add code in all the points where we're about to touch the hardware and
push it to force-wake.
Then, how things are moved into power save:
* Only move into network-sleep during a RUN->SLEEP transition;
* Force wake the hardware up everywhere that we're about to touch
the hardware.
The net80211 stack takes care of doing RUN<->SLEEP<->(other) state
transitions so we don't have to do it in the driver.
Next, when to wake things up:
* In short - everywhere we touch the hardware.
* The hardware will take care of staying awake if things are queued
in the transmit queue(s); it'll then transit down to sleep if
there's nothing left. This way we don't have to track the
software / hardware transmit queue(s) and keep the hardware
awake for those.
Then, some transmit path fixes that aren't related but useful:
* Force EAPOL frames to go out at the lowest rate. This improves
reliability during the encryption handshake after 802.11
negotiation.
Next, some reset path fixes!
* Fix the overlap between reset and transmit pause so we don't
transmit frames during a reset.
* Some noisy environments will end up taking a lot longer to reset
than normal, so extend the reset period and drop the raise the
reset interval to be more realistic and give the hardware some
time to finish calibration.
* Skip calibration during the reset path. Tsk!
Then, beacon fixes in station mode!
* Add a _lot_ more debugging in the station beacon reset path.
This is all quite fluid right now.
* Modify the STA beacon programming code to try and take
the TU gap between desired TSF and the target TU into
account. (Lifted from QCA.)
Tested:
* AR5210
* AR5211
* AR5212
* AR5413
* AR5416
* AR9280
* AR9285
TODO:
* More AP, IBSS, mesh, TDMA testing
* Thorough AR9380 and later testing!
* AR9160 and AR9287 testing
Obtained from: QCA
Some code will appear soon that is actually setting the chip powerstate
separate from the self-generated frames power state.
* Allow the AR5416 family chips to actually have the power state changed
from the self generated state change.
Tested (STA mode):
* AR5210
* AR5211
* AR5412
* AR5413
* AR5416
* AR9285
the MYBEACON RX filter (only receive beacons which match the BSSID)
or all beacons on the current channel.
* Add the relevant RX filter entry for MYBEACON.
Tested:
* AR5416, STA
* AR9285, STA
TODO:
* once the code is in -HEAD, just make sure that the code which uses it
correctly sets BEACON for pre-AR5416 chips.
Obtained from: QCA, Linux ath9k
the QCA HAL.
This fires off an interrupt if the TSF from the AP / IBSS peer is
wildly out of range. I'll add some code to the ath(4) driver soon
which makes use of this.
TODO:
* verify this didn't break TDMA!
to the hardware.
The QCA HAL has a comment noting that if this isn't done, modifications
to AR_IMR_S2 before AR_IMR is flushed may produce spurious interrupts.
Obtained from: QCA
concurrent updates from any completing transmits in other threads.
This was exposed when doing power save work - net80211 is constantly
doing reassociations and it's causing the rate control state to get
blanked out. This could cause the rate control code to assert.
This should be MFCed to stable/10 as it's a stability fix.
Tested:
* AR5416, STA
MFC after: 7 days
The existing cleanup code was based on the Atheros reference driver
from way back and stuff that was in Linux ath9k. It turned out to be ..
rather silly.
Specifically:
* The whole method of determining whether there's hardware-queued frames
was fragile and the BAW would never quite work right afterwards.
* The cleanup path wouldn't correctly pull apart aggregate frames in the
queue, so frames would not be freed and the BAW wouldn't be correctly
updated.
So to implement this:
* Pull the aggregate frames apart correctly and handle each separately;
* Make the atid->incomp counter just track the number of hardware queued
frames rather than try to figure it out from the BAW;
* Modify the aggregate completion path to handle it as a single frame
(atid->incomp tracks the one frame now, not the subframes) and
remove the frames from the BAW before completing them as normal frames;
* Make sure bf->bf_next is NULled out correctly;
* Make both aggregate session and non-aggregate path frames now be
handled via the incompletion path.
TODO:
* kill atid->incomp; the driver tracks the hardware queued frames
for each TID and so we can just use that.
This is a stability fix that should be merged back to stable/10.
Tested:
* AR5416, STA
MFC after: 7 days
MAC
* Now that the paused < 0 bugs have been identified, make the DPRINTF()
a device_printf() again. Anything else that shows up here needs to be
fixed immediately.
Tested:
* AR5416, STA mode
MFC after: 7 days
During power save testing I noticed that the cleanup code is being
called during a RUN->RUN state transition. It's because the net80211
stack is treating that (for reasons I don't quitey know yet) as a
reassociation and this calls the node cleanup code. The reason it's
seeing a RUN->RUN transition is because during active power save
stuff it's possible that the RUN->SLEEP and SLEEP->RUN transitions
happen so quickly that the deferred net80211 vap state code
"loses" a transition, namely the intermediary SLEEP transition.
So, this was causing the node reassociation code to sometimes be called
twice in quick succession and this would result in ath_tx_tid_cleanup()
to be called again. The code calling it would always call pause, and
then only call resume if the TID didn't have "cleanup_inprogress" set.
Unfortunately it didn't check if it was already set on entry, so it
would pause but not call resume. Thus, paused would be called more
than once (once before each entry into ath-tx_tid_cleanup()) but resume
would only be called once when the cleanup state was finished.
This doesn't entirely fix all of the issues seen in the cleanup path
but it's a necessary first step.
Since this is a stability fix, it should be merged to stable/10 at some
point.
Tested:
* AR5416, STA mode
MFC after: 7 days
tracked BAW actually is.
The net80211 code that completes a BAR will set tid->txa_start (the
BAW start) to whatever value was called when sending the BAR.
Now, in case there's bugs in my driver code that cause the BAW
to slip along, we should make sure that the new BAW we start
at is actually what we currently have it at, not what we've sent.
This totally breaks the specification and so this stays a printf().
If it happens then I need to know and fix it.
Whilst here, add some debugging updates:
* add TID logging to places where it's useful;
* use SEQNO().
match how it's used.
This is another bug that led to aggregate traffic hanging because
the BAW tracking stopped being accurate. In this instance, a filtered
frame that exceeded retries would return a non-error, which would
mean the caller would never remove it from the BAW. But it wouldn't
be added to the filtered list, so it would be lost forever. There'd
thus be a hole in the BAW that would never get transmitted and
this leads to a traffic hang.
Tested:
* Routerstation Pro, AR9220 AP
we did suspend it.
The whole suspend/resume TID queue thing is supposed to be a matched
reference count - a subsystem (eg addba negotiation, BAR transmission,
filtered frames, etc) is supposed to call pause() once and then resume()
once.
ath_tx_tid_filt_comp_complete() is called upon the completion of any
filtered frame, regardless of whether the driver had aleady seen
a filtered frame and called pause().
So only call resume() if tid->isfiltered = 1, which indicates that
we had called pause() once.
This fixes a seemingly whacked and different problem - traffic hangs.
What was actually going on:
* There'd be some marginal link with crappy behaviour, causing filtered
frames and BAR TXing to occur;
* A BAR TX would occur, setting the new BAW (block-ack window) to seqno n;
* .. and pause() would be called, blocking further transmission;
* A filtered frame completion would occur from the hardware, but with
tid->isfiltered = 0 which indiciates we haven't actually marked
the queue yet as filtered;
* ath_tx_tid_filt_comp_complete() would call resume(), continuing
transmission;
* Some frames would be queued to the hardware, since the TID is now no
longer paused;
* .. and if some make it out and ACked successfully, the new BAW
may be seqno n+1 or more;
* .. then the BAR TX completes and sets the new seqno back to n.
At this point the BAW tracking would be loopy because the BAW
start was modified but the BAW ring buffer wasn't updated in lock
step.
Tested:
* Routerstation Pro + AR9220 AP
These are needed to diagnose TX hangs that I and hiren are seeing.
Without it, the only way we'll see debugging is by having ATH_DEBUG_SW_TX
enabled and that is going to be very, very spammy.
ATH_DEBUG_RESET is fine; it's only going to be done during stuck beacon
situations in AP mode.
Whilst I'm here, and now that it's behind debugging, let's just disable
the "print only one" conditional. I'll eventually make it more tunable.
Tested:
* AR9220, hostap mode.
device is asleep.
This doesn't avoid logging errors for things that are actually OK to
access whilst the chip is asleep (eg, the RTC registers (0x7000->0x70ff
on the AR5416 and later.)
But, this is a pretty good indicator if things are accessed incorrectly.
Tested:
* AR5416, STA
This way the state changes from sleep->awake before the registers are poked
and from awake->sleep after the registers are poked.
This way spurious warnings aren't printed by my (to be committed)
debugging code.
Tested:
* AR5416, STA
Yes, this means that sc_invalid is slightly racy, but there are other
issues here which need fixing.
This fixes a source of eventual LORs - ath_init() grabs ATH_LOCK to do
work and releases it before it calls ieee80211_start_all().
ieee80211_start_all() will grab the net80211 comlock to iterate over
the VAPs.
TODO:
* .. I should just migrate the ieee80211_start_all() work to a
deferred task so it can be done later; it doesn't have to be
immediately done.
Tested:
* AR5416, STA mode
private per-chip HAL.
This allows the ah_osdep.[ch] code to check whether the power state is
valid for doing chip programming.
It should be a no-op for normal driver work but it does require a
clean kernel/module rebuild, as the size of HAL structures have changed.
Now, this doesn't track whether the hardware is ACTUALLY awake,
as NETWORK_SLEEP wakes the chip up for a short period when traffic
is received. This doesn't actually set the power mode to AWAKE, so
we have to be careful about how we touch things.
But it's enough to start down the path of implementing station mode
chipset power savings, as a large part of the silliness is making
sure the chip is awake during periodic calibration / ANI and
random places where transmit may be occuring. I'd rather not a repeat
of debugging power save on ath9k, where races with calibration
and transmit path stuff took a couple years to shake out.
Tested:
* AR5416, STA mode
The origin of WEP comes from IEEE Std 802.11-1997 where it defines
whether the frame body of MAC frame has been encrypted using WEP
algorithm or not.
IEEE Std. 802.11-2007 changes WEP to Protected Frame, indicates
whether the frame is protected by a cryptographic encapsulation
algorithm.
Reviewed by: adrian, rpaulo
freeing them.
The current code would walk the list and call the buffer free, which
didn't remove it from any lists before pushing it back on the free list.
Tested: AR9485, STA mode
Noticed by: dillon@apollo.dragonflybsd.org
to this event, adding if_var.h to files that do need it. Also, include
all includes that now are included due to implicit pollution via if_var.h
Sponsored by: Netflix
Sponsored by: Nginx, Inc.
The AR5212 series of MACs implement the same channel counters as the
later 11n chips - except, of course, the 11n specific counter (extension
channel busy.)
This allows users of these NICs to use 'athsurvey' to see how busy their
current channel is.
Tested:
* AR5212, AR2413 NICs, STA mode
Approved by: re@ (gleb)
This occurs at RX DMA start, even though the RX FIFO has plenty of
space. I'll go figure out why, but this shouldn't cause people to
be spammed by these messages.
The AHB code:
* hard coded the AR9130 device id;
* assumes a 4k flash calibration space.
This code now extends this:
* hint.ath.X.eepromsize now overrides the eeprom range, instead of 4k
* hint.ath.X.device_id and hint.ath.X.vendor_id can now be overridden.
Tested:
* AR9330 board (Carambola 2)
This hasn't yet been tested as unfortunately the AR3012 I have doesn't
have the "real" firmware on it; it shipped with the cut down HCI firmware
that only understands enough to accept a new firmware image.
* Linux ath9k (GPIO constants)
* Add the LNA configuration table entries for AR933x/AR9485
* Add a chip-dependent LNA signal level delta in the startup path
* Add a TODO list for the stuff I haven't yet ported over but
I haven't.
Tested:
* AR9462 with LNA diversity enabled
The reference HAL pushes a config group parameter to the driver layer
to inform it which particular chip behaviour to implement.
This particular value tags it as an AR9285.
The AR9485 chip and AR933x SoC both implement LNA diversity.
There are a few extra things that need to happen before this can be
flipped on for those chips (mostly to do with setting up the different
bias values and LNA1/LNA2 RSSI differences) but the first stage is
putting this code into the driver layer so it can be reused.
This has the added benefit of making it easier to expose configuration
options and diagnostic information via the ioctl API. That's not yet
being done but it sure would be nice to do so.
Tested:
* AR9285, with LNA diversity enabled
* AR9285, with LNA diversity disabled in EEPROM
for the WB195 combo NIC - an AR9285 w/ an AR3011 USB bluetooth NIC.
The AR3011 is wired up using a 3-wire coexistence scheme to the AR9285.
The code in if_ath_btcoex.c sets up the initial hardware mapping
and coexistence configuration. There's nothing special about it -
it's static; it doesn't try to configure bluetooth / MAC traffic priorities
or try to figure out what's actually going on. It's enough to stop basic
bluetooth traffic from causing traffic stalls and diassociation from
the wireless network.
To use this code, you must have the above NIC. No, it won't work
for the AR9287+AR3012, nor the AR9485, AR9462 or AR955x combo cards.
Then you set a kernel hint before boot or before kldload, where 'X'
is the unit number of your AR9285 NIC:
# kenv hint.ath.X.btcoex_profile=wb195
This will then appear in your boot messages:
[100482] athX: Enabling WB195 BTCOEX
This code is going to evolve pretty quickly (well, depending upon my
spare time) so don't assume the btcoex API is going to stay stable.
In order to use the bluetooth side, you must also load in firmware using
ath3kfw and the binary firmware file (ath3k-1.fw in my case.)
Tested:
* AR9280, no interference
* WB195 - AR9285 + AR3011 combo; STA mode; basic bluetooth inquiries
were enough to cause traffic stalls and disassociations. This has
stopped with the btcoex profile code.
TODO:
* Importantly - the AR9285 needs ASPM disabled if bluetooth coexistence
is enabled. No, I don't know why. It's likely some kind of bug to do
with the AR3011 sending bluetooth coexistence signals whilst the device
is asleep. Since we don't actually sleep the MAC just yet, it shouldn't
be a problem. That said, to be totally correct:
+ ASPM should be disabled - upon attach and wakeup
+ The PCIe powersave HAL code should never be called
Look at what the ath9k driver does for inspiration.
* Add WB197 (AR9287+AR3012) support
* Add support for the AR9485, which is another combo like the AR9285
* The later NICs have a different signaling mechanism between the MAC
and the bluetooth device; I haven't even begun to experiment with
making that HAL code work. But it should be a lot more automatic.
* The hardware can do much more interesting traffic weighting with
bluetooth and wifi traffic. None of this is currently used.
Ideally someone would code up something to watch the bluetooth traffic
GPIO (via an interrupt) and then watch it go high/low; then figure out
what the bluetooth traffic is and adjust things appropriately.
* If I get the time I may add in some code to at least track this stuff
and expose statistics. But it's up to someone else to experiment with
the bluetooth coexistence support and add the interesting stuff (like
"real" detection of bulk, audio, etc bluetooth traffic patterns and
change wifi parameters appropriately - eg, maximum aggregate length,
transmit power, using quiet time to control TX duty cycle, etc.)
* Call the bluetooth setup function during the reset path, so the bluetooth
settings are actually initialised.
* Call the AR9285 diversity functions during bluetooth setup; so the AR9285
diversity and antenna configuration registers are correctly programmed
* Misc debugging info.
Tested:
* AR9285+AR3011 bluetooth combo; this code itself doesn't enable bluetooth
coexistence but it's part of what I'm currently using.
Now that I understand what's going on - and the RX antenna array maps
to what the receive LNA configuration actually is - I feel comfortable
in enabling this.
If people do have issues with this, there's enough debugging now available
that we have a chance to diagnose it without writing it up as 'weird
crap.'
Tested:
* AR9285 STA w/ diversity combining enabled in EEPROM
TODO:
* (More) testing in hostap mode
and controlling this form of antenna diversity) - print out the AR9285
antenna diversity configuration at attach time.
This will help track down and diagose if/when people have connectivity
issues on cards (eg if they connect a single antenna to LNA1, yet the
card has RX configured to only occur on LNA2.)
Tested:
* AR9285 w/ antenna diversity enabled in EEPROM;
* AR9285 w/ antenna diversity disabled in EEPROM; mapping only to a
single antenna (LNA1.)
the RX antenna field.
The AR9285/AR9485 use an LNA mixer to determine how to combine the signals
from the two antennas. This is encoded in the RSSI fields (ctl/ext) for
chain 2. So, let's use that here.
This maps RX antennas 0->3 to the RX mixer configuration used to
receive a frame. There's more that can be done but this is good enough
to diagnose if the hardware is doing "odd" things like trying to
receive frames on LNA2 (ie, antenna 2 or "alt" antenna) when there's
only one antenna connected.
Tested:
* AR9285, STA mode
for the RX path.
This is different to the div comb HAL flag, that says it actually
can use this for RX diversity (the "slow" diversity path implemented
but disabled in the AR9285 HAL code.)
Tested:
* AR9285, STA operation
* Grab the reset lock first, so any subsequent interrupt, TX, RX work
will fail
* Then shut down interrupts
* Then wait for TX/RX to finish running
At this point no further work will be running, so it's safe to do the
reset path code.
PR: kern/179232
The main problem here is that fast and driver RX diversity isn't actually
configured; I need to figure out why that is. That said, this makes
the single-antenna connected AR9285 and AR2427 (AR9285 w/ no 11n) work
correctly.
PR: kern/179269
and if queue mechanism; also fix up (non-11n) TX fragment handling.
This may result in a bit of a performance drop for now but I plan on
debugging and resolving this at a later stage.
Whilst here, fix the transmit path so fragment transmission works.
The TX fragmentation handling is a bit more special. In order to
correctly transmit TX fragments, there's a bunch of corner cases that
need to be handled:
* They must be transmitted back to back, in the same order..
* .. ie, you need to hold the TX lock whilst transmitting this
set of fragments rather than interleaving it with other MSDUs
destined to other nodes;
* The length of the next fragment is required when transmitting, in
order to correctly set the NAV field in the current frame to the
length of the next frame; which requires ..
* .. that we know the transmit duration of the next frame, which ..
* .. requires us to set the rate of all fragments to the same length,
or make the decision up-front, etc.
To facilitate this, I've added a new ath_buf field to describe the
length of the next fragment. This avoids having to keep the mbuf
chain together. This used to work before my 11n TX path work because
the ath_tx_start() routine would be handed a single mbuf with m_nextpkt
pointing to the next frame, and that would be maintained all the way
up to when the duration calculation was done. This doesn't hold
true any longer - the actual queuing may occur at any point in the
future (think ath_node TID software queuing) so this information
needs to be maintained.
Right now this does work for non-11n frames but it doesn't at all
enforce the same rate control decision for all frames in the fragment.
I plan on fixing this in a followup commit.
RTS/CTS has the same issue, I'll look at fixing this in a subsequent
commit.
Finaly, 11n fragment support requires the driver to have fully
decided what the rate scenario setup is - including 20/40MHz,
short/long GI, STBC, LDPC, number of streams, etc. Right now that
decision is (currently) made _after_ the NAV field value is updated.
I'll fix all of this in subsequent commits.
Tested:
* AR5416, STA, transmitting 11abg fragments
* AR5416, STA, 11n fragments work but the NAV field is incorrect for
the reasons above.
TODO:
* It would be nice to be able to queue mbufs per-node and per-TID so
we can only queue ath_buf entries when it's time to assemble frames
to send to the hardware.
But honestly, we should just do that level of software queue management
in net80211 rather than ath(4), so I'm going to leave this alone for now.
* More thorough AP, mesh and adhoc testing.
* Ensure that net80211 doesn't hand us fragmented frames when A-MPDU has
been negotiated, as we can't do software retransmission of fragments.
* .. set CLRDMASK when transmitting fragments, just to ensure.
traffic.
When transmitting non-aggregate traffic, we need to keep the hardware
busy whilst transmitting or small bursts in txdone/tx latency will
kill us.
This restores non-aggregate iperf performance, especially when doing
TDMA.
Tested:
* AR5416<->AR5416, TDMA
* AR5416 STA <-> AR9280 AP
of course.)
There's a few things that needed to happen:
* In case someone decides to set the beacon transmission rate to be
at an MCS rate, use the MCS-aware version of the duration calculation
to figure out how long the received beacon frame was.
* If TxOP enforcing is available on the hardware and we're doing TDMA,
enable it after a reset and set the TDMA guard interval to zero.
This seems to behave fine.
TODO:
* Although I haven't yet seen packet loss, the PHY errors that would be
triggered (specifically Transmit-Override-Receive) aren't enabled
by the 11n HAL. I'll have to do some work to enable these PHY errors
for debugging.
What broke:
* My recent changes to the TX queue handling has resulted in the driver
not keeping the hardware queue properly filled when doing non-aggregate
traffic. I have a patch to commit soon which fixes this situation
(albeit by reminding me about how my ath driver locking isn't working
out, sigh.)
So if you want to test this without updating to the next set of patches
that I commit, just bump the sysctl dev.ath.X.hwq_limit from 2 to 32.
Tested:
* AR5416 <-> AR5416, with ampdu disabled, HT40, 5GHz, MCS12+Short-GI.
I saw 30mbit/sec in both directions using a bidirectional UDP test.
The list-based DMA engine has the following behaviour:
* When the DMA engine is in the init state, you can write the first
descriptor address to the QCU TxDP register and it will work.
* Then when it hits the end of the list (ie, it either hits a NULL
link pointer, OR it hits a descriptor with VEOL set) the QCU
stops, and the TxDP points to the last descriptor that was transmitted.
* Then when you want to transmit a new frame, you can then either:
+ write the head of the new list into TxDP, or
+ you write the head of the new list into the link pointer of the
last completed descriptor (ie, where TxDP points), then kick
TxE to restart transmission on that QCU>
* The hardware then will re-read the descriptor to pick up the link
pointer and then jump to that.
Now, the quirks:
* If you write a TxDP when there's been no previous TxDP (ie, it's 0),
it works.
* If you write a TxDP in any other instance, the TxDP write may actually
fail. Thus, when you start transmission, it will re-read the last
transmitted descriptor to get the link pointer, NOT just start a new
transmission.
So the correct thing to do here is:
* ALWAYS use the holding descriptor (ie, the last transmitted descriptor
that we've kept safe) and use the link pointer in _THAT_ to transmit
the next frame.
* NEVER write to the TxDP after you've done the initial write.
* .. also, don't do this whilst you're also resetting the NIC.
With this in mind, the following patch does basically the above.
* Since this encapsulates Sam's issues with the QCU behaviour w/ TDMA,
kill the TDMA special case and replace it with the above.
* Add a new TXQ flag - PUTRUNNING - which indicates that we've started
DMA.
* Clear that flag when DMA has been shutdown.
* Ensure that we're not restarting DMA with PUTRUNNING enabled.
* Fix the link pointer logic during TXQ drain - we should always ensure
the link pointer does point to something if there's a list of frames.
Having it be NULL as an indication that DMA has finished or during
a reset causes trouble.
Now, given all of this, i want to nuke axq_link from orbit. There's now HAL
methods to get and set the link pointer of a descriptor, so what we
should do instead is to update the right link pointer.
* If there's a holding descriptor and an empty TXQ list, set the
link pointer of said holding descriptor to the new frame.
* If there's a non-empty TXQ list, set the link pointer of the
last descriptor in the list to the new frame.
* Nuke axq_link from orbit.
Note:
* The AR9380 doesn't need this. FIFO TX writes are atomic. As long as
we don't append to a list of frames that we've already passed to the
hardware, all of the above doesn't apply. The holding descriptor stuff
is still needed to ensure the hardware can re-read a completed
descriptor to move onto the next one, but we restart DMA by pushing in
a new FIFO entry into the TX QCU. That doesn't require any real
gymnastics.
Tested:
* AR5210, AR5211, AR5212, AR5416, AR9380 - STA mode.
doesn't match the actual hardware queue this frame is queued to.
I'm trying to ensure that the holding buffers are actually being queued
to the same TX queue as the holding buffer that they end up on.
I'm pretty sure this is all correct so if this complains, it'll be due
to some kind of subtle broken-ness that needs fixing.
This is only done for legacy hardware, not EDMA hardware.
Tested:
* AR5416 STA mode, very lightly
PS-POLL support.
This implements PS-POLL awareness i nthe
* Implement frame "leaking", which allows for a software queue
to be scheduled even though it's asleep
* Track whether a frame has been leaked or not
* Leak out a single non-AMPDU frame when transmitting aggregates
* Queue BAR frames if the node is asleep
* Direct-dispatch the rest of control and management frames.
This allows for things like re-association to occur (which involves
sending probe req/resp as well as assoc request/response) when
the node is asleep and then tries reassociating.
* Limit how many frames can set in the software node queue whilst
the node is asleep. net80211 is already buffering frames for us
so this is mostly just paranoia.
* Add a PS-POLL method which leaks out a frame if there's something
in the software queue, else it calls net80211's ps-poll routine.
Since the ath PS-POLL routine marks the node as having a single frame
to leak, either a software queued frame would leak, OR the next queued
frame would leak. The next queued frame could be something from the
net80211 power save queue, OR it could be a NULL frame from net80211.
TODO:
* Don't transmit further BAR frames (eg via a timeout) if the node is
currently asleep. Otherwise we may end up exhausting management frames
due to the lots of queued BAR frames.
I may just undo this bit later on and direct-dispatch BAR frames
even if the node is asleep.
* It would be nice to burst out a single A-MPDU frame if both ends
support this. I may end adding a FreeBSD IE soon to negotiate
this power save behaviour.
* I should make STAs timeout of power save mode if they've been in power
save for more than a handful of seconds. This way cards that get
"stuck" in power save mode don't stay there for the "inactivity" timeout
in net80211.
* Move the queue depth check into the driver layer (ath_start / ath_transmit)
rather than doing it in the TX path.
* There could be some naughty corner cases with ps-poll leaking.
Specifically, if net80211 generates a NULL data frame whilst another
transmitter sends a normal data frame out net80211 output / transmit,
we need to ensure that the NULL data frame goes out first.
This is one of those things that should occur inside the VAP/ic TX lock.
Grr, more investigations to do..
Tested:
* STA: AR5416, AR9280
* AP: AR5416, AR9280, AR9160
* Move the node sleep/wake state under the TX lock rather than the
node lock. Let's leave the node lock protecting rate control only
for now.
* When reassociating, various state needs to be cleared. For example,
the aggregate session needs to be torn down, including any pending
aggregation negotiation and BAR TX waiting.
* .. and we need to do a "cleanup" pass since frames in the hardware
TX queue need to be transmitted.
Modify ath_tx_tid_cleanup() to be called with the TX lock held and push
frames into a completion list. This allows for the cleanup to be
done atomically for all TIDs in a node rather than grabbing and
releasing the TX lock each time.
a non-loss reset.
When the drain functions are called, the holding descriptor and link pointers
are NULLed out.
But when the processq function is called during a non-loss reset, this
doesn't occur. So the next time a DMA occurs, it's chained to a descriptor
that no longer exists and the hardware gets angry.
Tested:
* AR5416, STA mode; use sysctl dev.ath.X.forcebstuck=1 to force a non-loss
reset.
TODO:
* Further AR9380 testing just to check that the behaviour for the EDMA
chips is sane.
PR: kern/178477
of "right".)
Flip back on the "always continue TX DMA using the holding descriptor"
code - by always setting ATH_BUF_BUSY and never setting axq_link to NULL.
Since the holding descriptor is accessed via txq->axq_link and _that_
is done behind the TXQ lock rather than the TX path lock, the holding
descriptor stuff itself needs to be behind the TXQ lock.
So, do the mental gymnastics needed to do this.
I've not seen any of the hardware failures that I was seeing when
I last tried to do this.
Tested:
* AR5416, STA mode
I'm not sure why this is failing. The holding descriptor should be being
re-read when starting DMA of the next frame. Obviously something here
isn't totally correct.
I'll review the TX queue handling and see if I can figure out why this
is failing. I'll then re-revert this patch out and use the holding
descriptor again.
but partly to just tidy up things.
The problem here - there are too many TX buffers in the queue! By the
time one needs to transmit an EAPOL frame (for this PR, it's the response
to the group rekey notification from the AP) there are no ath_buf entries
free and the EAPOL frame doesn't go out.
Now, the problem!
* Enforcing the TX buffer limitation _before_ we dequeue the frame?
Bad idea. Because..
* .. it means I can't check whether the mbuf has M_EAPOL set.
The solution(s):
* De-queue the frame first
* Don't bother doing the TX buffer minimum free check until after
we know whether it's an EAPOL frame or not.
* If it's an EAPOL frame, allocate the buffer from the mgmt pool
rather than the default pool.
Whilst I'm here:
* Add a tweak to limit how many buffers a single node can acquire.
* Don't enforce that for EAPOL frames.
* .. set that to default to 1/4 of the available buffers, or 32,
whichever is more sane.
This doesn't fix issues due to a sleeping node or a very poor performing
node; but this doesn't make it worse.
Tested:
* AR5416 STA, TX'ing 100+ mbit UDP to an AP, but only 50mbit being received
(thus the TX queue fills up.)
* .. with CCMP / WPA2 encryption configured
* .. and the group rekey time set to 10 seconds, just to elicit the
behaviour very quickly.
PR: kern/138379
just "when the queue is busy."
After talking with the MAC team, it turns out that the linked list
implementation sometimes will not accept a TxDP update and will
instead re-read the link pointer. So even if the hardware has
finished transmitting a chain and has hit EOL/VEOL, it may still
re-read the link pointer to begin transmitting again.
So, always set ATH_BUF_BUSY on the last buffer in the chain (to
mark the last descriptor as the holding descriptor) and never
blank the axq_link pointer.
Tested:
* AR5416, STA mode
TODO:
* much more thorough testing with the pre-11n NICs, just to verify
that they behave the same way.
* test TDMA on the 11n and non-11n hardware.
The QCA9565 is a 1x1 2.4GHz 11n chip with integrated on-chip bluetooth.
The AR9300 HAL already has support for this chip; it just wasn't
included in the probe/attach path.
Tested:
* This commit brought to you over a QCA9565 wifi connection from
FreeBSD.
* .. ie, basic STA, pings, no iperf or antenna diversity checking just yet.
* That lock isn't actually held during reset - just the whole TX/RX path
is paused. So, remove the assertion.
* Log the TX queue status - how many hardware frames are active in the
MAC and whether the queue is active.
the pause/resume code to not be called completely symmetrically.
I'll chase down the root cause of that soon; this at least works around
the bug and tells me when it happens.
is compiled in or not.
This fixes issues with people running -HEAD but who build modules
without doing a "make buildkernel KERNCONF=XXX", thus picking up
opt_*.h. The resulting module wouldn't have 11n enabled and the
chainmask configuration would just be plain wrong.
* Add ah_ratesArray[] to the ar5416 HAL state - this stores the maximum
values permissable per rate.
* Since different chip EEPROM formats store this value in a different place,
store the HT40 power detector increment value in the ar5416 HAL state.
* Modify the target power setup code to store the maximum values in the
ar5416 HAL state rather than using a local variable.
* Add ar5416RateToRateTable() - to convert a hardware rate code to the
ratesArray enum / index.
* Add ar5416GetTxRatePower() - which goes through the gymnastics required
to correctly calculate the target TX power:
+ Add the power detector increment for ht40;
+ Take the power offset into account for AR9280 and later;
+ Offset the TX power correctly when doing open-loop TX power control;
+ Enforce the per-rate maximum value allowable.
Note - setting a TPC value of 0x0 in the TX descriptor on (at least)
the AR9160 resulted in the TX power being very high indeed. This didn't
happen on the AR9220. I'm guessing it's a chip bug that was fixed at
some point. So for now, just assume the AR5416/AR5418 and AR9130 are
also suspect and clamp the minimum value here at 1.
Tested:
* AR5416, AR9160, AR9220 hostap, verified using (2GHz) spectrum analyser
* Looked at target TX power in TX descriptor (using athalq) as well as TX
power on the spectrum analyser.
TODO:
* The TX descriptor code sets the target TX power to 0 for AR9285 chips.
I'm not yet sure why. Disable this for TPC and ensure that the TPC
TX power is set.
* AR9280, AR9285, AR9227, AR9287 testing!
* 5GHz testing!
Quirks:
* The per-packet TPC code is only exercised when the tpc sysctl is set
to 1. (dev.ath.X.tpc=1.) This needs to be done before you bring the
interface up.
* When TPC is enabled, setting the TX power doesn't end up with a call
through to the HAL to update the maximum TX power. So ensure that
you set the TPC sysctl before you bring the interface up and configure
a lower TX power or the hardware will be clamped by the lower TX
power (at least until the next channel change.)
Thanks to Qualcomm Atheros for all the hardware, and Sam Leffler for use
of his spectrum analyser to verify the TX channel power.
ath_tx_rate_fill_rcflags(). Include setting up the TX power cap in the
rate scenario setup code being passed to the HAL.
Other things:
* add a tx power cap field in ath_rc.
* Add a three-stream flag in ath_rc.
* Delete the LDPC flag from ath_rc - it's not a per-rate flag, it's a
global flag for the transmission.
directly referencing ni->ni_txpower.
This provides the hardware with a slightly more accurate idea of
the maximum TX power to be using.
This is part of a series to get per-packet TPC to work (better).
Tested:
* AR5416, hostap mode
is configured for higher rates (lower than max) but higher TX power
is configured for the lower rates, above the configured cap, to improve
long distance behaviour.
* Add the rest of the missing GPIO output mux types;
* Add in a new debug category;
* And a new MCI btcoex configuration option in ath_hal.ah_config
Obtained from: Qualcomm Atheros
buffers (ie, >4GB on amd64.)
The underlying problem was that PREREAD doesn't sync the mbuf
with the DMA memory (ie, bounce buffer), so the bounce buffer may
have had stale information. Thus it was always considering the
buffer completed and things just went off the rails.
This change does the following:
* Make ath_rx_pkt() always consume the mbuf somehow; it no longer
passes error mbufs (eg CRC errors, crypt errors, etc) back up
to the RX path to recycle. This means that a new mbuf is always
allocated each time, but it's cleaner.
* Push the RX buffer map/unmap to occur in the RX path, not
ath_rx_pkt(). Thus, ath_rx_pkt() now assumes (a) it has to consume
the mbuf somehow, and (b) that it's already been unmapped and
synced.
* For the legacy path, the descriptor isn't mapped, it comes out of
coherent, DMA memory anyway. So leave it there.
* For the EDMA path, the RX descriptor has to be cleared before
its passed to the hardware, so that when we check with
a POSTREAD sync, we actually get either a blank (not finished)
or a filled out descriptor (finished.) Otherwise we get stale
data in the DMA memory.
* .. so, for EDMA RX path, we need PREREAD|PREWRITE to sync the
data -> DMA memory, then POSTREAD|POSTWRITE to finish syncing
the DMA memory -> data.
* Whilst we're here, make sure that in EDMA buffer setup (ie,
bzero'ing the descriptor part) is done before the mbuf is
map/synched.
NOTE: there's been a lot of commits besides this one with regards to
tidying up the busdma handling in ath(4). Please check the recent
commit history.
Discussed with and thanks to: scottl
Tested:
* AR5416 (non-EDMA) on i386, with the DMA tag for the driver
set to 2^^30, not 2^^32, STA
* AR9580 (EDMA) on i386, as above, STA
* User - tested AR9380 on amd64 with 32GB RAM.
PR: kern/177530
before the TX path is being aborted.
Right now it's in the TDMA code and I can live with that; but it really
should get fixed.
I'll do a more thorough audit of this code soon.
* Don't use BUS_DMA_ALLOCNOW for descriptor DMA maps; we never use
bounce buffers for the descriptors themselves.
* Add some XXX's to mark where the ath_buf has its mbuf ripped from
underneath it without actually cleaning up the dmamap. I haven't
audited those particular code paths to see if the DMA map is guaranteed
to be setup there; I'll do that later.
* Print out a warning if the descdma tidyup code is given some descriptors
w/ maps to free. Ideally the owner will free the mbufs and unmap
the descriptors before freeing the descriptor/ath_buf pairs, but
right now that's not guaranteed to be done.
Reviewed by: scottl (BUS_DMA_ALLOCNOW tag)
the buffer is being freed.
* When buffers are cloned, the original mapping isn't copied but it
wasn't freeing the mapping until later. To be safe, free the
mapping when the buffer is cloned.
* ath_freebuf() now no longer calls the busdma sync/unmap routines.
* ath_tx_freebuf() now calls sync/unmap.
* Call sync first, before calling unmap.
Tested:
* AR5416, STA mode
The normal RX path (ath_rx_pkt()) will sync and unmap the
buffer before passing it up the stack. We only need to do this
if we're flushing the FIFO during reset/shutdown.
(Yes, the previous code temporarily broke EDMA TX. I'm sorry; I should've
actually setup ATH_BUF_FIFOEND on frames so txq->axq_fifo_depth was
cleared!)
This code implements a whole bunch of sorely needed EDMA TX improvements
along with CABQ TX support.
The specifics:
* When filling/refilling the FIFO, use the new TXQ staging queue
for FIFO frames
* Tag frames with ATH_BUF_FIFOPTR and ATH_BUF_FIFOEND correctly.
For now the non-CABQ transmit path pushes one frame into the TXQ
staging queue without setting up the intermediary link pointers
to chain them together, so draining frames from the txq staging
queue to the FIFO queue occurs AMPDU / MPDU at a time.
* In the CABQ case, manually tag the list with ATH_BUF_FIFOPTR and
ATH_BUF_FIFOEND so a chain of frames is pushed into the FIFO
at once.
* Now that frames are in a FIFO pending queue, we can top up the
FIFO after completing a single frame. This means we can keep
it filled rather than waiting for it drain and _then_ adding
more frames.
* The EDMA restart routine now walks the FIFO queue in the TXQ
rather than the pending queue and re-initialises the FIFO with
that.
* When restarting EDMA, we may have partially completed sending
a list. So stamp the first frame that we see in a list with
ATH_BUF_FIFOPTR and push _that_ into the hardware.
* When completing frames, only check those on the FIFO queue.
We should never ever queue frames from the pending queue
direct to the hardware, so there's no point in checking.
* Until I figure out what's going on, make sure if the TXSTATUS
for an empty queue pops up, complain loudly and continue.
This will stop the panics that people are seeing. I'll add
some code later which will assist in ensuring I'm populating
each descriptor with the correct queue ID.
* When considering whether to queue frames to the hardware queue
directly or software queue frames, make sure the depth of
the FIFO is taken into account now.
* When completing frames, tag them with ATH_BUF_BUSY if they're
not the final frame in a FIFO list. The same holding descriptor
behaviour is required when handling descriptors linked together
with a link pointer as the hardware will re-read the previous
descriptor to refresh the link pointer before contiuning.
* .. and if we complete the FIFO list (ie, the buffer has
ATH_BUF_FIFOEND set), then we don't need the holding buffer
any longer. Thus, free it.
Tested:
* AR9380/AR9580, STA and hostap
* AR9280, STA/hostap
TODO:
* I don't yet trust that the EDMA restart routine is totally correct
in all circumstances. I'll continue to thrash this out under heavy
multiple-TXQ traffic load and fix whatever pops up.
Each set of frames pushed into a FIFO is represented by a list of
ath_bufs - the first ath_buf in the FIFO list is marked with
ATH_BUF_FIFOPTR; the last ath_buf in the FIFO list is marked with
ATH_BUF_FIFOEND.
Multiple lists of frames are just glued together in the TAILQ as per
normal - except that at the end of a FIFO list, the descriptor link
pointer will be NULL and it'll be tagged with ATH_BUF_FIFOEND.
For non-EDMA chipsets this is a no-op - the ath_txq frame list (axq_q)
stays the same and is treated the same.
For EDMA chipsets the frames are pushed into axq_q and then when
the FIFO is to be (re) filled, frames will be moved onto the FIFO
queue and then pushed into the FIFO.
So:
* Add a new queue in each hardware TXQ (ath_txq) for staging FIFO frame
lists. It's a TAILQ (like the normal hardware frame queue) rather than
the ath9k list-of-lists to represent FIFO entries.
* Add new ath_buf flags - ATH_TX_FIFOPTR and ATH_TX_FIFOEND.
* When allocating ath_buf entries, clear out the flag value before
returning it or it'll end up having stale flags.
* When cloning ath_buf entries, only clone ATH_BUF_MGMT. Don't clone
the FIFO related flags.
* Extend ath_tx_draintxq() to first drain the FIFO staging queue, _then_
drain the normal hardware queue.
Tested:
* AR9280, hostap
* AR9280, STA
* AR9380/AR9580 - hostap
TODO:
* Test on other chipsets, just to be thorough.
instead of axq_link.
This (among a bunch of uncommitted work) is required for EDMA chips
to correctly transmit frames on the CABQ.
Tested:
* AR9280, hostap mode
* AR9380/AR9580, hostap mode (staggered beacons)
TODO:
* This code only really gets called when burst beacons are used;
it glues multiple CABQ queues together when sending to the hardware.
* More thorough bursted beacon testing! (first requires some work with
the beacon queue code for bursted beacons, as that currently uses the
link pointer and will fail on EDMA chips.)
the descriptor link pointer, rather than directly.
This is needed on AR9380 and later (ie, EDMA) NICs so the multicast queue
has a chance in hell of being put together right.
Tested:
* AR9380, AR9580 in hostap mode, CABQ traffic (but with other patches..)
related issues.
Moving the TX locking under one lock made things easier to progress on
but it had one important side-effect - it increased the latency when
handling CABQ setup when sending beacons.
This commit introduces a bunch of new changes and a few unrelated changs
that are just easier to lump in here.
The aim is to have the CABQ locking separate from other locking.
The CABQ transmit path in the beacon process thus doesn't have to grab
the general TX lock, reducing lock contention/latency and making it
more likely that we'll make the beacon TX timing.
The second half of this commit is the CABQ related setup changes needed
for sane looking EDMA CABQ support. Right now the EDMA TX code naively
assumes that only one frame (MPDU or A-MPDU) is being pushed into each
FIFO slot. For the CABQ this isn't true - a whole list of frames is
being pushed in - and thus CABQ handling breaks very quickly.
The aim here is to setup the CABQ list and then push _that list_ to
the hardware for transmission. I can then extend the EDMA TX code
to stamp that list as being "one" FIFO entry (likely by tagging the
last buffer in that list as "FIFO END") so the EDMA TX completion code
correctly tracks things.
Major:
* Migrate the per-TXQ add/removal locking back to per-TXQ, rather than
a single lock.
* Leave the software queue side of things under the ATH_TX_LOCK lock,
(continuing) to serialise things as they are.
* Add a new function which is called whenever there's a beacon miss,
to print out some debugging. This is primarily designed to help
me figure out if the beacon miss events are due to a noisy environment,
issues with the PHY/MAC, or other.
* Move the CABQ setup/enable to occur _after_ all the VAPs have been
looked at. This means that for multiple VAPS in bursted mode, the
CABQ gets primed once all VAPs are checked, rather than being primed
on the first VAP and then having frames appended after this.
Minor:
* Add a (disabled) twiddle to let me enable/disable cabq traffic.
It's primarily there to let me easily debug what's going on with beacon
and CABQ setup/traffic; there's some DMA engine hangs which I'm finally
trying to trace down.
* Clear bf_next when flushing frames; it should quieten some warnings
that show up when a node goes away.
Tested:
* AR9280, STA/hostap, up to 4 vaps (staggered)
* AR5416, STA/hostap, up to 4 vaps (staggered)
TODO:
* (Lots) more AR9380 and later testing, as I may have missed something here.
* Leverage this to fix CABQ hanling for AR9380 and later chips.
* Force bursted beaconing on the chips that default to staggered beacons and
ensure the CABQ stuff is all sane (eg, the MORE bits that aren't being
correctly set when chaining descriptors.)
to stuck beacons.
* Set the cabq readytime (ie, how long to burst for) to 50% of the total
beacon interval time
* fix the cabq adjustment calculation based on how the beacon offset is
calculated (the SWBA/DBA time offset.)
This is all still a bit magic voodoo but it does seem to have further
quietened issues with missed/stuck beacons under my local testing.
In any case, it better matches what the reference HAL implements.
Obtained from: Qualcomm Atheros
"complete RX frames."
The 128 entry RX FIFO is really easy to fill up and miss refilling
when it's done in the ath taskq - as that gets blocked up doing
RX completion, TX completion and other random things.
So the 128 entry RX FIFO now gets emptied and refilled in the ath_intr()
task (and it grabs / releases locks, so now ath_intr() can't just be
a FAST handler yet!) but the locks aren't held for very long. The
completion part is done in the ath taskqueue context.
Details:
* Create a new completed frame list - sc->sc_rx_rxlist;
* Split the EDMA RX process queue into two halves - one that
processes the RX FIFO and refills it with new frames; another
that completes the completed frame list;
* When tearing down the driver, flush whatever is in the deferred
queue as well as what's in the FIFO;
* Create two new RX methods - one that processes all RX queues,
one that processes the given RX queue. When MSI is implemented,
we get told which RX queue the interrupt came in on so we can
specifically schedule that. (And I can do that with the non-MSI
path too; I'll figure that out later.)
* Convert the legacy code over to use these new RX methods;
* Replace all the instances of the RX taskqueue enqueue with a call
to a relevant RX method to enqueue one or all RX queues.
Tested:
* AR9380, STA
* AR9580, STA
* AR5413, STA
* when pulling frames off of the TID queue, the ATH_TID_REMOVE()
macro decrements the axq_depth field. So don't do it twice.
* in ath_tx_comp_cleanup_aggr(), bf wasn't being reset to bf_first
before walking the buffer list to complete buffers; so those buffers
will leak.
Since this is being done during buffer free, it's a crap shoot whether
the TX path lock is held or not. I tried putting the ath_freebuf() code
inside the TX lock and I got all kinds of locking issues - it turns out
that the buffer free path sometimes is called with the lock held and
sometimes isn't. So I'll go and fix that soon.
Hence for now the holdingbf buffers are protected by the TXBUF lock.
When working on TDMA, Sam Leffler found that the MAC DMA hardware
would re-read the last TX descriptor when getting ready to transmit
the next one. Thus the whole ATH_BUF_BUSY came into existance -
the descriptor must be left alone (very specifically the link pointer
must be maintained) until the hardware has moved onto the next frame.
He saw this in TDMA because the MAC would be frequently stopping during
active transmit (ie, when it wasn't its turn to transmit.)
Fast-forward to today. It turns out that this is a problem not with
a single MAC DMA instance, but with each QCU (from 0->9). They each
maintain separate descriptor pointers and will re-read the last
descriptor when starting to transmit the next.
So when your AP is busy transmitting from multiple TX queues, you'll
(more) frequently see one QCU stopped, waiting for a higher-priority QCU
to finsh transmitting, before it'll go ahead and continue. If you mess
up the descriptor (ie by freeing it) then you're short of luck.
Thanks to rpaulo for sticking with me whilst I diagnosed this issue
that he was quite reliably triggering in his environment.
This is a reimplementation; it doesn't have anything in common with
the ath9k or the Qualcomm Atheros reference driver.
Now - it in theory doesn't apply on the EDMA chips, as long as you
push one complete frame into the FIFO at a time. But the MAC can DMA
from a list of frames pushed into the hardware queue (ie, you concat
'n' frames together with link pointers, and then push the head pointer
into the TXQ FIFO.) Since that's likely how I'm going to implement
CABQ handling in hostap mode, it's likely that I will end up teaching
the EDMA TX completion code about busy buffers, just to be "sure"
this doesn't creep up.
Tested - iperf ap->sta and sta->ap (with both sides running this code):
* AR5416 STA
* AR9160/AR9220 hostap
To validate that it doesn't break the EDMA (FIFO) chips:
* AR9380, AR9485, AR9462 STA
Using iperf with the -S <tos byte decimal value> to set the TCP client
side DSCP bits, mapping to different TIDs and thus different TX queues.
TODO:
* Make this work on the EDMA chips, if we end up pushing lists of frames
to the hardware (eg how we eventually will handle cabq in hostap/ibss
mode.)
* a flags field that lets me know what's going on;
* the hardware ratecode, unmolested by conversion to a bitrate;
* the HAL rs_flags field, useful for debugging;
* specifically mark aggregate sub-frames.
This stuff sorely needs tidying up - it's missing some important
stuff (eg numdelims) and it would be nice to put the flags at the
beginning rather than at the end.
Tested:
* AR9380, STA mode, 2x2 HT40, monitoring RSSI and EVM values
I can 100% reliably trigger this on TID 1 traffic by using iperf -S 32
<client fields> to create traffic that maps to TID 1.
The reference driver doesn't do this check.
I stumbled across this whilst trying to debug another weird hang reported
on the freebsd-wireless list.
Whilst here, add in the STBC check to ath_rateseries_setup().
Whilst here, fix the short preamble flag to be set only for legacy rates.
Whilst here, comment that we should be using the full set of decisions
made by ath_rateseries_setup() rather than recalculating them!
routine.
There were still corner cases where the EWMA update stats are being
called on a rix which didn't have an intermediary stats update; thus
no packets were counted against it. Sigh.
This should fix the crashes I've been seeing on recent -HEAD.
* If both ends have negotiated (at least) one stream;
* Only if it's a single stream rate (MCS0-7);
* Only if there's more than one TX chain enabled.
Tested:
* AR9280 STA mode -> Atheros AP; tested both MCS2 (STBC) and MCS12 (no STBC.)
Verified using athalq to inspect the TX descriptors.
TODO:
* Test AR5416 - no STBC should be enabled;
* Test AR9280 with one TX chain enabled - no STBC should be enabled.
The HAL already included the STBC fields; it just needed to be exposed
to the driver and net80211 stack.
This should allow single-stream STBC TX and RX to be negotiated; however
the driver and rate control code currently don't do anything with it.