Upstream the BUF_TRACKING and FULL_BUF_TRACKING buffer debugging code.
This can be handy in tracking down what code touched hung bios and bufs
last. The full history is especially useful, but adds enough bloat that
it shouldn't be enabled in release builds.
Function names (or arbitrary string constants) are tracked in a
fixed-size ring in bufs. Bios gain a pointer to the upper buf for
tracking. SCSI CCBs gain a pointer to the upper bio for tracking.
Reviewed by: markj
Sponsored by: Dell EMC Isilon
Differential Revision: https://reviews.freebsd.org/D8366
after the underlying device went away.
The problem was that callers who queue the GEOM resize provider
event didn't check to make sure that the provider had not been
withered. For the other equivalent case, g_new_provider_event(),
the code checks to see whether the provider has been withered
before queueing a g_new_provider_event() to the event thread.
In some cases, a resize provider event would come through after
the provider had been withered and all of the existing consumers
had been orphaned. When the resize event triggered a taste of
the provider, that would attach a new consumer to the now
withered provider. The wither washer (g_wither_washer() would
never be able to completely tear down the GEOM because of the
consumers that were hanging around.
The solution was to check the G_PF_WITHER provider flag before
queueing the g_resize_provider_event(), and add an assert to
g_resize_provider_event() to insure that it isn't called on a
withered provider.
sys/geom/geom_subr.c:
In g_resize_provider(), don't try to continue if the
G_PF_WITHER flag is set.
In g_resize_provider_event(), add an assert that the
G_PF_WITHER flag is not set.
In g_access(), if a provider has an error, print out the
name of the provider with the error.
Sponsored by: Spectra Logic
Approved by: re (marius)
MFC after: 3 days
This change includes support for SCSI SMR drives (which conform to the
Zoned Block Commands or ZBC spec) and ATA SMR drives (which conform to
the Zoned ATA Command Set or ZAC spec) behind SAS expanders.
This includes full management support through the GEOM BIO interface, and
through a new userland utility, zonectl(8), and through camcontrol(8).
This is now ready for filesystems to use to detect and manage zoned drives.
(There is no work in progress that I know of to use this for ZFS or UFS, if
anyone is interested, let me know and I may have some suggestions.)
Also, improve ATA command passthrough and dispatch support, both via ATA
and ATA passthrough over SCSI.
Also, add support to camcontrol(8) for the ATA Extended Power Conditions
feature set. You can now manage ATA device power states, and set various
idle time thresholds for a drive to enter lower power states.
Note that this change cannot be MFCed in full, because it depends on
changes to the struct bio API that break compatilibity. In order to
avoid breaking the stable API, only changes that don't touch or depend on
the struct bio changes can be merged. For example, the camcontrol(8)
changes don't depend on the new bio API, but zonectl(8) and the probe
changes to the da(4) and ada(4) drivers do depend on it.
Also note that the SMR changes have not yet been tested with an actual
SCSI ZBC device, or a SCSI to ATA translation layer (SAT) that supports
ZBC to ZAC translation. I have not yet gotten a suitable drive or SAT
layer, so any testing help would be appreciated. These changes have been
tested with Seagate Host Aware SATA drives attached to both SAS and SATA
controllers. Also, I do not have any SATA Host Managed devices, and I
suspect that it may take additional (hopefully minor) changes to support
them.
Thanks to Seagate for supplying the test hardware and answering questions.
sbin/camcontrol/Makefile:
Add epc.c and zone.c.
sbin/camcontrol/camcontrol.8:
Document the zone and epc subcommands.
sbin/camcontrol/camcontrol.c:
Add the zone and epc subcommands.
Add auxiliary register support to build_ata_cmd(). Make sure to
set the CAM_ATAIO_NEEDRESULT, CAM_ATAIO_DMA, and CAM_ATAIO_FPDMA
flags as appropriate for ATA commands.
Add a new get_ata_status() function to parse ATA result from SCSI
sense descriptors (for ATA passthrough over SCSI) and ATA I/O
requests.
sbin/camcontrol/camcontrol.h:
Update the build_ata_cmd() prototype
Add get_ata_status(), zone(), and epc().
sbin/camcontrol/epc.c:
Support for ATA Extended Power Conditions features. This includes
support for all features documented in the ACS-4 Revision 12
specification from t13.org (dated February 18, 2016).
The EPC feature set allows putting a drive into a power power mode
immediately, or setting timeouts so that the drive will
automatically enter progressively lower power states after various
idle times.
sbin/camcontrol/fwdownload.c:
Update the firmware download code for the new build_ata_cmd()
arguments.
sbin/camcontrol/zone.c:
Implement support for Shingled Magnetic Recording (SMR) drives
via SCSI Zoned Block Commands (ZBC) and ATA Zoned Device ATA
Command Set (ZAC).
These specs were developed in concert, and are functionally
identical. The primary differences are due to SCSI and ATA
differences. (SCSI is big endian, ATA is little endian, for
example.)
This includes support for all commands defined in the ZBC and
ZAC specs.
sys/cam/ata/ata_all.c:
Decode a number of additional ATA command names in ata_op_string().
Add a new CCB building function, ata_read_log().
Add ata_zac_mgmt_in() and ata_zac_mgmt_out() CCB building
functions. These support both DMA and NCQ encapsulation.
sys/cam/ata/ata_all.h:
Add prototypes for ata_read_log(), ata_zac_mgmt_out(), and
ata_zac_mgmt_in().
sys/cam/ata/ata_da.c:
Revamp the ada(4) driver to support zoned devices.
Add four new probe states to gather information needed for zone
support.
Add a new adasetflags() function to avoid duplication of large
blocks of flag setting between the async handler and register
functions.
Add new sysctl variables that describe zone support and paramters.
Add support for the new BIO_ZONE bio, and all of its subcommands:
DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP,
DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS.
sys/cam/scsi/scsi_all.c:
Add command descriptions for the ZBC IN/OUT commands.
Add descriptions for ZBC Host Managed devices.
Add a new function, scsi_ata_pass() to do ATA passthrough over
SCSI. This will eventually replace scsi_ata_pass_16() -- it
can create the 12, 16, and 32-byte variants of the ATA
PASS-THROUGH command, and supports setting all of the
registers defined as of SAT-4, Revision 5 (March 11, 2016).
Change scsi_ata_identify() to use scsi_ata_pass() instead of
scsi_ata_pass_16().
Add a new scsi_ata_read_log() function to facilitate reading
ATA logs via SCSI.
sys/cam/scsi/scsi_all.h:
Add the new ATA PASS-THROUGH(32) command CDB. Add extended and
variable CDB opcodes.
Add Zoned Block Device Characteristics VPD page.
Add ATA Return SCSI sense descriptor.
Add prototypes for scsi_ata_read_log() and scsi_ata_pass().
sys/cam/scsi/scsi_da.c:
Revamp the da(4) driver to support zoned devices.
Add five new probe states, four of which are needed for ATA
devices.
Add five new sysctl variables that describe zone support and
parameters.
The da(4) driver supports SCSI ZBC devices, as well as ATA ZAC
devices when they are attached via a SCSI to ATA Translation (SAT)
layer. Since ZBC -> ZAC translation is a new feature in the T10
SAT-4 spec, most SATA drives will be supported via ATA commands
sent via the SCSI ATA PASS-THROUGH command. The da(4) driver will
prefer the ZBC interface, if it is available, for performance
reasons, but will use the ATA PASS-THROUGH interface to the ZAC
command set if the SAT layer doesn't support translation yet.
As I mentioned above, ZBC command support is untested.
Add support for the new BIO_ZONE bio, and all of its subcommands:
DISK_ZONE_OPEN, DISK_ZONE_CLOSE, DISK_ZONE_FINISH, DISK_ZONE_RWP,
DISK_ZONE_REPORT_ZONES, and DISK_ZONE_GET_PARAMS.
Add scsi_zbc_in() and scsi_zbc_out() CCB building functions.
Add scsi_ata_zac_mgmt_out() and scsi_ata_zac_mgmt_in() CCB/CDB
building functions. Note that these have return values, unlike
almost all other CCB building functions in CAM. The reason is
that they can fail, depending upon the particular combination
of input parameters. The primary failure case is if the user
wants NCQ, but fails to specify additional CDB storage. NCQ
requires using the 32-byte version of the SCSI ATA PASS-THROUGH
command, and the current CAM CDB size is 16 bytes.
sys/cam/scsi/scsi_da.h:
Add ZBC IN and ZBC OUT CDBs and opcodes.
Add SCSI Report Zones data structures.
Add scsi_zbc_in(), scsi_zbc_out(), scsi_ata_zac_mgmt_out(), and
scsi_ata_zac_mgmt_in() prototypes.
sys/dev/ahci/ahci.c:
Fix SEND / RECEIVE FPDMA QUEUED in the ahci(4) driver.
ahci_setup_fis() previously set the top bits of the sector count
register in the FIS to 0 for FPDMA commands. This is okay for
read and write, because the PRIO field is in the only thing in
those bits, and we don't implement that further up the stack.
But, for SEND and RECEIVE FPDMA QUEUED, the subcommand is in that
byte, so it needs to be transmitted to the drive.
In ahci_setup_fis(), always set the the top 8 bits of the
sector count register. We need it in both the standard
and NCQ / FPDMA cases.
sys/geom/eli/g_eli.c:
Pass BIO_ZONE commands through the GELI class.
sys/geom/geom.h:
Add g_io_zonecmd() prototype.
sys/geom/geom_dev.c:
Add new DIOCZONECMD ioctl, which allows sending zone commands to
disks.
sys/geom/geom_disk.c:
Add support for BIO_ZONE commands.
sys/geom/geom_disk.h:
Add a new flag, DISKFLAG_CANZONE, that indicates that a given
GEOM disk client can handle BIO_ZONE commands.
sys/geom/geom_io.c:
Add a new function, g_io_zonecmd(), that handles execution of
BIO_ZONE commands.
Add permissions check for BIO_ZONE commands.
Add command decoding for BIO_ZONE commands.
sys/geom/geom_subr.c:
Add DDB command decoding for BIO_ZONE commands.
sys/kern/subr_devstat.c:
Record statistics for REPORT ZONES commands. Note that the
number of bytes transferred for REPORT ZONES won't quite match
what is received from the harware. This is because we're
necessarily counting bytes coming from the da(4) / ada(4) drivers,
which are using the disk_zone.h interface to communicate up
the stack. The structure sizes it uses are slightly different
than the SCSI and ATA structure sizes.
sys/sys/ata.h:
Add many bit and structure definitions for ZAC, NCQ, and EPC
command support.
sys/sys/bio.h:
Convert the bio_cmd field to a straight enumeration. This will
yield more space for additional commands in the future. After
change r297955 and other related changes, this is now possible.
Converting to an enumeration will also prevent use as a bitmask
in the future.
sys/sys/disk.h:
Define the DIOCZONECMD ioctl.
sys/sys/disk_zone.h:
Add a new API for managing zoned disks. This is very close to
the SCSI ZBC and ATA ZAC standards, but uses integers in native
byte order instead of big endian (SCSI) or little endian (ATA)
byte arrays.
This is intended to offer to the complete feature set of the ZBC
and ZAC disk management without requiring the application developer
to include SCSI or ATA headers. We also use one set of headers
for ioctl consumers and kernel bio-level consumers.
sys/sys/param.h:
Bump __FreeBSD_version for sys/bio.h command changes, and inclusion
of SMR support.
usr.sbin/Makefile:
Add the zonectl utility.
usr.sbin/diskinfo/diskinfo.c
Add disk zoning capability to the 'diskinfo -v' output.
usr.sbin/zonectl/Makefile:
Add zonectl makefile.
usr.sbin/zonectl/zonectl.8
zonectl(8) man page.
usr.sbin/zonectl/zonectl.c
The zonectl(8) utility. This allows managing SCSI or ATA zoned
disks via the disk_zone.h API. You can report zones, reset write
pointers, get parameters, etc.
Sponsored by: Spectra Logic
Differential Revision: https://reviews.freebsd.org/D6147
Reviewed by: wblock (documentation)
information.
The existing algorithm selects a preferred leaf vdev based on offset of the zio
request modulo the number of members in the mirror. It assumes the devices are
of equal performance and that spreading the requests randomly over both drives
will be sufficient to saturate them. In practice this results in the leaf vdevs
being under utilized.
The new algorithm takes into the following additional factors:
* Load of the vdevs (number outstanding I/O requests)
* The locality of last queued I/O vs the new I/O request.
Within the locality calculation additional knowledge about the underlying vdev
is considered such as; is the device backing the vdev a rotating media device.
This results in performance increases across the board as well as significant
increases for predominantly streaming loads and for configurations which don't
have evenly performing devices.
The following are results from a setup with 3 Way Mirror with 2 x HD's and
1 x SSD from a basic test running multiple parrallel dd's.
With pre-fetch disabled (vfs.zfs.prefetch_disable=1):
== Stripe Balanced (default) ==
Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s
== Load Balanced (zfslinux) ==
Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s
== Load Balanced (locality freebsd) ==
Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s
With pre-fetch enabled (vfs.zfs.prefetch_disable=0):
== Stripe Balanced (default) ==
Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s
== Load Balanced (zfslinux) ==
Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s
== Load Balanced (locality freebsd) ==
Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s
In addition to the performance changes the code was also restructured, with
the help of Justin Gibbs, to provide a more logical flow which also ensures
vdevs loads are only calculated from the set of valid candidates.
The following additional sysctls where added to allow the administrator
to tune the behaviour of the load algorithm:
* vfs.zfs.vdev.mirror.rotating_inc
* vfs.zfs.vdev.mirror.rotating_seek_inc
* vfs.zfs.vdev.mirror.rotating_seek_offset
* vfs.zfs.vdev.mirror.non_rotating_inc
* vfs.zfs.vdev.mirror.non_rotating_seek_inc
These changes where based on work started by the zfsonlinux developers:
https://github.com/zfsonlinux/zfs/pull/1487
Reviewed by: gibbs, mav, will
MFC after: 2 weeks
Sponsored by: Multiplay
disable GEOM tasting to avoid the "bouncing GEOM" problem where, when
you shut down the consumer of a provider which can be viewed in multiple
ways (typically a mirror whose members are labeled partitions), GEOM
will immediately taste that provider's alter ego and reattach the
consumer.
Approved by: re (glebius)
more topology change done that may require its attention. Add few missing
g_do_wither() calls in respective places to signal it.
This fixes potential infinite loop here when some provider is withered, but
still opened or connected for some reason and so can not be destroyed. For
example, see r227009 and r227510.
It includes three parts:
1) Modifications to CAM to detect media media changes and report them to
disk(9) layer. For modern SATA (and potentially UAS) devices it utilizes
Asynchronous Notification mechanism to receive events from hardware.
Active polling with TEST UNIT READY commands with 3 seconds period is used
for incapable hardware. After that both CD and DA drivers work the same way,
detecting two conditions: "NOT READY: Medium not present" after medium was
detected previously, and "UNIT ATTENTION: Not ready to ready change, medium
may have changed". First one reported to disk(9) as media removal, second
as media insert/change. To reliably receive second event new
AC_UNIT_ATTENTION async added to make UAs broadcasted to all periphs by
generic error handling code in cam_periph_error().
2) Modifications to GEOM core to handle media remove and change events.
Media removal handled by spoiling all consumers attached to the provider.
Media change event also schedules provider retaste after spoiling to probe
new media. New flag G_CF_ORPHAN was added to consumers to reflect that
consumer is in process of destruction. It allows retaste to create new
geom instance of the same class, while previous one is still dying.
3) Modifications to some GEOM classes: DEV -- to report media change
events to devd; VFS -- to handle spoiling same as orphan to prevent
accessing replaced media. PART class already handles spoiling alike to
orphan.
Reviewed by: silence on geom@ and scsi@
Tested by: avg
Sponsored by: iXsystems, Inc. / PC-BSD
MFC after: 2 months
a da(4) instance going away while GEOM is still probing it.
In this case, the GEOM disk class instance has been created by
disk_create(), and the taste of the disk is queued in the GEOM
event queue.
While that event is queued, the da(4) instance goes away. When the
open call comes into the da(4) driver, it dereferences the freed
(but non-NULL) peripheral pointer provided by GEOM, which results
in a panic.
The solution is to add a callback to the GEOM disk code that is
called when all of its resources are cleaned up. This is
implemented inside GEOM by adding an optional callback that is
called when all consumers have detached from a provider, and the
provider is about to be deleted.
scsi_cd.c,
scsi_da.c: In the register routine for the cd(4) and da(4)
routines, acquire a reference to the CAM peripheral
instance just before we call disk_create().
Use the new GEOM disk d_gone() callback to register
a callback (dadiskgonecb()/cddiskgonecb()) that
decrements the peripheral reference count once GEOM
has finished cleaning up its resources.
In the cd(4) driver, clean up open and close
behavior slightly. GEOM makes sure we only get one
open() and one close call, so there is no need to
set an open flag and decrement the reference count
if we are not the first open.
In the cd(4) driver, use cam_periph_release_locked()
in a couple of error scenarios to avoid extra mutex
calls.
geom.h: Add a new, optional, providergone callback that
is called when a provider is about to be deleted.
geom_disk.h: Add a new d_gone() callback to the GEOM disk
interface.
Bump the DISK_VERSION to version 2. This probably
should have been done after a couple of previous
changes, especially the addition of the d_getattr()
callback.
geom_disk.c: Add a providergone callback for the disk class,
g_disk_providergone(), that calls the user's
d_gone() callback if it exists.
Bump the DISK_VERSION to 2.
geom_subr.c: In g_destroy_provider(), call the providergone
callback if it has been provided.
In g_new_geomf(), propagate the class's
providergone callback to the new geom instance.
blkfront.c: Callers of disk_create() are supposed to pass in
DISK_VERSION, not an explicit disk API version
number. Update the blkfront driver to do that.
disk.9: Update the disk(9) man page to include information
on the new d_gone() callback, as well as the
previously added d_getattr() callback, d_descr
field, and HBA PCI ID fields.
MFC after: 5 days
DEVFS, and make it accessible via the diskinfo utility.
Extend GEOM's generic attribute query mechanism into generic disk consumers.
sys/geom/geom_disk.c:
sys/geom/geom_disk.h:
sys/cam/scsi/scsi_da.c:
sys/cam/ata/ata_da.c:
- Allow disk providers to implement a new method which can override
the default BIO_GETATTR response, d_getattr(struct bio *). This
function returns -1 if not handled, otherwise it returns 0 or an
errno to be passed to g_io_deliver().
sys/cam/scsi/scsi_da.c:
sys/cam/ata/ata_da.c:
- Don't copy the serial number to dp->d_ident anymore, as the CAM XPT
is now responsible for returning this information via
d_getattr()->(a)dagetattr()->xpt_getatr().
sys/geom/geom_dev.c:
- Implement a new ioctl, DIOCGPHYSPATH, which returns the GEOM
attribute "GEOM::physpath", if possible. If the attribute request
returns a zero-length string, ENOENT is returned.
usr.sbin/diskinfo/diskinfo.c:
- If the DIOCGPHYSPATH ioctl is successful, report physical path
data when diskinfo is executed with the '-v' option.
Submitted by: will
Reviewed by: gibbs
Sponsored by: Spectra Logic Corporation
Add generic attribute change notification support to GEOM.
sys/sys/geom/geom.h:
Add a new attrchanged method field to both g_class
and g_geom.
sys/sys/geom/geom.h:
sys/geom/geom_event.c:
- Provide the g_attr_changed() function that providers
can use to advertise attribute changes.
- Perform delivery of attribute change notifications
from a thread context via the standard GEOM event
mechanism.
sys/geom/geom_subr.c:
Inherit the attrchanged method from class to geom (class instance).
sys/geom/geom_disk.c:
Provide disk_attr_changed() to provide g_attr_changed() access
to consumers of the disk API.
sys/cam/scsi/scsi_pass.c:
sys/cam/scsi/scsi_da.c:
sys/geom/geom_dev.c:
sys/geom/geom_disk.c:
Use attribute changed events to track updates to physical path
information.
sys/cam/scsi/scsi_da.c:
Add AC_ADVINFO_CHANGED to the registered asynchronous CAM
events for this driver. When this event occurs, and
the updated buffer type references our physical path
attribute, emit a GEOM attribute changed event via the
disk_attr_changed() API.
sys/cam/scsi/scsi_pass.c:
Add AC_ADVINFO_CHANGED to the registered asynchronous CAM
events for this driver. When this event occurs, update
the physical patch devfs alias for this pass instance.
Submitted by: gibbs
Sponsored by: Spectra Logic Corporation
proceed while g_unload_class() blocks the event thread. Fix this by not
running g_unload_class() as a GEOM event and dropping the topology lock
when withering needs to proceed.
PR: kern/139847
Silence on: freebsd-geom
with I/O requests in flight on kernels compiled with "options INVARIANTS".
Also, make it obvious it's not right to call g_valid_obj() (and macros
using it, e.g. G_VALID_CONSUMER()) without topology lock held.
Approved by: re (kib)
Reported by: pho
allows the class to create a different GEOM for the same provider
as well as avoid that we end up with multiple GEOMs of the same
class with the same name.
For example, when a disk contains a PC98 partition table but
only MBR is supported, then the partition table can be treated
as a MBR. If support for PC98 is later loaded as a module, the
MBR scheme is pre-empted for the PC98 scheme as expected.
to it for tasting. This is useful when the class, through means outside
the scope of GEOM, can claim providers previously unclaimed.
The g_retaste() function posts an event which is handled by the
g_retaste_event().
Event suggested by: phk
particular provider. Use this function where g_orphan_provider()
is being called so that the flags are updated correctly and
g_orphan_provider() is called only when allowed.
the underlying drive had been hot-unplugged from the system. Here
is a specific example. Filesystem code had opened /dev/da1s1e.
Subsequently, the drive was hot-unplugged. This (correctly) caused
all of the associated /dev/da1* entries to be deleted. When the
filesystem later realized that the drive was gone it closed the
device, reducing the write-access counts to 0 on the geom providers
for da1s1e, da1s1, and da1. This caused geom to re-taste the
providers, resulting in the devices being created again. When the
drive was hot-plugged back in, it resulted in duplicate /dev entries
for da1s1e, da1s1, and da1.
This fix adds a new disk_gone() function which is called by CAM when a
drive goes away. It orphans all of the providers associated with the
drive, setting an error condition of ENXIO in each one. In addition,
we prevent a re-taste on last close for writing if an error condition
has been set in the provider.
Sponsored by: Isilon Systems
Reviewed by: phk
MFC after: 1 week
by the time that kldload(8) returns. Satisfy that by making the GEOM
module load event -- only when the kernel is !cold -- wait until the
GEOM module init function has finished instead of returning immediately.
This is the other half of fixing md(8) (actually, "mfs" in fstab(5))
that is similar to r1.128 of src/sys/dev/md/md.c. This bug would be
why RAM disks would often fail on boot and the first call to mdconfig(8)
would probably fail.
pjd has ideas for not requiring kldload(8) to work synchronously for
control devices that could make this obsolete.
Silence on: -arch
sectorsize in order to avoid a lot of checks around various divisions etc.
Enforce the sectorsize being > 0 with a KASSERT on successful open.
Fix scsi_cd.c to return 2k sectors when no media inserted.