- crhold() returns a reference to the ucred whose refcount it bumps.
- crcopy() now simply copies the credentials from one credential to
another and has no return value.
- a new crshared() primitive is added which returns true if a ucred's
refcount is > 1 and false (0) otherwise.
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.
Sorry john! (your next MFC will be a doosie!)
Reviewed by: peter@freebsd.org, dillon@freebsd.org
X-MFC after: ha ha ha ha
(this commit is just the first stage). Also add various GIANT_ macros to
formalize the removal of Giant, making it easy to test in a more piecemeal
fashion. These macros will allow us to test fine-grained locks to a degree
before removing Giant, and also after, and to remove Giant in a piecemeal
fashion via sysctl's on those subsystems which the authors believe can
operate without Giant.
vm_mtx does not recurse and is required for most low level
vm operations.
faults can not be taken without holding Giant.
Memory subsystems can now call the base page allocators safely.
Almost all atomic ops were removed as they are covered under the
vm mutex.
Alpha and ia64 now need to catch up to i386's trap handlers.
FFS and NFS have been tested, other filesystems will need minor
changes (grabbing the vm lock when twiddling page properties).
Reviewed (partially) by: jake, jhb
not to mention a compile-time warning about the critical function
becoming unused, by replacing spec_bmap() with vop_stdbmap().
ntfs seems to have the same bug.
The factor for converting specfs block numbers to physical block
numbers is 1, but vop_stdbmap() uses the bogus factor
btodb(ap->a_vp->v_mount->mnt_stat.f_iosize), which is 16 for ffs with
the default block size of 8K. This factor is bogus even for vop_stdbmap()
-- the correct factor is related to the filesystem blocksize which is not
necessarily the same to the optimal i/o size. vop_stdbmap() was apparently
cloned from nfs where these sizes happen to be the same.
There may also be a problem with a_vp->v_mount being null. spec_bmap()
still checks for this, but I think the checks in specfs are dead code
which used to support block devices.
Make 7 filesystems which don't really know about VOP_BMAP rely
on the default vector, rather than more or less complete local
vop_nopbmap() implementations.
structure rather than assuming that the device vnode would reside
in the FFS filesystem (which is obviously a broken assumption with
the device filesystem).
fsyncs, which typically occur during unmounting, will drain all dirty
buffers even if it takes multiple passes to do so. The guarentee was
mangled by the last patch which solved a problem due to -current disabling
interrupts while holding giant (which caused an infinite spin loop waiting for
I/O to complete). -stable does not have either patch, but has a similar
bug in the original spec_fsync() code which is triggered by a bug in the
softupdates umount code, a fix for which will be committed to -current
as soon as Kirk stamps it. Then both solutions will be MFC'd to -stable.
-stable currently suffers from a combination of the softupdates bug and
a small window of opportunity in the original spec_fsync() code, and -stable
also suffers from the spin-loop bug but since interrupts are enabled the
spin resolves itself in a few milliseconds.
in 4.2-REL which I ripped out in -stable and -current when implementing the
low-memory handling solution. However, maxlaunder turns out to be the saving
grace in certain very heavily loaded systems (e.g. newsreader box). The new
algorithm limits the number of pages laundered in the first pageout daemon
pass. If that is not sufficient then suceessive will be run without any
limit.
Write I/O is now pipelined using two sysctls, vfs.lorunningspace and
vfs.hirunningspace. This prevents excessive buffered writes in the
disk queues which cause long (multi-second) delays for reads. It leads
to more stable (less jerky) and generally faster I/O streaming to disk
by allowing required read ops (e.g. for indirect blocks and such) to occur
without interrupting the write stream, amoung other things.
NOTE: eventually, filesystem write I/O pipelining needs to be done on a
per-device basis. At the moment it is globalized.
Implement subdirs.
Build the full "devicename" for cloning functions.
Fix panic when deleted device goes away.
Collaps devfs_dir and devfs_dirent structures.
Add proper cloning to the /dev/fd* "device-"driver.
Fix a bug in make_dev_alias() handling which made aliases appear
multiple times.
Use devfs_clone to implement getdiskbyname()
Make specfs maintain the stat(2) timestamps per dev_t
with the new snapshot code.
Update addaliasu to correctly implement the semantics of the old
checkalias function. When a device vnode first comes into existence,
check to see if an anonymous vnode for the same device was created
at boot time by bdevvp(). If so, adopt the bdevvp vnode rather than
creating a new vnode for the device. This corrects a problem which
caused the kernel to panic when taking a snapshot of the root
filesystem.
Change the calling convention of vn_write_suspend_wait() to be the
same as vn_start_write().
Split out softdep_flushworklist() from softdep_flushfiles() so that
it can be used to clear the work queue when suspending filesystem
operations.
Access to buffers becomes recursive so that snapshots can recursively
traverse their indirect blocks using ffs_copyonwrite() when checking
for the need for copy on write when flushing one of their own indirect
blocks. This eliminates a deadlock between the syncer daemon and a
process taking a snapshot.
Ensure that softdep_process_worklist() can never block because of a
snapshot being taken. This eliminates a problem with buffer starvation.
Cleanup change in ffs_sync() which did not synchronously wait when
MNT_WAIT was specified. The result was an unclean filesystem panic
when doing forcible unmount with heavy filesystem I/O in progress.
Return a zero'ed block when reading a block that was not in use at
the time that a snapshot was taken. Normally, these blocks should
never be read. However, the readahead code will occationally read
them which can cause unexpected behavior.
Clean up the debugging code that ensures that no blocks be written
on a filesystem while it is suspended. Snapshots must explicitly
label the blocks that they are writing during the suspension so that
they do not cause a `write on suspended filesystem' panic.
Reorganize ffs_copyonwrite() to eliminate a deadlock and also to
prevent a race condition that would permit the same block to be
copied twice. This change eliminates an unexpected soft updates
inconsistency in fsck caused by the double allocation.
Use bqrelse rather than brelse for buffers that will be needed
soon again by the snapshot code. This improves snapshot performance.
the gating of system calls that cause modifications to the underlying
filesystem. The gating can be enabled by any filesystem that needs
to consistently suspend operations by adding the vop_stdgetwritemount
to their set of vnops. Once gating is enabled, the function
vfs_write_suspend stops all new write operations to a filesystem,
allows any filesystem modifying system calls already in progress
to complete, then sync's the filesystem to disk and returns. The
function vfs_write_resume allows the suspended write operations to
begin again. Gating is not added by default for all filesystems as
for SMP systems it adds two extra locks to such critical kernel
paths as the write system call. Thus, gating should only be added
as needed.
Details on the use and current status of snapshots in FFS can be
found in /sys/ufs/ffs/README.snapshot so for brevity and timelyness
is not included here. Unless and until you create a snapshot file,
these changes should have no effect on your system (famous last words).
using decimal major and minor numbers. "ls -l" reports
disk partitions using decimal major numbers and hex
minor numbers.
make specfs use decimal major numbers and hex minor numbers,
just like "ls -l"
<sys/bio.h>.
<sys/bio.h> is now a prerequisite for <sys/buf.h> but it shall
not be made a nested include according to bdes teachings on the
subject of nested includes.
Diskdrivers and similar stuff below specfs::strategy() should no
longer need to include <sys/buf.> unless they need caching of data.
Still a few bogus uses of struct buf to track down.
Repocopy by: peter
(Much of this done by script)
Move B_ORDERED flag to b_ioflags and call it BIO_ORDERED.
Move b_pblkno and b_iodone_chain to struct bio while we transition, they
will be obsoleted once bio structs chain/stack.
Add bio_queue field for struct bio aware disksort.
Address a lot of stylistic issues brought up by bde.
substitute BUF_WRITE(foo) for VOP_BWRITE(foo->b_vp, foo)
substitute BUF_STRATEGY(foo) for VOP_STRATEGY(foo->b_vp, foo)
This patch is machine generated except for the ccd.c and buf.h parts.
field in struct buf: b_iocmd. The b_iocmd is enforced to have
exactly one bit set.
B_WRITE was bogusly defined as zero giving rise to obvious coding
mistakes.
Also eliminate the redundant struct buf flag B_CALL, it can just
as efficiently be done by comparing b_iodone to NULL.
Should you get a panic or drop into the debugger, complaining about
"b_iocmd", don't continue. It is likely to write on your disk
where it should have been reading.
This change is a step in the direction towards a stackable BIO capability.
A lot of this patch were machine generated (Thanks to style(9) compliance!)
Vinum users: Greg has not had time to test this yet, be careful.
drops the counting in bwrite and puts it all in spec_strategy.
I did some tests and verified that the counts collected for writes
in spec_strategy is identical to the counts that we previously
collected in bwrite. We now also get read counts (async reads
come from requests for read-ahead blocks). Note that you need
to compile a new version of mount to get the read counts printed
out. The old mount binary is completely compatible, the only
reason to install a new mount is to get the read counts printed.
Submitted by: Craig A Soules <soules+@andrew.cmu.edu>
Reviewed by: Kirk McKusick <mckusick@mckusick.com>
Correctly lock vnodes when calling VOP_OPEN() from filesystem mount code.
Unify spec_open() for bdev and cdev cases.
Remove the disabled bdev specific read/write code.
Merge the contents (less some trivial bordering the silly comments)
of <vm/vm_prot.h> and <vm/vm_inherit.h> into <vm/vm.h>. This puts
the #defines for the vm_inherit_t and vm_prot_t types next to their
typedefs.
This paves the road for the commit to follow shortly: change
useracc() to use VM_PROT_{READ|WRITE} rather than B_{READ|WRITE}
as argument.
to remove 'b'lock devices. The agreement is, essentially, that
block devices will be collapsed into character devices as a first
step (though I don't particularly agree), and raw device names 'rxxx'
will become simply 'xxx' in devfs in the second step (i.e. no 'rxxx'
names will exist). The renaming will not effect the original /dev
and the expectation is that devfs will eventually (but not immediately)
become the standard way to access devices in the system.
If it is determined that a reimplementation of block device access
characteristics is beneficial, a number of alternatives will
be possible that do not involve resurrecting the 'b'lock device class.
For example, an ioctl() that might be made on an open character device
descriptor or a generic buffered overlay device.
This commit removes the blockdev disablement sysctl which does not
apply to the solution that was reached.
This means that access to block devices nodes will act the
same as char device nodes for disk-like devices.
If you encounter problems after this, where programs accessing
disks directly fail to operate, please use the following command
to revert to previous behaviour:
sysctl -w vfs.bdev_buffered=1
And verify that this was indeed the cause of your trouble.
See the mail-archives of the arch@FreeBSD.org list for background.
two new functions spec_buf{read|write}.
Add sysctl vfs.bdev_buffered which defaults to 1 == true. This
sysctl can be used to experimentally turn buffered behaviour for
bdevs off. I should not be changed while any blockdevices are
open. Remove the misplaced sysctl vfs.enable_userblk_io.
No other changes in behaviour.