In r360131, acpi_ec probe was changed to not clobber an error status prior to
several error cases that did not explicitly set the error variable before
goto'ing the exit path. However, I did not notice that the error variable was
not set to success in the success path. That caused all successful probes to
fail, which is obviously undesirable.
PR: 245778
Reported by: Neel Chauhan <neel AT neelc.org>, Evilham <contact AT evilham.com>
Tested by: Evilham
X-MFC-With: r360131
All of the 'goto out;' cases in this probe routine without explicit
initialization of 'ret' indicate error cases and were clearly intended
to use the initial definition of 'ret' with ENXIO. However, 'ret' was
accidentally squashed by reuse for a subroutine call near the beginning
of probe.
Use a different variable for the subroutine status to preserve ENXIO ret
for the 'goto out's as a minimal solution to the panic reported at attach
for now.
PR: 245757
r357614 added CTLFLAG_NEEDGIANT to make it easier to find nodes that are
still not MPSAFE (or already are but aren’t properly marked).
Use it in preparation for a general review of all nodes.
This is non-functional change that adds annotations to SYSCTL_NODE and
SYSCTL_PROC nodes using one of the soon-to-be-required flags.
Mark all obvious cases as MPSAFE. All entries that haven't been marked
as MPSAFE before are by default marked as NEEDGIANT
Approved by: kib (mentor, blanket)
Commented by: kib, gallatin, melifaro
Differential Revision: https://reviews.freebsd.org/D23718
Similar to r348026, exhaustive search for uses of CTRn() and cross reference
ktr.h includes. Where it was obvious that an OS compat header of some kind
included ktr.h indirectly, .c files were left alone. Some of these files
clearly got ktr.h via header pollution in some scenarios, or tinderbox would
not be passing prior to this revision, but go ahead and explicitly include it
in files using it anyway.
Like r348026, these CUs did not show up in tinderbox as missing the include.
Reported by: peterj (arm64/mp_machdep.c)
X-MFC-With: r347984
Sponsored by: Dell EMC Isilon
After r340644 there were two things wrong in cases where there is both
an ECDT, and an EC device exposed via acpica. The first is a rather
trivial situation where the device desc would say ECDT even when it was
not implicitly created via ECDT (not really sure why the compiler
doesn't seem to warn about this).
The other more pervasive issue is that the code is designed to
essentially not do anything for EC probe when its uid was already
created an EC based on the ECDT's uid. The issue was that probe would
still return 0 in this case, and so we'd end up with some weird
duplication. Now to be honest, I'm not actually sure what exactly broke,
but it was definitely not working as intended. To fix this, all that is
really needed is to make sure we return ENXIO when we're probing the
device already added for the ECDT entry. While here though, move the
check for this earlier to avoid wasted cycles when we know after
obtaining the uid that it's duplicative.
There remains one questionable bit here which I don't want to touch -
when doing probe for PNP0C09, if acquiring _UID for the device fails, 0
is assumed, which is a valid UID used by the implicit ECDT.
Reported by: Charlie Li, et al.
Reviewed by: jhb
Differential Revision: https://reviews.freebsd.org/D18311
This patch utilizes the fixed_devclass attribute in order to make sure
other acpi devices with params don't get confused for an EC device.
The existing code assumes that acpi_ec_probe is only ever called with a
dereferencable acpi param. Aside from being incorrect because other
devices of ACPI_TYPE_DEVICE may be probed here which aren't ec devices,
(and they may have set acpi private data), it is even more nefarious if
another ACPI driver uses private data which is not dereferancable. This
will result in a pointer deref during boot and therefore boot failure.
On X86, as it stands today, no other devices actually do this (acpi_cpu
checks for PROCESSOR type devices) and so there is no issue. I ran into
this because I am adding such a device which gets probed before
acpi_ec_probe and sets private data. If ARM ever has an EC, I think
they'd run into this issue as well.
There have been several iterations of this patch. Earlier
iterations had ECDT enumerated ECs not call into the probe/attach
functions of this driver. This change was Suggested by: jhb@.
Reviewed by: jhb
Approved by: emaste (mentor)
Differential Revision: https://reviews.freebsd.org/D16635
When handling a GPE ACPI interrupt object the EcSpaceHandler()
function can be called which checks the EC_EVENT_SCI bit and then
recurse on the EcGpeQueryHandler() function. If there are multiple GPE
events pending the EC_EVENT_SCI bit will be set at the next call to
EcSpaceHandler() causing it to recurse again via the
EcGpeQueryHandler() function. This leads to a slow never ending
recursion during boot which prevents proper system startup, because
the EC_EVENT_SCI bit never gets cleared in this scenario.
The behaviour is reproducible with the ALASKA AMI in combination with
a newer Skylake based mainboard in the following way:
Enter BIOS and adjust the clock one hour forward. Save and exit the
BIOS. System fails to boot due to the above mentioned bug in
EcGpeQueryHandler() which was observed recursing multiple times.
This patch adds a simple recursion guard to the EcGpeQueryHandler()
function and also also adds logic to detect if new GPE events occurred
during the execution of EcGpeQueryHandler() and then loop on this
function instead of recursing.
Reviewed by: jhb
MFC after: 2 weeks
These changes prevent sysctl(8) from returning proper output,
such as:
1) no output from sysctl(8)
2) erroneously returning ENOMEM with tools like truss(1)
or uname(1)
truss: can not get etype: Cannot allocate memory
there is an environment variable which shall initialize the SYSCTL
during early boot. This works for all SYSCTL types both statically and
dynamically created ones, except for the SYSCTL NODE type and SYSCTLs
which belong to VNETs. A new flag, CTLFLAG_NOFETCH, has been added to
be used in the case a tunable sysctl has a custom initialisation
function allowing the sysctl to still be marked as a tunable. The
kernel SYSCTL API is mostly the same, with a few exceptions for some
special operations like iterating childrens of a static/extern SYSCTL
node. This operation should probably be made into a factored out
common macro, hence some device drivers use this. The reason for
changing the SYSCTL API was the need for a SYSCTL parent OID pointer
and not only the SYSCTL parent OID list pointer in order to quickly
generate the sysctl path. The motivation behind this patch is to avoid
parameter loading cludges inside the OFED driver subsystem. Instead of
adding special code to the OFED driver subsystem to post-load tunables
into dynamically created sysctls, we generalize this in the kernel.
Other changes:
- Corrected a possibly incorrect sysctl name from "hw.cbb.intr_mask"
to "hw.pcic.intr_mask".
- Removed redundant TUNABLE statements throughout the kernel.
- Some minor code rewrites in connection to removing not needed
TUNABLE statements.
- Added a missing SYSCTL_DECL().
- Wrapped two very long lines.
- Avoid malloc()/free() inside sysctl string handling, in case it is
called to initialize a sysctl from a tunable, hence malloc()/free() is
not ready when sysctls from the sysctl dataset are registered.
- Bumped FreeBSD version to indicate SYSCTL API change.
MFC after: 2 weeks
Sponsored by: Mellanox Technologies
- Increase probing order for ECDT table to match HID-based probing.
- Decrease probing order for HPET table to match HID-based probing.
- Decrease probing order for CPUs and system resources.
- Fix ACPI_DEV_BASE_ORDER to reflect the reality.
The SYSCTL_NODE macro defines a list that stores all child-elements of
that node. If there's no SYSCTL_DECL macro anywhere else, there's no
reason why it shouldn't be static.
Short description of the changes:
- attempt to retry some commands for which it is possible (read, query)
- always make a short sleep before checking EC status in polled mode
- periodically poll EC status in interrupt mode
- change logic for detecting broken interrupt delivery and falling back
to polled mode
- check that EC is ready for input before starting a new command, wait
if necessary
This commit is based on the original patch by David Naylor.
PR: kern/150517
Submitted by: David Naylor <naylor.b.david@gmail.com>
Reviewed by: jkim
MFC after: 3 weeks
This is not only a prudent thing to do, but also makes sure that probe
method is not confused by non-NULL 'private', if the previous attach
attempt fails for any reason.
PR: kern/142561
Tested by: Alex Goncharov <alex-goncharov@comcast.net>
MFC after: 4 days
o acpi_hpet: auto-added 'wildcard' devices can be identified by
non-NULL handle attribute.
o acpi_ec: auto-add 'wildcard' devices can be identified by
unset (NULL) private attribute.
o acpi_cpu: use private instead of magic to store cpu id.
Reviewed by: jhb
Silence from: acpi@
MFC after: 2 weeks
X-MFC-Note: perhaps the ivar should stay for ABI stability
This code is heavily inspired by Takanori Watanabe's experimental SMP patch
for i386 and large portion was shamelessly cut and pasted from Peter Wemm's
AP boot code.
polling/interrupt-driven fallback and instead use polling only during
boot and pure interrupt-driven mode after boot. Polled mode could be
relegated completely to a legacy role if we could enable interrupts
during boot. Polled mode can be forced after boot by setting
debug.acpi.ec.polled="1", i.e. if there are timeouts.
- Use polling only during boot, shutdown, or if requested by the user.
Otherwise, use a generation count of GPEs, incremented atomically. This
prevents an old status value from being used if the EC is really slow
and the same condition (i.e. multiple IBEs for a write transaction) is
being checked.
- Check for and run the query handler directly if the SCI bit is set in
the status register during boot. Previously, the query handler wouldn't
run until interrupts were finally enabled late in boot.
- During boot and after starting a command, check if the event appears
to already have occurred before we even start waiting. If so, it's
possible the EC is very slow and we might accept an old status value.
Print a warning in this case. Once we've booted, interrupt-driven mode
should work just fine but polled mode could be unreliable. There's not
much more we can do about this until interrupts are enabled during boot.
- In the above case, we also do one final check if the interrupt-driven
mode gets a timeout. If the status is complete, it will force the
system back into polled mode since interrupt mode doesn't work. For
polled mode during boot, if the status appears to be already complete
before beginning the check loop, it waits 10 us before actually checking
the status, just in case the EC is really slow and hasn't gotten to work
on the new request yet.
- Use upper-case hex for the _Qxx method
- Use device_printf for errors, don't hide them under verbose
- Increase default total timeout to 750 ms and decrease polling interval
to 5 us.
- Don't pass the status value via the softc. Just read it directly.
- Remove the mutex. We use the sx lock for transaction serialization
with the query handler.
- Remove the Intel copyright notice as no code of theirs was ever
present in this file (verified against rev 1.1)
- Allow KTR module-only builds for ease of testing
Thanks to jkim and Alexey Starikovskiy for helpful discussions and testing.
Approved by: re
MFC after: 2 weeks
The global lock is a memory region shared with the BIOS and thus
has some strange behavior like the fact that the sleep is 1 ms max.
We use standard mutexes to synchronize with the SCI so acquiring
the global lock after locking the mutex resulted in a witness
warning.
To deal with this for now, acquire the global lock before all other
locks, similar to Giant. This should fix the witness "sleeping
with mutex held" issue on boot that occurred after the last ACPI-CA
import. In the future, we hope to move to the new mutex interface
in ACPI-CA instead of the pseudo-semaphore version we have now.
Reviewed by: jkim
obtaining and releasing shared and exclusive locks. The algorithms for
manipulating the lock cookie are very similar to that rwlocks. This patch
also adds support for exclusive locks using the same algorithm as mutexes.
A new sx_init_flags() function has been added so that optional flags can be
specified to alter a given locks behavior. The flags include SX_DUPOK,
SX_NOWITNESS, SX_NOPROFILE, and SX_QUITE which are all identical in nature
to the similar flags for mutexes.
Adaptive spinning on select locks may be enabled by enabling the
ADAPTIVE_SX kernel option. Only locks initialized with the SX_ADAPTIVESPIN
flag via sx_init_flags() will adaptively spin.
The common cases for sx_slock(), sx_sunlock(), sx_xlock(), and sx_xunlock()
are now performed inline in non-debug kernels. As a result, <sys/sx.h> now
requires <sys/lock.h> to be included prior to <sys/sx.h>.
The new kernel option SX_NOINLINE can be used to disable the aforementioned
inlining in non-debug kernels.
The size of struct sx has changed, so the kernel ABI is probably greatly
disturbed.
MFC after: 1 month
Submitted by: attilio
Tested by: kris, pjd
cause the EC to stop handling future events because the GPE stayed masked.
Set a flag when queueing a GPE handler since it will ultimately re-enable
the GPE. In all other cases, re-enable it ourselves. I reworked the
patch from the submitter.
Submitted by: Rong-en Fan <grafan@gmail.com>
most systems, it causes the EC not to respond for some Acer and Compaq/HP
laptops. This is the default value for Linux also. For systems that need
it, burst mode can be enabled via the tunable/sysctl:
debug.acpi.ec.burst="1"
case where it asynchronously exits burst mode on its own. Handle different
values of hz in sleep loop. Provide more debugging options to tune EC
behavior. These tunables/sysctls may be temporary and are not for user
access if the EC is working properly. Burst mode is now on by default for
testing and the poll interval has been increased from 100 to 500 us and
total timeout from 100 to 500 ms.
Hopefully this should be the first step of addressing reports of timeout
errors during battery or thermal access, especially on HP/Compaq laptops.
It is reasonably stable and should not cause a loss of functionality or
performance on systems that were previously working. Testing shows an
increase of responsiveness by ~75% on one system.
PR: kern/98171