Commit Graph

20 Commits

Author SHA1 Message Date
John Baldwin
bddf73433e NIC KTLS for Chelsio T6 adapters.
This adds support for ifnet (NIC) KTLS using Chelsio T6 adapters.
Unlike the TOE-based KTLS in r353328, NIC TLS works with non-TOE
connections.

NIC KTLS on T6 is not able to use the normal TSO (LSO) path to segment
the encrypted TLS frames output by the crypto engine.  Instead, the
TOE is placed into a special setup to permit "dummy" connections to be
associated with regular sockets using KTLS.  This permits using the
TOE to segment the encrypted TLS records.  However, this approach does
have some limitations:

1) Regular TOE sockets cannot be used when the TOE is in this special
   mode.  One can use either TOE and TOE-based KTLS or NIC KTLS, but
   not both at the same time.

2) In NIC KTLS mode, the TOE is only able to accept a per-connection
   timestamp offset that varies in the upper 4 bits.  Put another way,
   only connections whose timestamp offset has the 28 lower bits
   cleared can use NIC KTLS and generate correct timestamps.  The
   driver will refuse to enable NIC KTLS on connections with a
   timestamp offset with any of the lower 28 bits set.  To use NIC
   KTLS, users can either disable TCP timestamps by setting the
   net.inet.tcp.rfc1323 sysctl to 0, or apply a local patch to the
   tcp_new_ts_offset() function to clear the lower 28 bits of the
   generated offset.

3) Because the TCP segmentation relies on fields mirrored in a TCB in
   the TOE, not all fields in a TCP packet can be sent in the TCP
   segments generated from a TLS record.  Specifically, for packets
   containing TCP options other than timestamps, the driver will
   inject an "empty" TCP packet holding the requested options (e.g. a
   SACK scoreboard) along with the segments from the TLS record.
   These empty TCP packets are counted by the
   dev.cc.N.txq.M.kern_tls_options sysctls.

Unlike TOE TLS which is able to buffer encrypted TLS records in
on-card memory to handle retransmits, NIC KTLS must re-encrypt TLS
records for retransmit requests as well as non-retransmit requests
that do not include the start of a TLS record but do include the
trailer.  The T6 NIC KTLS code tries to optimize some of the cases for
requests to transmit partial TLS records.  In particular it attempts
to minimize sending "waste" bytes that have to be given as input to
the crypto engine but are not needed on the wire to satisfy mbufs sent
from the TCP stack down to the driver.

TCP packets for TLS requests are broken down into the following
classes (with associated counters):

- Mbufs that send an entire TLS record in full do not have any waste
  bytes (dev.cc.N.txq.M.kern_tls_full).

- Mbufs that send a short TLS record that ends before the end of the
  trailer (dev.cc.N.txq.M.kern_tls_short).  For sockets using AES-CBC,
  the encryption must always start at the beginning, so if the mbuf
  starts at an offset into the TLS record, the offset bytes will be
  "waste" bytes.  For sockets using AES-GCM, the encryption can start
  at the 16 byte block before the starting offset capping the waste at
  15 bytes.

- Mbufs that send a partial TLS record that has a non-zero starting
  offset but ends at the end of the trailer
  (dev.cc.N.txq.M.kern_tls_partial).  In order to compute the
  authentication hash stored in the trailer, the entire TLS record
  must be sent as input to the crypto engine, so the bytes before the
  offset are always "waste" bytes.

In addition, other per-txq sysctls are provided:

- dev.cc.N.txq.M.kern_tls_cbc: Count of sockets sent via this txq
  using AES-CBC.

- dev.cc.N.txq.M.kern_tls_gcm: Count of sockets sent via this txq
  using AES-GCM.

- dev.cc.N.txq.M.kern_tls_fin: Count of empty FIN-only packets sent to
  compensate for the TOE engine not being able to set FIN on the last
  segment of a TLS record if the TLS record mbuf had FIN set.

- dev.cc.N.txq.M.kern_tls_records: Count of TLS records sent via this
  txq including full, short, and partial records.

- dev.cc.N.txq.M.kern_tls_octets: Count of non-waste bytes (TLS header
  and payload) sent for TLS record requests.

- dev.cc.N.txq.M.kern_tls_waste: Count of waste bytes sent for TLS
  record requests.

To enable NIC KTLS with T6, set the following tunables prior to
loading the cxgbe(4) driver:

hw.cxgbe.config_file=kern_tls
hw.cxgbe.kern_tls=1

Reviewed by:	np
Sponsored by:	Chelsio Communications
Differential Revision:	https://reviews.freebsd.org/D21962
2019-11-21 19:30:31 +00:00
Navdeep Parhar
061bbaf7e7 cxgbe(4): Reuse existing "switching" L2T entries when possible.
Approved by:	re@ (rgrimes@)
Sponsored by:	Chelsio Communications
2018-09-22 01:24:30 +00:00
Navdeep Parhar
37310a98a8 cxgbe(4): Move all control queues to the adapter.
There used to be one control queue per adapter (the mgmtq) that was
initialized during adapter init and one per port that was initialized
later during port init.  This change moves all the control queues (one
per port/channel) to the adapter so that they are initialized during
adapter init and are available before any port is up.  This allows the
driver to issue ctrlq work requests over any channel without having to
bring up any port.

MFH:		2 weeks
Sponsored by:	Chelsio Communications
2018-08-11 21:10:08 +00:00
Navdeep Parhar
b9330ed7a2 cxgbe(4): Retire an old check. 2018-06-01 01:05:34 +00:00
Pedro F. Giffuni
718cf2ccb9 sys/dev: further adoption of SPDX licensing ID tags.
Mainly focus on files that use BSD 2-Clause license, however the tool I
was using misidentified many licenses so this was mostly a manual - error
prone - task.

The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
2017-11-27 14:52:40 +00:00
Navdeep Parhar
671bf2b8b2 cxgbe(4): Changes to the CPL-handler registration mechanism and code
related to "shared" CPLs.

a) Combine t4_set_tcb_field and t4_set_tcb_field_rpl into a single
function.  Allow callers to direct the response to any iq.  Tidy up
set_ulp_mode_iscsi while there to use names from t4_tcb.h instead of
magic constants.

b) Remove all CPL handler tables from struct adapter.  This reduces its
size by around 2KB.  All handlers are now registered at MOD_LOAD instead
of attach or some kind of initialization/activation.  The registration
functions do not need an adapter parameter any more.

c) Add per-iq handlers to deal with CPLs whose destination cannot be
determined solely from the opcode.  There are 2 such CPLs in use right
now: SET_TCB_RPL and L2T_WRITE_RPL.  The base driver continues to send
filter and L2T_WRITEs over the mgmtq and solicits the reply on fwq.
t4_tom (including the DDP code) now uses the port's ctrlq to send
L2T_WRITEs and SET_TCB_FIELDs and solicits the reply on an ofld_rxq.
fwq and ofld_rxq have different handlers that know what kind of tid to
expect in the reply.  Update t4_write_l2e and callers to to support any
wrq/iq combination.

Approved by:	re@ (kib@)
Sponsored by:	Chelsio Communications
2016-07-05 01:29:24 +00:00
Navdeep Parhar
bf9363d72c cxgbe(4): Avoid a NULL dereference while dumping the L2 table. Entries
used by switching filters that rewrite L2 information do not have any
associated ifnet.

Approved by:	re@ (gjb@)
Sponsored by:	Chelsio Communications
2016-07-01 23:18:49 +00:00
Pedro F. Giffuni
453130d9bf sys/dev: minor spelling fixes.
Most affect comments, very few have user-visible effects.
2016-05-03 03:41:25 +00:00
Ian Lepore
b36424bd4b Revert r279934, r279938; this is going to be fixed in sbuf instead.
PR:		195668
2015-03-14 13:04:39 +00:00
Ian Lepore
2f01da7886 Fix a paste-o, sb is already a pointer in this one. 2015-03-12 23:31:29 +00:00
Ian Lepore
9bc58e3d33 Nullterminate strings returned via sysctl.
PR:		195668
2015-03-12 18:22:20 +00:00
Navdeep Parhar
7951040f8a cxgbe(4): major tx rework.
a) Front load as much work as possible in if_transmit, before any driver
lock or software queue has to get involved.

b) Replace buf_ring with a brand new mp_ring (multiproducer ring).  This
is specifically for the tx multiqueue model where one of the if_transmit
producer threads becomes the consumer and other producers carry on as
usual.  mp_ring is implemented as standalone code and it should be
possible to use it in any driver with tx multiqueue.  It also has:
- the ability to enqueue/dequeue multiple items.  This might become
  significant if packet batching is ever implemented.
- an abdication mechanism to allow a thread to give up writing tx
  descriptors and have another if_transmit thread take over.  A thread
  that's writing tx descriptors can end up doing so for an unbounded
  time period if a) there are other if_transmit threads continuously
  feeding the sofware queue, and b) the chip keeps up with whatever the
  thread is throwing at it.
- accurate statistics about interesting events even when the stats come
  at the expense of additional branches/conditional code.

The NIC txq lock is uncontested on the fast path at this point.  I've
left it there for synchronization with the control events (interface
up/down, modload/unload).

c) Add support for "type 1" coalescing work request in the normal NIC tx
path.  This work request is optimized for frames with a single item in
the DMA gather list.  These are very common when forwarding packets.
Note that netmap tx in cxgbe already uses these "type 1" work requests.

d) Do not request automatic cidx updates every 32 descriptors.  Instead,
request updates via bits in individual work requests (still every 32
descriptors approximately).  Also, request an automatic final update
when the queue idles after activity.  This means NIC tx reclaim is still
performed lazily but it will catch up quickly as soon as the queue
idles.  This seems to be the best middle ground and I'll probably do
something similar for netmap tx as well.

e) Implement a faster tx path for WRQs (used by TOE tx and control
queues, _not_ by the normal NIC tx).  Allow work requests to be written
directly to the hardware descriptor ring if room is available.  I will
convert t4_tom and iw_cxgbe modules to this faster style gradually.

MFC after:	2 months
2014-12-31 23:19:16 +00:00
Gleb Smirnoff
c3322cb91c Include necessary headers that now are available due to pollution
via if_var.h.

Sponsored by:	Netflix
Sponsored by:	Nginx, Inc.
2013-10-28 07:29:16 +00:00
Navdeep Parhar
0a0a697c73 cxgbe(4): Updates to the hardware L2 table management code.
- Add full support for IPv6 addresses.

- Read the size of the L2 table during attach.  Do not assume that PCIe
  physical function 4 of the card has all of the table to itself.

- Use FNV instead of Jenkins to hash L3 addresses and drop the private
  copy of jhash.h from the driver.

MFC after:	1 week
2013-01-14 20:36:22 +00:00
Navdeep Parhar
4cead97615 cxgbe(4): must hold a write-lock on the table while allocating an L2
entry for switching.

MFC after:	3 days
2012-12-21 19:28:17 +00:00
Navdeep Parhar
a1ea9a8276 cxgbe(4): support for IPv6 TSO and LRO.
Submitted by:	bz (this is a modified version of that patch)
2012-06-29 19:51:06 +00:00
Navdeep Parhar
09fe63205c - Updated TOE support in the kernel.
- Stateful TCP offload drivers for Terminator 3 and 4 (T3 and T4) ASICs.
  These are available as t3_tom and t4_tom modules that augment cxgb(4)
  and cxgbe(4) respectively.  The cxgb/cxgbe drivers continue to work as
  usual with or without these extra features.

- iWARP driver for Terminator 3 ASIC (kernel verbs).  T4 iWARP in the
  works and will follow soon.

Build-tested with make universe.

30s overview
============
What interfaces support TCP offload?  Look for TOE4 and/or TOE6 in the
capabilities of an interface:
# ifconfig -m | grep TOE

Enable/disable TCP offload on an interface (just like any other ifnet
capability):
# ifconfig cxgbe0 toe
# ifconfig cxgbe0 -toe

Which connections are offloaded?  Look for toe4 and/or toe6 in the
output of netstat and sockstat:
# netstat -np tcp | grep toe
# sockstat -46c | grep toe

Reviewed by:	bz, gnn
Sponsored by:	Chelsio communications.
MFC after:	~3 months (after 9.1, and after ensuring MFC is feasible)
2012-06-19 07:34:13 +00:00
Navdeep Parhar
bfb08b6b6b cxgbe: reduce diffs with other branches.
Will help future MFCs from HEAD.

MFC after:	3 days
2012-02-07 06:21:59 +00:00
Navdeep Parhar
733b92779e Many updates to cxgbe(4)
- Device configuration via plain text config file.  Also able to operate
  when not attached to the chip as the master driver.

- Generic "work request" queue that serves as the base for both ctrl and
  ofld tx queues.

- Generic interrupt handler routine that can process any event on any
  kind of ingress queue (via a dispatch table).

- A couple of new driver ioctls.  cxgbetool can now install a firmware
  to the card ("loadfw" command) and can read the card's memory
  ("memdump" and "tcb" commands).

- Lots of assorted information within dev.t4nex.X.misc.*  This is
  primarily for debugging and won't show up in sysctl -a.

- Code to manage the L2 tables on the chip.

- Updates to cxgbe(4) man page to go with the tunables that have changed.

- Updates to the shared code in common/

- Updates to the driver-firmware interface (now at fw 1.4.16.0)

MFC after:	1 month
2011-12-16 02:09:51 +00:00
Navdeep Parhar
4dba21f17e L2 table code. This is enough to get the T4's switch + L2 rewrite
filters working.  (All other filters - switch without L2 info rewrite,
steer, and drop - were already fully-functional).

Some contrived examples of "switch" filters with L2 rewriting:

# cxgbetool t4nex0  iport 0  dport 80  action switch  vlan +9  eport 3
Intercept all packets received on physical port 0 with TCP port 80 as
destination, insert a vlan tag with VID 9, and send them out of port 3.

# cxgbetool t4nex0  sip 192.168.1.1/32  ivlan 5  action switch \
	vlan =9  smac aa:bb:cc:dd:ee:ff  eport 0
Intercept all packets (received on any port) with source IP address
192.168.1.1 and VLAN id 5, rewrite the VLAN id to 9, rewrite source mac
to aa:bb:cc:dd:ee:ff, and send it out of port 0.

MFC after:	1 week
2011-05-30 21:07:26 +00:00