Commit Graph

87 Commits

Author SHA1 Message Date
Kirk McKusick
b06051cf7c Occationally background fsck would cause a spurious ``freeing free
inode'' panic. This change corrects that problem by setting the
fs_active flag when the inode map changes to notify the snapshot
code that the cylinder group must be rescanned.

Submitted by:	Robert Watson <rwatson@FreeBSD.org>
2002-02-07 22:13:56 +00:00
Kirk McKusick
c9f96392c7 When taking a snapshot, we must check for active files that have
been unlinked (e.g., with a zero link count). We have to expunge
all trace of these files from the snapshot so that they are neither
reclaimed prematurely by fsck nor saved unnecessarily by dump.
2002-02-02 01:42:44 +00:00
Kirk McKusick
03a2057a5b This patch fixes a long standing complaint with soft updates in
which small and/or nearly full filesystems would fail with `file
system full' messages when trying to replace a number of existing
files (for example during a system installation). When the allocation
routines are about to fail with a file system full condition, they
make a call to softdep_request_cleanup() which attempts to accelerate
the flushing of pending deletion requests in an effort to free up
space. In the face of filesystem I/O requests that exceed the
available disk transfer capacity, the cleanup request could take
an unbounded amount of time. Thus, the softdep_request_cleanup()
routine will only try for tickdelay seconds (default 2 seconds)
before giving up and returning a filesystem full error. Under typical
conditions, the softdep_request_cleanup() routine is able to free
up space in under fifty milliseconds.
2002-01-22 06:17:22 +00:00
Alfred Perlstein
426da3bcfb SMP Lock struct file, filedesc and the global file list.
Seigo Tanimura (tanimura) posted the initial delta.

I've polished it quite a bit reducing the need for locking and
adapting it for KSE.

Locks:

1 mutex in each filedesc
   protects all the fields.
   protects "struct file" initialization, while a struct file
     is being changed from &badfileops -> &pipeops or something
     the filedesc should be locked.

1 mutex in each struct file
   protects the refcount fields.
   doesn't protect anything else.
   the flags used for garbage collection have been moved to
     f_gcflag which was the FILLER short, this doesn't need
     locking because the garbage collection is a single threaded
     container.
  could likely be made to use a pool mutex.

1 sx lock for the global filelist.

struct file *	fhold(struct file *fp);
        /* increments reference count on a file */

struct file *	fhold_locked(struct file *fp);
        /* like fhold but expects file to locked */

struct file *	ffind_hold(struct thread *, int fd);
        /* finds the struct file in thread, adds one reference and
                returns it unlocked */

struct file *	ffind_lock(struct thread *, int fd);
        /* ffind_hold, but returns file locked */

I still have to smp-safe the fget cruft, I'll get to that asap.
2002-01-13 11:58:06 +00:00
Kirk McKusick
f305c5d199 Change the atomic_set_char to atomic_set_int and atomic_clear_char
to atomic_clear_int to ease the implementation for the sparc64.

Requested by:	Jake Burkholder <jake@locore.ca>
2001-12-18 18:05:17 +00:00
Kirk McKusick
cc5a92334f Minimize the time necessary to suspend operations on a filesystem
when taking a snapshot. The two time consuming operations are
scanning all the filesystem bitmaps to determine which blocks
are in use and scanning all the other snapshots so as to be able
to expunge their blocks from the view of the current snapshot.
The bitmap scanning is broken into two passes. Before suspending
the filesystem all bitmaps are scanned. After the suspension,
those bitmaps that changed after being scanned the first time
are rescanned. Typically there are few bitmaps that need to be
rescanned. The expunging of other snapshots is now done after
the suspension is released by observing that we can easily
identify any blocks that were allocated to them after the
suspension (they will be maked as `not needing to be copied'
in the just created snapshot). For all the gory details, see
the ``Running fsck in the Background'' paper in the Usenix
BSDCon 2002 Conference Proceedings, pages 55-64.
2001-12-14 00:15:06 +00:00
Robert Watson
ab66aa1468 o Replace two direct uid!=0 comparisons with suser_xxx() calls.
Obtained from:	TrustedBSD Project
2001-10-02 14:41:43 +00:00
Peter Wemm
78236790cd Fix warning:
1973: warning: int format, long int arg (arg 5)
2001-06-15 07:44:39 +00:00
Kirk McKusick
23371b2f22 Refinement to revision 1.16 of ufs/ffs/ffs_snapshot.c to reduce
the amount of time that the filesystem must be suspended. The
current snapshot is elided as well as the earlier snapshots.
2001-05-04 05:49:28 +00:00
Greg Lehey
60fb0ce365 Revert consequences of changes to mount.h, part 2.
Requested by:	bde
2001-04-29 02:45:39 +00:00
Greg Lehey
d98dc34f52 Correct #includes to work with fixed sys/mount.h. 2001-04-23 09:05:15 +00:00
Kirk McKusick
f0f3f19f05 Background fsck sysctl operations must use vn_start_write and
vn_finished_write so that they do not attempt to modify a
suspended filesystem.
2001-04-17 05:06:37 +00:00
Kirk McKusick
a61ab64ac4 Directory layout preference improvements from Grigoriy Orlov <gluk@ptci.ru>.
His description of the problem and solution follow. My own tests show
speedups on typical filesystem intensive workloads of 5% to 12% which
is very impressive considering the small amount of code change involved.

------

  One day I noticed that some file operations run much faster on
small file systems then on big ones. I've looked at the ffs
algorithms, thought about them, and redesigned the dirpref algorithm.

  First I want to describe the results of my tests. These results are old
and I have improved the algorithm after these tests were done. Nevertheless
they show how big the perfomance speedup may be. I have done two file/directory
intensive tests on a two OpenBSD systems with old and new dirpref algorithm.
The first test is "tar -xzf ports.tar.gz", the second is "rm -rf ports".
The ports.tar.gz file is the ports collection from the OpenBSD 2.8 release.
It contains 6596 directories and 13868 files. The test systems are:

1. Celeron-450, 128Mb, two IDE drives, the system at wd0, file system for
   test is at wd1. Size of test file system is 8 Gb, number of cg=991,
   size of cg is 8m, block size = 8k, fragment size = 1k OpenBSD-current
   from Dec 2000 with BUFCACHEPERCENT=35

2. PIII-600, 128Mb, two IBM DTLA-307045 IDE drives at i815e, the system
   at wd0, file system for test is at wd1. Size of test file system is 40 Gb,
   number of cg=5324, size of cg is 8m, block size = 8k, fragment size = 1k
   OpenBSD-current from Dec 2000 with BUFCACHEPERCENT=50

You can get more info about the test systems and methods at:
http://www.ptci.ru/gluk/dirpref/old/dirpref.html

                              Test Results

             tar -xzf ports.tar.gz               rm -rf ports
  mode  old dirpref new dirpref speedup old dirprefnew dirpref speedup
                             First system
 normal     667         472      1.41       477        331       1.44
 async      285         144      1.98       130         14       9.29
 sync       768         616      1.25       477        334       1.43
 softdep    413         252      1.64       241         38       6.34
                             Second system
 normal     329         81       4.06       263.5       93.5     2.81
 async      302         25.7    11.75       112          2.26   49.56
 sync       281         57.0     4.93       263         90.5     2.9
 softdep    341         40.6     8.4        284          4.76   59.66

"old dirpref" and "new dirpref" columns give a test time in seconds.
speedup - speed increasement in times, ie. old dirpref / new dirpref.

------

Algorithm description

The old dirpref algorithm is described in comments:

/*
 * Find a cylinder to place a directory.
 *
 * The policy implemented by this algorithm is to select from
 * among those cylinder groups with above the average number of
 * free inodes, the one with the smallest number of directories.
 */

A new directory is allocated in a different cylinder groups than its
parent directory resulting in a directory tree that is spreaded across
all the cylinder groups. This spreading out results in a non-optimal
access to the directories and files. When we have a small filesystem
it is not a problem but when the filesystem is big then perfomance
degradation becomes very apparent.

What I mean by a big file system ?

  1. A big filesystem is a filesystem which occupy 20-30 or more percent
     of total drive space, i.e. first and last cylinder are physically
     located relatively far from each other.
  2. It has a relatively large number of cylinder groups, for example
     more cylinder groups than 50% of the buffers in the buffer cache.

The first results in long access times, while the second results in
many buffers being used by metadata operations. Such operations use
cylinder group blocks and on-disk inode blocks. The cylinder group
block (fs->fs_cblkno) contains struct cg, inode and block bit maps.
It is 2k in size for the default filesystem parameters. If new and
parent directories are located in different cylinder groups then the
system performs more input/output operations and uses more buffers.
On filesystems with many cylinder groups, lots of cache buffers are
used for metadata operations.

My solution for this problem is very simple. I allocate many directories
in one cylinder group. I also do some things, so that the new allocation
method does not cause excessive fragmentation and all directory inodes
will not be located at a location far from its file's inodes and data.
The algorithm is:
/*
 * Find a cylinder group to place a directory.
 *
 * The policy implemented by this algorithm is to allocate a
 * directory inode in the same cylinder group as its parent
 * directory, but also to reserve space for its files inodes
 * and data. Restrict the number of directories which may be
 * allocated one after another in the same cylinder group
 * without intervening allocation of files.
 *
 * If we allocate a first level directory then force allocation
 * in another cylinder group.
 */

  My early versions of dirpref give me a good results for a wide range of
file operations and different filesystem capacities except one case:
those applications that create their entire directory structure first
and only later fill this structure with files.

  My solution for such and similar cases is to limit a number of
directories which may be created one after another in the same cylinder
group without intervening file creations. For this purpose, I allocate
an array of counters at mount time. This array is linked to the superblock
fs->fs_contigdirs[cg]. Each time a directory is created the counter
increases and each time a file is created the counter decreases. A 60Gb
filesystem with 8mb/cg requires 10kb of memory for the counters array.

  The maxcontigdirs is a maximum number of directories which may be created
without an intervening file creation. I found in my tests that the best
performance occurs when I restrict the number of directories in one cylinder
group such that all its files may be located in the same cylinder group.
There may be some deterioration in performance if all the file inodes
are in the same cylinder group as its containing directory, but their
data partially resides in a different cylinder group. The maxcontigdirs
value is calculated to try to prevent this condition. Since there is
no way to know how many files and directories will be allocated later
I added two optimization parameters in superblock/tunefs. They are:

        int32_t  fs_avgfilesize;   /* expected average file size */
        int32_t  fs_avgfpdir;      /* expected # of files per directory */

These parameters have reasonable defaults but may be tweeked for special
uses of a filesystem. They are only necessary in rare cases like better
tuning a filesystem being used to store a squid cache.

I have been using this algorithm for about 3 months. I have done
a lot of testing on filesystems with different capacities, average
filesize, average number of files per directory, and so on. I think
this algorithm has no negative impact on filesystem perfomance. It
works better than the default one in all cases. The new dirpref
will greatly improve untarring/removing/coping of big directories,
decrease load on cvs servers and much more. The new dirpref doesn't
speedup a compilation process, but also doesn't slow it down.

Obtained from:	Grigoriy Orlov <gluk@ptci.ru>
2001-04-10 08:38:59 +00:00
Jeroen Ruigrok van der Werven
5d0b660f2a Fix typo ); -> , 2001-03-24 15:25:04 +00:00
Kirk McKusick
fca26df055 Check that background fsck operation is being done on a ufs filesystem.
Obtained from:	Robert Watson <rwatson@FreeBSD.org>
2001-03-23 20:58:25 +00:00
Kirk McKusick
812b1d416c Add kernel support for running fsck on active filesystems. 2001-03-21 04:09:01 +00:00
Kirk McKusick
7e72e9918a Report the correct inode number when panicing with freeing free inode.
Report the correct block number when panicing with freeing free block.
2001-03-21 04:01:02 +00:00
Jeroen Ruigrok van der Werven
d7d97eb0aa Preceed/preceeding are not english words. Use precede and preceding. 2001-02-18 10:43:53 +00:00
Peter Wemm
6ee6b42ef7 Minor change: fix warning - move a 'struct vnode *vp' declaration inside a
#ifdef DIAGNOSTIC to match its corresponding usage.
2000-07-28 22:27:00 +00:00
Kirk McKusick
f2a2857bb3 Add snapshots to the fast filesystem. Most of the changes support
the gating of system calls that cause modifications to the underlying
filesystem. The gating can be enabled by any filesystem that needs
to consistently suspend operations by adding the vop_stdgetwritemount
to their set of vnops. Once gating is enabled, the function
vfs_write_suspend stops all new write operations to a filesystem,
allows any filesystem modifying system calls already in progress
to complete, then sync's the filesystem to disk and returns. The
function vfs_write_resume allows the suspended write operations to
begin again. Gating is not added by default for all filesystems as
for SMP systems it adds two extra locks to such critical kernel
paths as the write system call. Thus, gating should only be added
as needed.

Details on the use and current status of snapshots in FFS can be
found in /sys/ufs/ffs/README.snapshot so for brevity and timelyness
is not included here. Unless and until you create a snapshot file,
these changes should have no effect on your system (famous last words).
2000-07-11 22:07:57 +00:00
Poul-Henning Kamp
9626b608de Separate the struct bio related stuff out of <sys/buf.h> into
<sys/bio.h>.

<sys/bio.h> is now a prerequisite for <sys/buf.h> but it shall
not be made a nested include according to bdes teachings on the
subject of nested includes.

Diskdrivers and similar stuff below specfs::strategy() should no
longer need to include <sys/buf.> unless they need caching of data.

Still a few bogus uses of struct buf to track down.

Repocopy by:    peter
2000-05-05 09:59:14 +00:00
Robert Watson
a64ed08955 Introduce extended attribute support for FFS, allowing arbitrary
(name, value) pairs to be associated with inodes.  This support is
used for ACLs, MAC labels, and Capabilities in the TrustedBSD
security extensions, which are currently under development.

In this implementation, attributes are backed to data vnodes in the
style of the quota support in FFS.  Support for FFS extended
attributes may be enabled using the FFS_EXTATTR kernel option
(disabled by default).  Userland utilities and man pages will be
committed in the next batch.  VFS interfaces and man pages have
been in the repo since 4.0-RELEASE and are unchanged.

o ufs/ufs/extattr.h: UFS-specific extattr defines
o ufs/ufs/ufs_extattr.c: bulk of support routines
o ufs/{ufs,ffs,mfs}/*.[ch]: hooks and extattr.h includes
o contrib/softupdates/ffs_softdep.c: extattr.h includes
o conf/options, conf/files, i386/conf/LINT: added FFS_EXTATTR

o coda/coda_vfsops.c: XXX required extattr.h due to ufsmount.h
(This should not be the case, and will be fixed in a future commit)

Currently attributes are not supported in MFS.  This will be fixed.

Reviewed by:	adrian, bp, freebsd-fs, other unthanked souls
Obtained from:	TrustedBSD Project
2000-04-15 03:34:27 +00:00
Kirk McKusick
9f043878d0 Use 64-bit math to decide if optimization needs to be changed.
Necessary for coherent results on filesystems bigger than 0.5Tb.

Submitted by:	Paul Saab <ps@yahoo-inc.com>
2000-03-15 07:08:36 +00:00
Kirk McKusick
cf60e8e4bf Several performance improvements for soft updates have been added:
1) Fastpath deletions. When a file is being deleted, check to see if it
   was so recently created that its inode has not yet been written to
   disk. If so, the delete can proceed to immediately free the inode.
2) Background writes: No file or block allocations can be done while the
   bitmap is being written to disk. To avoid these stalls, the bitmap is
   copied to another buffer which is written thus leaving the original
   available for futher allocations.
3) Link count tracking. Constantly track the difference in i_effnlink and
   i_nlink so that inodes that have had no change other than i_effnlink
   need not be written.
4) Identify buffers with rollback dependencies so that the buffer flushing
   daemon can choose to skip over them.
2000-01-10 00:24:24 +00:00
Eivind Eklund
369dc8ceb8 Change incorrect NULLs to 0s 1999-12-21 11:14:12 +00:00
Kirk McKusick
9f54c05286 Preferentially allocate the first indirect block in the same
cylinder group as the inode. This makes a 15% difference in
read speed for files in the 96K to 500K size range.
1999-12-01 19:33:12 +00:00
Peter Wemm
c3aac50f28 $Id$ -> $FreeBSD$ 1999-08-28 01:08:13 +00:00
Sheldon Hearn
740e3a15f7 Fix bug introduced in rev 1.28, which causes kernel build to break for
the case where DEBUG is defined but not DIAGNOSTIC. ffs_checkblk is
declared conditionally on DIAGNOSTIC, not DEBUG.

PR:	13314
Reviewed by:	bde
1999-08-24 08:39:41 +00:00
Bruce Evans
d918320517 Use devtoname() to print dev_t's instead of casting them to long or u_long
for misprinting in %lx format.
1999-08-23 20:35:21 +00:00
Peter Wemm
51b5226683 Try and fix a dev_t/major/minor etc nit. 1999-05-12 22:32:07 +00:00
Peter Wemm
dfd5dee1b0 Add sufficient braces to keep egcs happy about potentially ambiguous
if/else nesting.
1999-05-06 18:13:11 +00:00
Bruce Evans
de5d1ba57c Don't pass unused unused timestamp args to UFS_UPDATE() or waste
time initializing them.  This almost finishes centralizing (in-core)
timestamp updates in ufs_itimes().
1999-01-07 16:14:19 +00:00
Bruce Evans
d64dbc8719 Ifdefed the conditionally used variable `prtrealloc'. Declare it
as volatile so that there is no chance that the code that it controls
is optimised away.
1999-01-06 17:04:33 +00:00
David Greenman
1c680b45a2 Restored the "reallocblks" code to its former glory. What this does is
basically do a on-the-fly defragmentation of the FFS filesystem, changing
file block allocations to make them contiguous. Thanks to Kirk McKusick
for providing hints on what needed to be done to get this working.
1998-11-13 01:01:44 +00:00
Bruce Evans
ff261f16f6 Put the zombie ffs sysctl node in "notyet" state together with its few
remaining children.  Prepare it for MOUNT_UFS going away.
1998-09-07 11:50:19 +00:00
Poul-Henning Kamp
0375c9f2b8 Add a new vnode op, VOP_FREEBLKS(), which filesystems can use to inform
device drivers about sectors no longer in use.

Device-drivers receive the call through d_strategy, if they have
D_CANFREE in d_flags.

This allows flash based devices to erase the sectors and avoid
pointlessly carrying them around in compactions.

Reviewed by:	Kirk Mckusick, bde
Sponsored by:	M-Systems (www.m-sys.com)
1998-09-05 14:13:12 +00:00
Bruce Evans
0492d857d1 Removed unused includes. 1998-08-17 19:09:36 +00:00
Bruce Evans
ac1e407b32 Fixed printf format errors. 1998-07-11 07:46:16 +00:00
Poul-Henning Kamp
227ee8a188 Eradicate the variable "time" from the kernel, using various measures.
"time" wasn't a atomic variable, so splfoo() protection were needed
around any access to it, unless you just wanted the seconds part.

Most uses of time.tv_sec now uses the new variable time_second instead.

gettime() changed to getmicrotime(0.

Remove a couple of unneeded splfoo() protections, the new getmicrotime()
is atomic, (until Bruce sets a breakpoint in it).

A couple of places needed random data, so use read_random() instead
of mucking about with time which isn't random.

Add a new nfs_curusec() function.

Mark a couple of bogosities involving the now disappeard time variable.

Update ffs_update() to avoid the weird "== &time" checks, by fixing the
one remaining call that passwd &time as args.

Change profiling in ncr.c to use ticks instead of time.  Resolution is
the same.

Add new function "tvtohz()" to avoid the bogus "splfoo(), add time, call
hzto() which subtracts time" sequences.

Reviewed by:	bde
1998-03-30 09:56:58 +00:00
Julian Elischer
b1897c197c Reviewed by: dyson@freebsd.org (john Dyson), dg@root.com (david greenman)
Submitted by:	Kirk McKusick (mcKusick@mckusick.com)
Obtained from:  WHistle development tree
1998-03-08 09:59:44 +00:00
Eivind Eklund
0b08f5f737 Back out DIAGNOSTIC changes. 1998-02-06 12:14:30 +00:00
Eivind Eklund
47cfdb166d Turn DIAGNOSTIC into a new-style option. 1998-02-04 22:34:03 +00:00
Bruce Evans
23906a782b Fix a small style bug in the generation number change (rev.1.33) before
copying the change to other fs's.
1997-12-02 11:21:16 +00:00
Bruce Evans
cb451ebdbd Staticized. 1997-11-22 08:35:46 +00:00
Bruce Evans
2ea354c3bb Unremoved prtrealloc and the declaration of ffs_clusteralloc(). These
are used in the `#ifdef notyet' case :-).  This case is used except in
the `#if !defined (not_yes)' case :-|.  This has something to do with
the `#ifdef notyet_block_reallocation_enabled' case in vfs_cluster.c :-(.
1997-11-22 07:00:40 +00:00
Poul-Henning Kamp
4a11ca4e29 Remove a bunch of variables which were unused both in GENERIC and LINT.
Found by:	-Wunused
1997-11-07 08:53:44 +00:00
Poul-Henning Kamp
987f569678 Another VFS cleanup "kilo commit"
1.  Remove VOP_UPDATE, it is (also) an UFS/{FFS,LFS,EXT2FS,MFS}
    intereface function, and now lives in the ufsmount structure.

2.  Remove VOP_SEEK, it was unused.

3.  Add mode default vops:

    VOP_ADVLOCK          vop_einval
    VOP_CLOSE            vop_null
    VOP_FSYNC            vop_null
    VOP_IOCTL            vop_enotty
    VOP_MMAP             vop_einval
    VOP_OPEN             vop_null
    VOP_PATHCONF         vop_einval
    VOP_READLINK         vop_einval
    VOP_REALLOCBLKS      vop_eopnotsupp

    And remove identical functionality from filesystems

4.   Add vop_stdpathconf, which returns the canonical stuff.  Use
     it in the filesystems.  (XXX: It's probably wrong that specfs
     and fifofs sets this vop, shouldn't it come from the "host"
     filesystem, for instance ufs or cd9660 ?)

5.   Try to make system wide VOP functions have vop_* names.

6.   Initialize the um_* vectors in LFS.

(Recompile your LKMS!!!)
1997-10-16 20:32:40 +00:00
Poul-Henning Kamp
cec0f20ce7 VFS mega cleanup commit (x/N)
1.  Add new file "sys/kern/vfs_default.c" where default actions for
    VOPs go. Implement proper defaults for ABORTOP, BWRITE, LEASE,
    POLL, REVOKE and STRATEGY.  Various stuff spread over the entire
    tree belongs here.

2.  Change VOP_BLKATOFF to a normal function in cd9660.

3.  Kill VOP_BLKATOFF, VOP_TRUNCATE, VOP_VFREE, VOP_VALLOC.  These
    are private interface functions between UFS and the underlying
    storage manager layer (FFS/LFS/MFS/EXT2FS).  The functions now
    live in struct ufsmount instead.

4.  Remove a kludge of VOP_ functions in all filesystems, that did
    nothing but obscure the simplicity and break the expandability.
    If a filesystem doesn't implement VOP_FOO, it shouldn't have an
    entry for it in its vnops table.  The system will try to DTRT
    if it is not implemented.  There are still some cruft left, but
    the bulk of it is done.

5.  Fix another VCALL in vfs_cache.c (thanks Bruce!)
1997-10-16 10:50:27 +00:00
Poul-Henning Kamp
40715905a7 I think my previous change may have opened a race conditio.
This patch does the same thing, with no change in semantics.
1997-10-14 18:46:48 +00:00
Poul-Henning Kamp
34a6a33036 ufs_ihashrem() should not be called from the UFS layer, but from the
lower layer (LFS/FFS/?) like the rest of the ihash functions.
Otherwise it is impossible to make a lower layer that doesn't use the
ihash facility.
1997-10-14 14:22:31 +00:00