Clean out the abortive start to homegrown, per-mpt,
Domain Validation. This should really be done at a
higher level.
Use the PIM_SEQSCAN flag for U320- this seems to correct
cases of being unable to consistently negotiate U320 in
the cases where I'd seen this before.
Between this and other recent checkins, this driver is
pretty close to being ready for MFC.
Reviewed by: scottl, ken, scsi@
MFC after: 1 week
set to ILACC rather than PCnet-PCI as VMware doesn't implement ILACC
compatibility, resulting in the VMware virtual machine to crash if
enabled. Add a comment regarding usage of ILACC vs. PCnet-PCI mode.
Reported and tested by: gnn, wsalamon
device went away while open or if you tried to change the config
number while devices were open. Based on the patch from the PR with
a number of changes as discussed with the submitter.
PR: usb/97271
Submitted by: Anish Mistry
axe_cmd() calls. Without this the device can get confused if multiple
threads attempt these operations concurrently. The problem was
easily reproducible by running "ifconfig axe0" in a loop because
eventually it would conflict with axe_tick_task().
A similar approach is probably required in all USB ethernet drivers.
Move the code for printing timer statistics into a test function instead of
an ifdef (accessible via the debug.acpi.hpet_test tunable). Also use defines
for register offsets instead of magic values.
Courtesy of: slow flight to HK
it. We just moved it to be pci specific, so this was causing compile
problems (linking problems, so I didn't notice since I unwisely just
built the module).
vendor-specific device ids across vendors.
- Include the revision in the dc_devs[] array instead of special casing
the revid handling in dc_devtype().
- Use PCI bus accessors to read registers instead of pci_read_config()
where possible.
- Use an 8-bit write to update the latency timer.
- Use PCIR_xxx constants and remove unused DC_xxx related to standard
PCI config registers.
MFC after: 1 week
(1) bpf peer attaches to interface netif0
(2) Packet is received by netif0
(3) ifp->if_bpf pointer is checked and handed off to bpf
(4) bpf peer detaches from netif0 resulting in ifp->if_bpf being
initialized to NULL.
(5) ifp->if_bpf is dereferenced by bpf machinery
(6) Kaboom
This race condition likely explains the various different kernel panics
reported around sending SIGINT to tcpdump or dhclient processes. But really
this race can result in kernel panics anywhere you have frequent bpf attach
and detach operations with high packet per second load.
Summary of changes:
- Remove the bpf interface's "driverp" member
- When we attach bpf interfaces, we now set the ifp->if_bpf member to the
bpf interface structure. Once this is done, ifp->if_bpf should never be
NULL. [1]
- Introduce bpf_peers_present function, an inline operation which will do
a lockless read bpf peer list associated with the interface. It should
be noted that the bpf code will pickup the bpf_interface lock before adding
or removing bpf peers. This should serialize the access to the bpf descriptor
list, removing the race.
- Expose the bpf_if structure in bpf.h so that the bpf_peers_present function
can use it. This also removes the struct bpf_if; hack that was there.
- Adjust all consumers of the raw if_bpf structure to use bpf_peers_present
Now what happens is:
(1) Packet is received by netif0
(2) Check to see if bpf descriptor list is empty
(3) Pickup the bpf interface lock
(4) Hand packet off to process
From the attach/detach side:
(1) Pickup the bpf interface lock
(2) Add/remove from bpf descriptor list
Now that we are storing the bpf interface structure with the ifnet, there is
is no need to walk the bpf interface list to locate the correct bpf interface.
We now simply look up the interface, and initialize the pointer. This has a
nice side effect of changing a bpf interface attach operation from O(N) (where
N is the number of bpf interfaces), to O(1).
[1] From now on, we can no longer check ifp->if_bpf to tell us whether or
not we have any bpf peers that might be interested in receiving packets.
In collaboration with: sam@
MFC after: 1 month
fixing speed negotiation.
Also fix the mpt_execute_req function to actually
match mpt_execute_req_a64. This may explain why
i386 users were having more grief.
can see the results of SPI negotiation w/o being overwhelmed
with other crap).
+ For U320 devices, check against both Settings *and* DV flags before
deciding whether we need to skip actual SPI settings for a device.
+ Go back to creating a 'physical disk' side of a raid/passthru bus that
is limited to the number of maximum physical disks. Actually, this isn't
probably *quite* right yet for one RAID volume, and if we ever end up
with finding a device that supports more than one RAID volume (not likely),
it probably won't quite be right either.
The problem here is that the creating of this 'physical' passthru sim is
just a cheap way to leverage off the CAM midlayer to do our negotiation
for us on the subentities that make up a RAID volume. It almost causes
more trouble than it is worth because we have to remember which side
we're talking to in terms of forming commands and which target ids are
real and so on. Bleah.
+ Skip trying to actually do SPI settings for the RAID volumes on the
real side of the raid/passthru bus pair- this just confuses the issue.
The underlying real physical devices will have the negotiation performed
and the Raid volume will inherit the resultant settings. At the sime time,
non-RAID devices can be on the same real bus, so *do* perform negotiations
with them.
+ At the end of doing all of the settings twiddling, *ahem*, remember to
go update the settings on the card itself (dunno how this got nuked).
At this point, negotiations *seem* to be being done (again) correctly for
both RAID volumes and their subentities. And they seem to be *mostly*
now right for other non-RAID entities on the same bus (I ended up with
3 out of 8 other disks still at narror/async- haven't the slightest
idea why yes).
Finally, negotiations on a normal bus seem to work (again).
There's still more work coming into this area, but we're in the
final stretch.
the passed target id is one of the RAID VolumeID. This result
is used to decide whether to try and do actual SPI negotiations
on the real side of the raid/passthru bus pair. The reason we
check this is that we can have both RAID volumes and real devices
on the same bus.
USBD_FORCE_SHORT_XFER to ensure that we actually build and execute
a transfer. This means that the various alloc_sqtd_chain functions
will always construct a transfer, so it is safe to modify the
allocated descriptors on return. Previously there were cases where
a zero length transfer would cause a NULL dereference.
Reported by: bp
- Reduce the number of RX and TX buffers bfe uses so that it does not use more
bounce buffers than busdma is willing to allow it to use
See if_bfe.c for comments on why this is now safe to do.
Also use BUS_DMA_ALLOCNOW to be on the safe side.
2. Look for the Descriptor Error, and Descriptor Protocol Error flags from
the card, and down the interface if we detect either.
#1 (along with fixes to busdma) makes sure that this card works in all
memory situations. Prior to this change, it was just luck that 512 count
RX/TX lists were properly aligned. Now we can use any size of RX/TX lists
and still have them properly aligned.
#2 ensures that we don't get into an endless interrupt storm if busdma fails
us. Descriptor Protocol Error would occur if we misaligned the TX/RX rings,
and Descriptor Error would occur if we tried to give the card descriptors
or rings with addresses > 1G. Trying to reinitialize the card isn't going
to fix these errors, hence we don't try.
host controllers to avoid the need to allocate any multi-page
physically contiguous memory blocks. This makes it possible to use
USB devices reliably on low-memory systems or when memory is too
fragmented for contiguous allocations to succeed.
The USB subsystem now uses bus_dmamap_load() directly on the buffers
supplied by USB peripheral drivers, so this also avoids having to
copy data back and forth before and after transfers. The ehci and
ohci controllers support scatter/gather as long as the buffer is
contiguous in the virtual address space. For uhci the hardware
cannot handle a physical address discontinuity within a USB packet,
so it is necessary to copy small memory fragments at times.