FICL. bootforth is now live on the Alpha!
**BEWARE** - you *MUST* build and install a current libstand or you will
most likely get zfree() panics at loader startup.
We should now be able to set up the loader.conf stuff on the Alpha too.
/boot/loader (even though it is 100% dormant in the Alpha version),
then the loader panics with a zfree error:Loading /boot/loader.test
*** keyboard not plugged in...
Console: SRM firmware console
panic: zfree(0x2003cb58,4096): wild pointer
versus the exact same code but without FICL linked in:
Loading /boot/loader
Console: SRM firmware console
VMS PAL rev: 0x1000600010114
OSF PAL rev: 0x1000600020116
Switch to OSF PAL code succeeded.
FreeBSD/alpha SRM disk boot, Revision 0.1
This is almost certainly an alpha infrastructure bug, not a FICL
problem. It's probably the same thing that made FICL fail for no
apparent reason on the Alpha.
flushed if the unit changes. Compute the absolute offset before
bcache_strategy() instead of after.
The actual fix is sligthly different for the one in the PR.
PR: 17098
Submitted by: John Hood <jhood@sitaranetworks.com>
- Make as much of the makefile for each of the three flavours
(disk, CDROM, net) common.
- Special-case the libalpha startup module on its use in boot1, not
the other way around.
- Build the loader out of a "loader" directory
Reviewed by: mjacob, dfr
* Make it possible to type a filename to boot1 so that it is possible to
recover from fatally broken versions of /boot/loader.
* Make a start at a CD boot program (not yet functional).
the SRM environment. This makes the traditional "boot [/kernel] -s"
and similar things work on the Alpha. Since the flags are appended,
they augment and/or override those from the SRM environment.
numbers that we have been doing in the past, and read /etc/fstab off the
proposed root filesystem to determine the actual device name and vfs
type for the root filesystem. These are then exported to the kernel
via the environment variable vfs.root.mountfrom.
i386 platform boots, it is no longer ISA-centric, and is fully dynamic.
Most old drivers compile and run without modification via 'compatability
shims' to enable a smoother transition. eisa, isapnp and pccard* are
not yet using the new resource manager. Once fully converted, all drivers
will be loadable, including PCI and ISA.
(Some other changes appear to have snuck in, including a port of Soren's
ATA driver to the Alpha. Soren, back this out if you need to.)
This is a checkpoint of work-in-progress, but is quite functional.
The bulk of the work was done over the last few years by Doug Rabson and
Garrett Wollman.
Approved by: core
needs. This removes the dependancy on Perl for the generation of the
loader, allowing the world to be built on a perl-free system.
Submitted by: Joe Abley <jabley@clear.co.nz>
and will bypass transfers for more than 8k. Blocks are invalidated after
2 seconds, so removable media should not confuse the cache.
The 8k threshold is a compromise; all UFS transfers performed by
libstand are 8k or less, so large file reads thrash the cache.
However many filesystem metadata operations are also performed using
8k blocks, so using a lower threshold gives poor performance.
Those of you with an eye for cache algorithms are welcome to tell me
how badly this one sucks; you can start with the 'bcachestats' command
which will print the contents of the cache and access statistics.
* Embed the stack into the bss section for loader and netboot. This
is required for netboot since otherwise the stack would be inside our
heap.
* Install loader and netboot in /boot by default.
* Fix getbootfile so that it searches for a ',' instead of a ';'
when terminating the filename.
independent elf loader and have access to kld modules. Jordan and I were
not sure how to create boot floppies, and the things we tried just made
SRM laugh in our faces - but it was upset at boot1 which was not touched
by these changes. Essentially this has been untested. :-(
What this does is to steal the last three slots from the nine spare longs
in the bootinfo_v1 struct to pass the module base pointer through.
The startup code now to set up and fills in the module and environment
structures, hopefully close enough to the i386 layout to be able to use
the same kernel code. We now pass though the updated end of the kernel
space used, rather than _end. (like the i386).
If this does not work, it needs to be beaten into shape pronto. Otherwise
it should be backed out before 3.0.
Pre-approved in principle by: dfr
* Fix a raft of warnings, printf and otherwise.
* Allocate the correct amount in mod_searchmodule to prevent an overflow.
* Fix the makefiles so they work outside my home directory (oops).
- Discard large amounts of BIOS-related code in favour of the more compact
BTX vm86 interface.
- Build the loader module as ELF, although the resulting object is a.out,
make gensetdefs 32/64-bit sensitive and use a single copy of it.
- Throw away installboot, as it's no longer required.
- Use direct bcopy operations in the i386_copy module, as BTX
maps the first 16M of memory. Check operations against the
detected size of actual memory.
- Use format-independant module allocator.
- Conditionalise ISA PnP support.
- Simplify PnP enumerator interface.
- Improve module/object searching.
- Add missing depend/install targets in BTX makefiles.
- Pass the kernel environment and module data in extended bootinfo fields.
- Add a pointer to the end of the kernel + modules in bootinfo.
- Fix parsing of old-style kernel arguments.
- Move some startup code from MD to MI sections
- Add a 'copyout' and some copyout-related functions. These will be
obsoleted when BTX is available for the 386 and the kernel load
area becomes directly addressable.
- Add the ability load an arbitrary file as a module, associating
and arbitrary type string with it. This can be used eg. for loading
splash-screen images etc.
- Add KLD module dependancy infrastructure. We know how to look for
dependancies inside KLD modules, how to resolve these dependancies
and what to do if things go wrong. Only works for a.out at the
moment, due to lack of an MI ELF loader. Attach KLD module information
to loaded modules as metadata, but don't pass it to the kernel (it
can find it itself).
- Load a.out KLD modules on a page boundary. Only pad the a.out BSS
for the kernel, as it may want to throw symbols away. (We might want
to do this for KLD modules too.)
- Allow commands to be hidden from the '?' display, to avoid cluttering
it with things like 'echo'. Add 'echo'.
- Bring the 'prompt' command into line with the parser syntax.
- Fix the verbose 'ls'; it was using an uninitialised stack variable.
- Add a '-v' flag to 'lsmod' to have it display module metadata as well
(not terribly useful for the average user)
- Support a 'module searchpath' for required modules.
- The bootstrap file on i386 is now called 'loader' to permit the
/boot directory to use that name.
- Discard the old i386 pread() function, as it's replaced by
arch_readin()
- Implement a new copyin/readin interface for loading modules.
This allows the module loaders to become MI, reducing code duplication.
- Simplify the search for an image activator for the loaded kernel.
- Use the common module management code for all module metadata.
- Add an 'unload' command that throws everything away.
- Move the a.out module loader to MI code, add support for a.out
kld modules.
Submitted by: Alpha changes fixed by Doug Rabson <dfr@freebsd.org>
'three-stage' bootstrap.
There are a number of caveats with the code in its current state:
- The i386 bootstrap only supports booting from a floppy.
- The kernel and kld do not yet know how to deal with the extended
information and module summary passed in.
- PnP-based autodetection and demand loading of modules is not implemented.
- i386 ELF kernel loading is not ready yet.
- The i386 bootstrap is loaded via an ugly blockmap.
On the alpha, both net- and disk-booting (SRM console machines only) is
supported. No blockmaps are used by this code.
Obtained from: Parts from the NetBSD/i386 standalone bootstrap.