Mainly focus on files that use BSD 2-Clause license, however the tool I
was using misidentified many licenses so this was mostly a manual - error
prone - task.
The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
driver name and NIC driver softc via the device(9) tree,
instead of going dirty through the ifnet(9) layer.
Differential Revision: D1506
Reviewed by: imp, jhb
and keep both converted to drvapi and non-converted drivers
compilable.
o Make if_t typedef to struct ifnet *.
o Remove shim functions.
Sponsored by: Netflix
Sponsored by: Nginx, Inc.
interface allows the ifnet structure to be defined as an opaque
type in NIC drivers. This then allows the ifnet structure to be
changed without a need to change or recompile NIC drivers.
Put differently, NIC drivers can be written and compiled once and
be used with different network stack implementations, provided of
course that those network stack implementations have an API and
ABI compatible interface.
This commit introduces the 'if_t' type to replace 'struct ifnet *'
as the type of a network interface. The 'if_t' type is defined as
'void *' to enable the compiler to perform type conversion to
'struct ifnet *' and vice versa where needed and without warnings.
The functions that implement the API are the only functions that
need to have an explicit cast.
The MII code has been converted to use the driver API to avoid
unnecessary code churn. Code churn comes from having to work with
both converted and unconverted drivers in correlation with having
callback functions that take an interface. By converting the MII
code first, the callback functions can be defined so that the
compiler will perform the typecasts automatically.
As soon as all drivers have been converted, the if_t type can be
redefined as needed and the API functions can be fix to not need
an explicit cast.
The immediate benefactors of this change are:
1. Juniper Networks - The network stack implementation in Junos
is entirely different from FreeBSD's one and this change
allows Juniper to build "stock" NIC drivers that can be used
in combination with both the FreeBSD and Junos stacks.
2. FreeBSD - This change opens the door towards changing ifnet
and implementing new features and optimizations in the network
stack without it requiring a change in the many NIC drivers
FreeBSD has.
Submitted by: Anuranjan Shukla <anshukla@juniper.net>
Reviewed by: glebius@
Obtained from: Juniper Networks, Inc.
to this event, adding if_var.h to files that do need it. Also, include
all includes that now are included due to implicit pollution via if_var.h
Sponsored by: Netflix
Sponsored by: Nginx, Inc.
them, please let me know if not). Most of these are of the form:
static const struct bzzt_type {
[...list of members...]
} const bzzt_devs[] = {
[...list of initializers...]
};
The second const is unnecessary, as arrays cannot be modified anyway,
and if the elements are const, the whole thing is const automatically
(e.g. it is placed in .rodata).
I have verified this does not change the binary output of a full kernel
build (except for build timestamps embedded in the object files).
Reviewed by: yongari, marius
MFC after: 1 week
before calling bus_enumerate_hinted_children(9) (which is the minimum for
this to work) instead of fully probing it so later on we can just call
bus_generic_attach(9) on the parent of the miibus(4) instance. The latter
is necessary in order to work around what seems to be a bzzarre race in
newbus affecting a few machines since r227687, causing no driver being
probed for the newly added miibus(4) instance. Presumably this is the
same race that was the motivation for the work around done in r215348.
Reported and tested by: yongari
- Revert the removal of a static in r221913 in order to help compilers to
produce more optimal code.
one. Interestingly, these are actually the default for quite some time
(bus_generic_driver_added(9) since r52045 and bus_generic_print_child(9)
since r52045) but even recently added device drivers do this unnecessarily.
Discussed with: jhb, marcel
- While at it, use DEVMETHOD_END.
Discussed with: jhb
- Also while at it, use __FBSDID.
addresses from being probed and attaching something including ukphy(4)
to it. This is mainly necessarily for PHY switches that create duplicate
or fake PHYs on the bus that can corrupt the PHY state when accessed or
simply cause problems when ukphy(4) isolates the additional instances.
- Change miibus(4) to be a hinted bus, allowing to add child devices via
hints and to set their attach arguments (including for automatically
probed PHYs). This is mainly needed for PHY switches that violate IEEE
802.3 and don't even implement the basic register set so we can't probe
them automatically. However, the ability to alter the attach arguments
for automatically probed PHYs is also useful as for example it allows
to test (or tell a user to test) new variant of a PHY with a specific
driver by letting an existing driver attach to it via manipulating the
IDs without the need to touch the source code or to limit a Gigabit
Ethernet PHY to only announce up to Fast Ethernet in order to save
energy by limiting the capability mask. Generally, a driver has to
be hinted via hint.phydrv.X.at="miibusY" and hint.phydrv.X.phyno="Z"
(which already is sufficient to add phydrvX at miibusY at PHY address
Z). Then optionally the following attach arguments additionally can
be configured:
hint.phydrv.X.id1
hint.phydrv.X.id2
hint.phydrv.X.capmask
- Some minor cleanup.
Reviewed by: adrian, ray
(reporting IFM_LOOP based on BMCR_LOOP is left in place though as
it might provide useful for debugging). For most mii(4) drivers it
was unclear whether the PHYs driven by them actually support
loopback or not. Moreover, typically loopback mode also needs to
be activated on the MAC, which none of the Ethernet drivers using
mii(4) implements. Given that loopback media has no real use (and
obviously hardly had a chance to actually work) besides for driver
development (which just loopback mode should be sufficient for
though, i.e one doesn't necessary need support for loopback media)
support for it is just dropped as both NetBSD and OpenBSD already
did quite some time ago.
- Let mii_phy_add_media() also announce the support of IFM_NONE.
- Restructure the PHY entry points to use a structure of entry points
instead of discrete function pointers, and extend this to include
a "reset" entry point. Make sure any PHY-specific reset routine is
always used, and provide one for lxtphy(4) which disables MII
interrupts (as is done for a few other PHYs we have drivers for).
This includes changing NIC drivers which previously just called the
generic mii_phy_reset() to now actually call the PHY-specific reset
routine, which might be crucial in some cases. While at it, the
redundant checks in these NIC drivers for mii->mii_instance not being
zero before calling the reset routines were removed because as soon
as one PHY driver attaches mii->mii_instance is incremented and we
hardly can end up in their media change callbacks etc if no PHY driver
has attached as mii_attach() would have failed in that case and not
attach a miibus(4) instance.
Consequently, NIC drivers now no longer should call mii_phy_reset()
directly, so it was removed from EXPORT_SYMS.
- Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe().
The purpose of that function is to perform the common steps to attach
a PHY driver instance and to hook it up to the miibus(4) instance and to
optionally also handle the probing, addition and initialization of the
supported media. So all a PHY driver without any special requirements
has to do in its bus attach method is to call mii_phy_dev_attach()
along with PHY-specific MIIF_* flags, a pointer to its PHY functions
and the add_media set to one. All PHY drivers were updated to take
advantage of mii_phy_dev_attach() as appropriate. Along with these
changes the capability mask was added to the mii_softc structure so
PHY drivers taking advantage of mii_phy_dev_attach() but still
handling media on their own do not need to fiddle with the MII attach
arguments anyway.
- Keep track of the PHY offset in the mii_softc structure. This is done
for compatibility with NetBSD/OpenBSD.
- Keep track of the PHY's OUI, model and revision in the mii_softc
structure. Several PHY drivers require this information also after
attaching and previously had to wrap their own softc around mii_softc.
NetBSD/OpenBSD also keep track of the model and revision on their
mii_softc structure. All PHY drivers were updated to take advantage
as appropriate.
- Convert the mebers of the MII data structure to unsigned where
appropriate. This is partly inspired by NetBSD/OpenBSD.
- According to IEEE 802.3-2002 the bits actually have to be reversed
when mapping an OUI to the MII ID registers. All PHY drivers and
miidevs where changed as necessary. Actually this now again allows to
largely share miidevs with NetBSD, which fixed this problem already
9 years ago. Consequently miidevs was synced as far as possible.
- Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that
weren't explicitly converted to support flow control before. It's
unclear whether flow control actually works with these but typically
it should and their net behavior should be more correct with these
changes in place than without if the MAC driver sets MIIF_DOPAUSE.
Obtained from: NetBSD (partially)
Reviewed by: yongari (earlier version), silence on arch@ and net@
of the MAC driver in order to attach miibus(4) on the first pass instead of
falling through to also calling it on the device_t of miibus(4). The latter
code flow was intended to attach the PHY drivers the same way regardless of
whether it's the first or a repeated pass, modulo the bus_generic_attach()
call in miibus_attach() which shouldn't be there. However, it turned out
that these variants cause miibus(4) to be attached twice under certain
conditions when using MAC drivers as modules.
Submitted by: yongari
MFC after: 3 days
replace mii_phy_probe() altogether. Compared to the latter the advantages
of mii_attach() are:
- intended to be called multiple times in order to attach PHYs in multiple
passes (f.e. in order to only use sub-ranges of the 0 to MII_NPHY - 1
range)
- being able to pass along the capability mask from the NIC to the PHY
drivers
- being able to specify at which address (phyloc) to probe for a PHY
(instead of always probing at all addresses from 0 to MII_NPHY - 1)
- being able to specify which PHY instance (offloc) to attach
- being able to pass along MIIF_* flags from the NIC to the PHY drivers
(f.e. as required to indicated to the PHY drivers that flow control is
supported by the NIC driver, which actually is the motivation for this
change).
While at it, I used the opportunity to get rid of some hacks in mii(4)
like miibus_probe() generally doing work besides sheer probing and the
"EVIL HACK" (which will vanish entirely along with mii_phy_probe()) by
passing the struct ifnet pointer via an argument of mii_attach() as well
as to fix some resource leaks in mii(4) in case something fails.
Commits which will update the PHY drivers to honor the MII flags passed
down from the NIC drivers and take advantage of mii_attach() to get rid
of certain types of hacks in NIC and PHY drivers as well as a conversion
of the remaining uses of mii_phy_probe() will follow shortly.
Reviewed by: jhb, yongari
Obtained from: NetBSD (partially)
different PHY instance being selected and isolation out into the wrappers
around the service methods rather than duplicating them over and over
again (besides, a PHY driver shouldn't need to care about which instance
it actually is).
- Centralize the check for the need to isolate a non-zero PHY instance not
supporting isolation in mii_mediachg() and just ignore it rather than
panicing, which should sufficient given that a) things are likely to
just work anyway if one doesn't plug in more than one port at a time and
b) refusing to attach in this case just leaves us in a unknown but most
likely also not exactly correct configuration (besides several drivers
setting MIIF_NOISOLATE didn't care about these anyway, probably due to
setting this flag for no real reason).
- Minor fixes like removing unnecessary setting of sc->mii_anegticks,
using sc->mii_anegticks instead of hardcoded values etc.
pointers. A structure is more readable and less error-prone. It
also avoids problems when a function pointer doesn't have the
same width as a void pointer.
ifmedia_init() invocation. IFM_IMASK makes only sense here when all of
the maxium of 32 PHYs on each one MII bus support disjoint sets of media,
which generally isn't the case (though it would be nice if we had a way
to let NIC drivers indicate that for the few card models where the PHY
configuration is known/fixed and IFM_IMASK actually makes sense).
- Add and use a miibus_print_child() for the bus_print_child method which
additionally prints the PHY number (which actually is the PHY address)
so one can figure out the media instance <-> PHY number mapping from the
PHY driver attach output. This is intented to be usefull in situations
where the addresses of the PHYs on the bus are known (f.e. of internal/
integrated PHYs) so one can feed the appropriate media instance number
to ifconfig(8) (with the upcoming change for ifconfig(8)).
This is more or less inspired by the NetBSD mii_print().
I missed. Since I did no rearrange any softcs, casting the result of
device_get_softc() to (struct ifnet **) and derefrencing it yeilds a
pointer to the ifp. This makes at least vr(4) nics work.
NetBSD got activated. NetBSD has an additional change in
their mii.c rev 1.26 which got missed with that merger:
: When probing for a PHY, look at the EXTSTAT bit in the BMSR, as well,
: not just the media mask. This prevents PHYs/TBIs that only support
: Gigabit media from slipping through the cracks.
With this GE only ones like from the SK-9844 are detected again.
PR: i386/63313, i386/71733, kern/73725
Tested by: matt baker <matt at sevenone dot com>, Jin Guojun <jin at george dot lbl dot gov>
Approved by: rwatson (mentor)
Obtained from: NetBSD mii.c rev 1.26
MFC after: 1 week
a more complete subsystem, and removes the knowlege of how things are
implemented from the drivers. Include locking around filter ops, so a
module like aio will know when not to be unloaded if there are outstanding
knotes using it's filter ops.
Currently, it uses the MTX_DUPOK even though it is not always safe to
aquire duplicate locks. Witness currently doesn't support the ability
to discover if a dup lock is ok (in some cases).
Reviewed by: green, rwatson (both earlier versions)
o Extend the if_data structure with an ifi_link_state field and
provide the corresponding defines for the valid states.
o The mii_linkchg() callback updates the ifi_link_state field
and calls rt_ifmsg() to notify listeners on the routing socket
in addition to the kqueue KNOTE.
o If vlans are configured on a physical interface notify and update
all vlan pseudo devices as well with the vlan_link_state() callback.
No objections by: sam, wpaul, ru, bms
Brucification by: bde
when this is needed. Work around bogus second PHY in the DFE-580 card
via a change in the if_ste.c driver.
Suggested by: jdp
Reviewed by: jdp
MFC after: 3 days
Rename mii_phy_auto_stop() mii_phy_down().
Introduce mii_down(), use it from nge. Do not indirect it to 19 identical
case's in 19 switchstatements like NetBSD did.
with an ifnet structure (so device_get_softc will get one).
If memory allocation fails in mii_phy_probe, don't just march ahead into
a panic- return ENOMEM.
MFC after: 1 week
device_add_child_ordered(). 'ivars' may now be set using the
device_set_ivars() function.
This makes it easier for us to change how arbitrary data structures are
associated with a device_t. Eventually we won't be modifying device_t
to add additional pointers for ivars, softc data etc.
Despite my best efforts I've probably forgotten something so let me know
if this breaks anything. I've been running with this change for months
and its been quite involved actually isolating all the changes from
the rest of the local changes in my tree.
Reviewed by: peter, dfr