module. With r203732 it became apparent that creating the sysctl nodes
twice causes at least a warning, however the whole code shouldn't be
present twice in the first place.
Discussed with: rmacklem
remove the NFS server version in order to reduce code duplication.
The shared version now uses a second parameter how, which is passed
on to m_get(9) and m_getcl(9) as the server used M_WAIT while the
client requires M_DONTWAIT, and replaces the the previously unused
parameter hsiz.
- Change nfs_realign() to use nfsm_aligned() so as with other NFS code
the alignment check isn't actually performed on platforms without
strict alignment requirements for performance reasons because as the
comment suggests unaligned data only occasionally occurs with TCP.
- Change fha_extract_info() to use nfs_realign() with M_DONTWAIT rather
than M_WAIT because it's called with the RPC sp_lock held.
Reviewed by: jhb, rmacklem
MFC after: 1 week
The D-cache flushing added here was to deal with I-cache
incoherency observed on ia64. However, the problem was
in the implementation of pmap_enter_object() for ia64:
it was missing I-cache coherency logic for prefaulted
pages. After this got added in rev 195625, testing showed
that no D-cache flushing was required.
The SIGILL that was observed on Book-E (see commit log
for rev 192323) ended up not being related to I-cache
incoherency, but was found to be caused by bad memory.
This discovery further undermined the need for D-cache
flushing in the NFS I/O code, triggering the reversal.
Approved by: re (kensmith)
possible future I-cache coherency operation can succeed. On ARM
for example the L1 cache can be (is) virtually mapped, which
means that any I/O that uses temporary mappings will not see the
I-cache made coherent. On ia64 a similar behaviour has been
observed. By flushing the D-cache, execution of binaries backed
by md(4) and/or NFS work reliably.
For Book-E (powerpc), execution over NFS exhibits SIGILL once in
a while as well, though cpu_flush_dcache() hasn't been implemented
yet.
Doing an explicit D-cache flush as part of the non-DMA based I/O
read operation eliminates the need to do it as part of the
I-cache coherency operation itself and as such avoids pessimizing
the DMA-based I/O read operations for which D-cache are already
flushed/invalidated. It also allows future optimizations whereby
the bcopy() followed by the D-cache flush can be integrated in a
single operation, which could be implemented using on-chips DMA
engines, by-passing the D-cache altogether.
Removed dead code that assumed that M_TRYWAIT can return NULL; it's not true
since the advent of MBUMA.
Reviewed by: arch
There are ongoing disputes as to whether we want to switch to directly using
UMA flags M_WAITOK/M_NOWAIT for mbuf(9) allocation.
- Fix nfsm_disct() so that after pulling up data, the remaining data
is aligned if necessary.
- Fix nfs_clnt_tcp_soupcall() to bcopy() the rpc length out of the
mbuf (instead of casting m_data to a uint32).
Submitted by: Pyun YongHyeon
Reviewed by: Mohan Srinivasan
socket callbacks or similar callers, from both the NFS client and the
server.
Instituted nfsm_dissect_nonblock(), nfsm_dissect_xx_nonblock(). And
nfsm_disct() now takes an extra M_TRYWAIT/M_DONTWAIT argument.
Submitted by: Mohan Srinivasan mohans at yahoo-inc dot com
must have been inadvertently changed to '>'. This broke nfsm_adv()
in the case where the advancement count is equal to the amount of
data remaining in the current mbuf. Instead of moving the current
position N bytes forward, nfs_adv() could end up moving it back to
N bytes from the start of the mbuf data.
This should fix the client-side readdirplus problems that have been
reported since September.
temporary storage. In the old NFS code it wasn't at all clear if
the value of `tl' was used across or after macro calls, but I'm
fairly confident that the convention was to keep its use local.
Each ex-macro function now uses a local version of this variable,
so all of the double-indirection goes away.
The only exception to the `local use' rule for `tl' is nfsm_clget(),
which is left unchanged by this commit.
Reviewed by: peter
next to equivalent m_len adjustments. Move the nfsm_subs.h macros
into groups depending on which phase they are used in, since that
affects the error recovery requirements. Collect some of the common error
checking into a single macro as preparation for unwinding some more.
Have nfs_rephead return a value instead of secretly modifying args.
Remove some unused function arguments that were being passed around.
Clarify nfsm_reply()'s error handling (I hope).
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.
Sorry john! (your next MFC will be a doosie!)
Reviewed by: peter@freebsd.org, dillon@freebsd.org
X-MFC after: ha ha ha ha
(this commit is just the first stage). Also add various GIANT_ macros to
formalize the removal of Giant, making it easy to test in a more piecemeal
fashion. These macros will allow us to test fine-grained locks to a degree
before removing Giant, and also after, and to remove Giant in a piecemeal
fashion via sysctl's on those subsystems which the authors believe can
operate without Giant.
vm_mtx does not recurse and is required for most low level
vm operations.
faults can not be taken without holding Giant.
Memory subsystems can now call the base page allocators safely.
Almost all atomic ops were removed as they are covered under the
vm mutex.
Alpha and ia64 now need to catch up to i386's trap handlers.
FFS and NFS have been tested, other filesystems will need minor
changes (grabbing the vm lock when twiddling page properties).
Reviewed (partially) by: jake, jhb
This is because calls with M_WAIT (now M_TRYWAIT) may not wait
forever when nothing is available for allocation, and may end up
returning NULL. Hopefully we now communicate more of the right thing
to developers and make it very clear that it's necessary to check whether
calls with M_(TRY)WAIT also resulted in a failed allocation.
M_TRYWAIT basically means "try harder, block if necessary, but don't
necessarily wait forever." The time spent blocking is tunable with
the kern.ipc.mbuf_wait sysctl.
M_WAIT is now deprecated but still defined for the next little while.
* Fix a typo in a comment in mbuf.h
* Fix some code that was actually passing the mbuf subsystem's M_WAIT to
malloc(). Made it pass M_WAITOK instead. If we were ever to redefine the
value of the M_WAIT flag, this could have became a big problem.
mail:
The problem seems to originate with NFS's postop_attr
information that is returned with a read or write RPC.
Within a vm_fault context, the code cannot deal with
vnode_pager_setsize() shrinking a vnode.
The workaround in the patch below stops the nfsm_postop_attr()
macro from ever shrinking a vnode. If the new size in the
postop_attr information is smaller, then it just sets the
nfsnode n_attrstamp to 0 to stop the wrong size getting
used in the future. This change only affects postop_attr
attributes; the nfsm_loadattr() macro works as normal.
The change is implemented by adding a new argument to
nfs_loadattrcache() called 'dontshrink'. When this is
non-zero, nfs_loadattrcache() will never reduce the
vnode/nfsnode size; instead it zeros n_attrstamp.
There remain other was processes can get stuck in vmopar.
Submitted by: Ian Dowse <iedowse@maths.tcd.ie>
Reviewed by: dillon
Tested by: Vadim Belman <voland@lflat.org>
with the new snapshot code.
Update addaliasu to correctly implement the semantics of the old
checkalias function. When a device vnode first comes into existence,
check to see if an anonymous vnode for the same device was created
at boot time by bdevvp(). If so, adopt the bdevvp vnode rather than
creating a new vnode for the device. This corrects a problem which
caused the kernel to panic when taking a snapshot of the root
filesystem.
Change the calling convention of vn_write_suspend_wait() to be the
same as vn_start_write().
Split out softdep_flushworklist() from softdep_flushfiles() so that
it can be used to clear the work queue when suspending filesystem
operations.
Access to buffers becomes recursive so that snapshots can recursively
traverse their indirect blocks using ffs_copyonwrite() when checking
for the need for copy on write when flushing one of their own indirect
blocks. This eliminates a deadlock between the syncer daemon and a
process taking a snapshot.
Ensure that softdep_process_worklist() can never block because of a
snapshot being taken. This eliminates a problem with buffer starvation.
Cleanup change in ffs_sync() which did not synchronously wait when
MNT_WAIT was specified. The result was an unclean filesystem panic
when doing forcible unmount with heavy filesystem I/O in progress.
Return a zero'ed block when reading a block that was not in use at
the time that a snapshot was taken. Normally, these blocks should
never be read. However, the readahead code will occationally read
them which can cause unexpected behavior.
Clean up the debugging code that ensures that no blocks be written
on a filesystem while it is suspended. Snapshots must explicitly
label the blocks that they are writing during the suspension so that
they do not cause a `write on suspended filesystem' panic.
Reorganize ffs_copyonwrite() to eliminate a deadlock and also to
prevent a race condition that would permit the same block to be
copied twice. This change eliminates an unexpected soft updates
inconsistency in fsck caused by the double allocation.
Use bqrelse rather than brelse for buffers that will be needed
soon again by the snapshot code. This improves snapshot performance.
<sys/bio.h>.
<sys/bio.h> is now a prerequisite for <sys/buf.h> but it shall
not be made a nested include according to bdes teachings on the
subject of nested includes.
Diskdrivers and similar stuff below specfs::strategy() should no
longer need to include <sys/buf.> unless they need caching of data.
Still a few bogus uses of struct buf to track down.
Repocopy by: peter
there is nothing we can do about it. In fact, after further review
there simply are not very many instances of the two structures NFS
checks for 'bloat' so I've decided to simply rip the checks out entirely.
Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
NFSSERVER defined, useful for userland fileservers that want to
use a filehandle type interface to the filesystem.
Submitted by: Assar Westerlund assar@stacken.kth.se
PR: kern/15452
NFS packets, mainly initializing structure pointers to NULL which
are conditionally freed prior to return.
PR: kern/15249
Submitted by: Ian Dowse <iedowse@maths.tcd.ie>
blocks of zeros could wind up in a file written to over NFS by a client.
The problem only occurs a few times per several gigabytes of data. This
problem turned out to be bug #3 below.
bug #1:
B_CLUSTEROK must be cleared when an NFS buffer is reverted from
stage 2 (ready for commit rpc) to stage 1 (ready for write).
Reversions can occur when a dirty NFS buffer is redirtied with new
data.
Otherwise the VFS/BIO system may end up thinking that a stage 1
NFS buffer is clusterable. Stage 1 NFS buffers are not clusterable.
bug #2:
B_CLUSTEROK was inappropriately set for a 'short' NFS buffer (short
buffers only occur near the EOF of the file). Change to only set
when the buffer is a full biosize (usually 8K). This bug has no
effect but should be fixed in -current anyway. It need not be
backported.
bug #3:
B_NEEDCOMMIT was inappropriately set in nfs_flush() (which is
typically only called by the update daemon). nfs_flush()
does a multi-pass loop but due to the lack of vnode locking it
is possible for new buffers to be added to the dirtyblkhd list
while a flush operation is going on. This may result in nfs_flush()
setting B_NEEDCOMMIT on a buffer which has *NOT* yet gone through its
stage 1 write, causing only the commit rpc to be made and thus
causing the contents of the buffer to be thrown away (never sent to
the server).
The patch also contains some cleanup, which only applies to the commit
into -current.
Reviewed by: dg, julian
Originally Reported by: Dan Nelson <dnelson@emsphone.com>
Make the alias list a SLIST.
Drop the "fast recycling" optimization of vnodes (including
the returning of a prexisting but stale vnode from checkalias).
It doesn't buy us anything now that we don't hardlimit
vnodes anymore.
Rename checkalias2() and checkalias() to addalias() and
addaliasu() - which takes dev_t and udev_t arg respectively.
Make the revoke syscalls use vcount() instead of VALIASED.
Remove VALIASED flag, we don't need it now and it is faster
to traverse the much shorter lists than to maintain the
flag.
vfs_mountedon() can check the dev_t directly, all the vnodes
point to the same one.
Print the devicename in specfs/vprint().
Remove a couple of stale LFS vnode flags.
Remove unimplemented/unused LK_DRAINED;
lockmgr locks. This commit should be functionally equivalent to the old
semantics. That is, all buffer locking is done with LK_EXCLUSIVE
requests. Changes to take advantage of LK_SHARED and LK_RECURSIVE will
be done in future commits.