- Wrong integer type was specified.
- Wrong or missing "access" specifier. The "access" specifier
sometimes included the SYSCTL type, which it should not, except for
procedural SYSCTL nodes.
- Logical OR where binary OR was expected.
- Properly assert the "access" argument passed to all SYSCTL macros,
using the CTASSERT macro. This applies to both static- and dynamically
created SYSCTLs.
- Properly assert the the data type for both static and dynamic
SYSCTLs. In the case of static SYSCTLs we only assert that the data
pointed to by the SYSCTL data pointer has the correct size, hence
there is no easy way to assert types in the C language outside a
C-function.
- Rewrote some code which doesn't pass a constant "access" specifier
when creating dynamic SYSCTL nodes, which is now a requirement.
- Updated "EXAMPLES" section in SYSCTL manual page.
MFC after: 3 days
Sponsored by: Mellanox Technologies
I've decided that for 11n rates it's best to start (very) low and work
our way up.
So, from now on, the initial rate for AMRR 11n is MCS4.
It doesn't try MCS12 or MCS20 - at low signal strengths those don't
work very well at all.
AMRR will step the rate control up over time if things work out better.
Tested:
* Intel 5100
* Intel 5300 (using local diffs to test out 3x3 stream support)
The original commit was supposed to stop the ability to do raw frame
injection in monitor mode to arbitrary channels (whether supported
by regulatory or not) however it doesn't seem to have been followed
by any useful way of doing it.
Apparently AHDEMO is supposed to be that way, but it seems to require
too much fiddly things (disable scanning, set a garbage SSID, etc)
for it to actually be useful for spoofing things.
So for now let's just disable it and instead look to filter transmit
in the output path if the channel isn't allowed by regulatory.
That way monitor RX works fine but TX will be blocked.
I don't plan on MFC'ing this to -10 until the regulatory enforcement
bits are written.
request during SLEEP results in a hang.
Whilst I'm here, add in some disabled code that will transition to RUN
if there's multicast traffic. It's not needed for Atheros hardware but
it may be for other hardware.
Tested:
* AR5416, STA mode (powersave)
* AR5212, STA mode (powersave)
SLEEP rather than RUN.
Without this things like 'ifconfig wlan0 list sta' don't work when the
NIC is power save.
Tested:
* AR5212, STA mode (with powersave)
* AR5416, STA mode (with powersave)
This transitions the VAP in and out of SLEEP state based on:
* whether there's been an active transmission in the last (hardcoded) 500ms;
* whether the TIM from the AP indicates there is data available.
It uses the beacon reception to trigger the active traffic check.
This way there's no further timer running to wake up the CPU
from its own sleep states.
Right now the VAP isn't woken up for multicast traffic - mostly because
the only NIC I plan on doing this for right will auto wakeup and stay
awake for multicast traffic indicated in the TIM. So I don't have
to manually keep the hardware awake.
This doesn't do anything if the NIC doesn't advertise it implements
the new SWSLEEP capability AND if the VAP doesn't have powersave
enabled.
It also doesn't do much with ath(4) as it doesn't currently implement
the SLEEP state.
Tested:
* AR5416, STA mode (with local ath(4) changes)
Frames transmitted during SLEEP state should be queued in the
power save queue before waking the unit up. Otherwise DHCP
requests and such will be dropped if the NIC is asleep - the
NIC will wake up but not transmit the frame.
IPX was a network transport protocol in Novell's NetWare network operating
system from late 80s and then 90s. The NetWare itself switched to TCP/IP
as default transport in 1998. Later, in this century the Novell Open
Enterprise Server became successor of Novell NetWare. The last release
that claimed to still support IPX was OES 2 in 2007. Routing equipment
vendors (e.g. Cisco) discontinued support for IPX in 2011.
Thus, IPX won't be supported in FreeBSD 11.0-RELEASE.
The origin of WEP comes from IEEE Std 802.11-1997 where it defines
whether the frame body of MAC frame has been encrypted using WEP
algorithm or not.
IEEE Std. 802.11-2007 changes WEP to Protected Frame, indicates
whether the frame is protected by a cryptographic encapsulation
algorithm.
Reviewed by: adrian, rpaulo
decides to do nothing.
If this isn't done, then a scan request whilst a scan occurs in an active
channel set or a completed channel set will hang.
Tested:
* Intel 5100, STA mode
There were two bugs:
* If the initial lowest rate didn't go through the loop at least once,
the AMRR rate index would be the highest rate in the table
(eg the rix mapping to MCS15) but rate would stay at the default
value, namely 0.
This meant that the initial rate selection would be MCS15 _but_ the
node ni_txrate value would be MCS0.
* If the node is 11n, then break out of the loop correctly. Beforehand,
my initial 11n AMRR commit would immediately exit out as it would
fail the 11n check, then it would always fall through to the non-11n
rate which would then see if it was < 36mbit (ie, "72"), which would
always match. Hence, it'd always return MCS15.
Tested:
* Intel Centrino 2230 STA (local changes), STA mode
* Intel Wifi 5100, STA
For now, the AMRR code only knows about _either_ MCS or non-MCS rates.
It doesn't know how to downgrade (ie, doing 11b CCK rates if MCS0 isn't
reliable.)
PR: kern/183428
to this event, adding if_var.h to files that do need it. Also, include
all includes that now are included due to implicit pollution via if_var.h
Sponsored by: Netflix
Sponsored by: Nginx, Inc.
from a management frame transmission.
This bug is a bit loopy, so here goes.
The underlying cause is pretty easy to understand - the node isn't
referenced before passing into the callout, so if the node is deleted
before the callout fires, it'll dereference free'd memory.
The code path however is slightly more convoluted.
The functions _say_ mgt_tx - ie management transmit - which is partially
true. Yes, that callback is attached to the mbuf for some management
frames. However, it's only for frames relating to scanning and
authentication attempts. It helpfully drives the VAP state back to
"SCAN" if the transmission fails _OR_ (as I subsequently found out!)
if the transmission succeeds but the state machine doesn't make progress
towards being authenticated and active.
Now, the code itself isn't terribly clear about this.
It _looks_ like it's just handling the transmit failure case.
However, when you look at what goes on in the transmit success case, it's
moving the VAP state back to SCAN if it hasn't changed state since
the time the callback was scheduled. Ie, if it's in ASSOC or AUTH still,
it'll go back to SCAN. But if it has transitioned to the RUN state,
the comparison will fail and it'll not transition things back to the
SCAN state.
So, to fix this, I decided to leave everything the way it is and merely
fix the locking and remove the node reference.
The _better_ fix would be to turn this callout into a "assoc/auth request"
timeout callback and make the callout locked, thus eliminating all races.
However, until all the drivers have been fixed so that transmit completions
occur outside of any locking that's going on, it's going to be impossible
to do this without introducing LORs. So, I leave some of the evilness
in there.
Tested:
* AR5212, ath(4), STA mode
* 5100 and 4965 wifi, iwn(4), STA mode
I changed it to use if_transmit a while ago but apparently with monitor
mode the if_transmit method is overridden.
This is (mostly) a workaround until a more permanent solution can be
found.
Submitted by: Patrick Kelsey <kelsey@ieee.org>
Approved by: re@ (gjb)
The aim of this function is to eventually be the completion entry point
for all 802.11 encapsulated mbufs. All the wifi drivers end up doing
what is in this function so it's an easy win to turn it into a net80211
method and abstract out this code.
Ideally the drivers will all eventually be modified to queue up completed
mbufs and call this function with all the driver locks not held.
This will allow for some much more interesting software queue handling
in the future (like net80211 based A-MSDU, fast-frames, A-MPDU aggregation
and retransmission.)
Tested:
* ath(4), iwn(4)
together.
Add M_FLAG_PRINTF for use with printf(9) %b indentifier.
Use the generic mbuf flags print names in the net80211 code and adjust
the protocol specific bits for their new positions.
Change SCTP M_PROTO mapping from 5 to 1 to fit within the 16bit field
they use internally to store some additional information.
Discussed with: trociny, glebius
M_LASTFRAG flags to protocol specific flags.
Remove the now unused M_FRAG, M_FIRSTFRAG and M_LASTFRAG mbuf flags.
Discussed with: trociny, glebius, adrian
upper layer(s).
This eliminates the if_snd queue from net80211. Yay!
This unfortunately has a few side effects:
* It breaks ALTQ to net80211 for now - sorry everyone, but fixing
parallelism and eliminating the if_snd queue is more important
than supporting this broken traffic scheduling model. :-)
* There's no VAP and IC flush methods just yet - I think I'll add
some NULL methods for now just as placeholders.
* It reduces throughput a little because now net80211 will drop packets
rather than buffer them if the driver doesn't do its own buffering.
This will be addressed in the future as I implement per-node software
queues.
Tested:
* ath(4) and iwn(4) in STA operation
the normal and the mesh transmit paths can use.
The API is a bit horrible because it both consumes the mbuf and frees
the node reference regardless of whether it succeeds or not.
It's a hold-over from how the code behaves; it'd be nice to have it
not free the node reference / mbuf if TX fails and let the caller
decide what to do.
* Add 802.11n 2ghz and 5ghz tables, including legacy rates and up to
MCS23 rates (3x3.)
* Populate the rate code -> rate index lookup table with MCS _and_
normal rates, but _not_ the basic rate flag. Since the basic rate flag
is the same as the MCS flag, we can only use one.
* Introduce some accessor inlines that do PLCP and rate table lookup/access
and enforce that it doesn't set the basic rate bit. They're not
designed for MCS rates, so it will panic.
* Start converting drivers that use the rate table stuff to use the
accessor inlines and strip the basic flag.
* Teach AMRR about basic 11n - it's still as crap for MCS as it is
being used by iwn, so it's not a step _backwardS_.
* Convert iwn over to accept 11n MCS rates rather than 'translate' legacy
to MCS rates. It doesn't use a lookup table any longer; instead it's a
function which takes the current node (for HT parameters) and the
rate code, and returns the hardware PLCP code to use.
Tested:
* ath - it's a no-op, and it works that way
* iwn - both 11n and non-11n
The "find node" function call will increase the node reference anyway;
so there's no reason to hold the node table lock during the MLME change.
The only reason I could think of is to stop overlapping mlme ioctls
from causing issues, but this should be fixed a different way.
This fixes a whole class of LORs that creep up when nodes are being
timed out or removed by hostapd.
Tested:
* AR5416, hostap, with nodes coming and going. No LORs or stability
issues were observed.