control over the result of buildworld and installworld; this especially
helps packaging systems such as nanobsd
Reviewed by: various (posted to arch)
MFC after: 1 month
(all types) used per socket buffer.
Add support to netstat to print out all of the socket buffer
statistics.
Update the netstat manual page to describe the new -x flag
which gives the extended output.
Reviewed by: rwatson, julian
This particular implementation is designed to be fully backwards compatible
and to be MFC-able to 7.x (and 6.x)
Currently the only protocol that can make use of the multiple tables is IPv4
Similar functionality exists in OpenBSD and Linux.
From my notes:
-----
One thing where FreeBSD has been falling behind, and which by chance I
have some time to work on is "policy based routing", which allows
different
packet streams to be routed by more than just the destination address.
Constraints:
------------
I want to make some form of this available in the 6.x tree
(and by extension 7.x) , but FreeBSD in general needs it so I might as
well do it in -current and back port the portions I need.
One of the ways that this can be done is to have the ability to
instantiate multiple kernel routing tables (which I will now
refer to as "Forwarding Information Bases" or "FIBs" for political
correctness reasons). Which FIB a particular packet uses to make
the next hop decision can be decided by a number of mechanisms.
The policies these mechanisms implement are the "Policies" referred
to in "Policy based routing".
One of the constraints I have if I try to back port this work to
6.x is that it must be implemented as a EXTENSION to the existing
ABIs in 6.x so that third party applications do not need to be
recompiled in timespan of the branch.
This first version will not have some of the bells and whistles that
will come with later versions. It will, for example, be limited to 16
tables in the first commit.
Implementation method, Compatible version. (part 1)
-------------------------------
For this reason I have implemented a "sufficient subset" of a
multiple routing table solution in Perforce, and back-ported it
to 6.x. (also in Perforce though not always caught up with what I
have done in -current/P4). The subset allows a number of FIBs
to be defined at compile time (8 is sufficient for my purposes in 6.x)
and implements the changes needed to allow IPV4 to use them. I have not
done the changes for ipv6 simply because I do not need it, and I do not
have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it.
Other protocol families are left untouched and should there be
users with proprietary protocol families, they should continue to work
and be oblivious to the existence of the extra FIBs.
To understand how this is done, one must know that the current FIB
code starts everything off with a single dimensional array of
pointers to FIB head structures (One per protocol family), each of
which in turn points to the trie of routes available to that family.
The basic change in the ABI compatible version of the change is to
extent that array to be a 2 dimensional array, so that
instead of protocol family X looking at rt_tables[X] for the
table it needs, it looks at rt_tables[Y][X] when for all
protocol families except ipv4 Y is always 0.
Code that is unaware of the change always just sees the first row
of the table, which of course looks just like the one dimensional
array that existed before.
The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign()
are all maintained, but refer only to the first row of the array,
so that existing callers in proprietary protocols can continue to
do the "right thing".
Some new entry points are added, for the exclusive use of ipv4 code
called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(),
which have an extra argument which refers the code to the correct row.
In addition, there are some new entry points (currently called
rtalloc_fib() and friends) that check the Address family being
looked up and call either rtalloc() (and friends) if the protocol
is not IPv4 forcing the action to row 0 or to the appropriate row
if it IS IPv4 (and that info is available). These are for calling
from code that is not specific to any particular protocol. The way
these are implemented would change in the non ABI preserving code
to be added later.
One feature of the first version of the code is that for ipv4,
the interface routes show up automatically on all the FIBs, so
that no matter what FIB you select you always have the basic
direct attached hosts available to you. (rtinit() does this
automatically).
You CAN delete an interface route from one FIB should you want
to but by default it's there. ARP information is also available
in each FIB. It's assumed that the same machine would have the
same MAC address, regardless of which FIB you are using to get
to it.
This brings us as to how the correct FIB is selected for an outgoing
IPV4 packet.
Firstly, all packets have a FIB associated with them. if nothing
has been done to change it, it will be FIB 0. The FIB is changed
in the following ways.
Packets fall into one of a number of classes.
1/ locally generated packets, coming from a socket/PCB.
Such packets select a FIB from a number associated with the
socket/PCB. This in turn is inherited from the process,
but can be changed by a socket option. The process in turn
inherits it on fork. I have written a utility call setfib
that acts a bit like nice..
setfib -3 ping target.example.com # will use fib 3 for ping.
It is an obvious extension to make it a property of a jail
but I have not done so. It can be achieved by combining the setfib and
jail commands.
2/ packets received on an interface for forwarding.
By default these packets would use table 0,
(or possibly a number settable in a sysctl(not yet)).
but prior to routing the firewall can inspect them (see below).
(possibly in the future you may be able to associate a FIB
with packets received on an interface.. An ifconfig arg, but not yet.)
3/ packets inspected by a packet classifier, which can arbitrarily
associate a fib with it on a packet by packet basis.
A fib assigned to a packet by a packet classifier
(such as ipfw) would over-ride a fib associated by
a more default source. (such as cases 1 or 2).
4/ a tcp listen socket associated with a fib will generate
accept sockets that are associated with that same fib.
5/ Packets generated in response to some other packet (e.g. reset
or icmp packets). These should use the FIB associated with the
packet being reponded to.
6/ Packets generated during encapsulation.
gif, tun and other tunnel interfaces will encapsulate using the FIB
that was in effect withthe proces that set up the tunnel.
thus setfib 1 ifconfig gif0 [tunnel instructions]
will set the fib for the tunnel to use to be fib 1.
Routing messages would be associated with their
process, and thus select one FIB or another.
messages from the kernel would be associated with the fib they
refer to and would only be received by a routing socket associated
with that fib. (not yet implemented)
In addition Netstat has been edited to be able to cope with the
fact that the array is now 2 dimensional. (It looks in system
memory using libkvm (!)). Old versions of netstat see only the first FIB.
In addition two sysctls are added to give:
a) the number of FIBs compiled in (active)
b) the default FIB of the calling process.
Early testing experience:
-------------------------
Basically our (IronPort's) appliance does this functionality already
using ipfw fwd but that method has some drawbacks.
For example,
It can't fully simulate a routing table because it can't influence the
socket's choice of local address when a connect() is done.
Testing during the generating of these changes has been
remarkably smooth so far. Multiple tables have co-existed
with no notable side effects, and packets have been routes
accordingly.
ipfw has grown 2 new keywords:
setfib N ip from anay to any
count ip from any to any fib N
In pf there seems to be a requirement to be able to give symbolic names to the
fibs but I do not have that capacity. I am not sure if it is required.
SCTP has interestingly enough built in support for this, called VRFs
in Cisco parlance. it will be interesting to see how that handles it
when it suddenly actually does something.
Where to next:
--------------------
After committing the ABI compatible version and MFCing it, I'd
like to proceed in a forward direction in -current. this will
result in some roto-tilling in the routing code.
Firstly: the current code's idea of having a separate tree per
protocol family, all of the same format, and pointed to by the
1 dimensional array is a bit silly. Especially when one considers that
there is code that makes assumptions about every protocol having the
same internal structures there. Some protocols don't WANT that
sort of structure. (for example the whole idea of a netmask is foreign
to appletalk). This needs to be made opaque to the external code.
My suggested first change is to add routing method pointers to the
'domain' structure, along with information pointing the data.
instead of having an array of pointers to uniform structures,
there would be an array pointing to the 'domain' structures
for each protocol address domain (protocol family),
and the methods this reached would be called. The methods would have
an argument that gives FIB number, but the protocol would be free
to ignore it.
When the ABI can be changed it raises the possibilty of the
addition of a fib entry into the "struct route". Currently,
the structure contains the sockaddr of the desination, and the resulting
fib entry. To make this work fully, one could add a fib number
so that given an address and a fib, one can find the third element, the
fib entry.
Interaction with the ARP layer/ LL layer would need to be
revisited as well. Qing Li has been working on this already.
This work was sponsored by Ironport Systems/Cisco
PR:
Reviewed by: several including rwatson, bz and mlair (parts each)
Approved by:
Obtained from: Ironport systems/Cisco
MFC after:
Security:
under it while running. Note that this is still not perfect:
- Try to do something intelligent if kvm_read() fails to read a routing
table structure such as an rtentry, radix_node, or ifnet.
- Don't follow left and right node pointers in radix_nodes unless
RNF_ACTIVE is set in rn_flags. This avoids walking through freed
radix_nodes.
MFC after: 1 week
doesn't use the default CFLAGS which contain -fno-strict-aliasing.
Until the code is cleaned up, just add -fno-strict-aliasing to the
CFLAGS of these for the tinderboxes' sake, allowing the rest of the
tree to have -Werror enabled again.
<netinet/tcp_fsm.h> is included into any compilation unit that needs
tcpstates[]. Also remove incorrect extern declarations and TCPDEBUG
conditionals. This allows kernels both with and without TCPDEBUG to
build, and unbreaks the tinderbox.
Approved by: re (rwatson)
general, when support was added to netstat for fetching data using sysctl,
no provision was left for fetching equivalent data from a core dump, and
in fact, netstat would _always_ fetch data from the live kernel using
sysctl even when -M was specified resulting in the user believing they
were getting data from coredumps when they actually weren't. Some specific
changes:
- Add a global 'live' variable that is true if netstat is running against
the live kernel and false if -M has been specified.
- Stop abusing the sysctl flag in the protocol tables to hold the protocol
number. Instead, the protocol is now its own field in the tables, and
it is passed as a separate parameter to the PCB and stat routines rather
than overloading the KVM offset parameter.
- Don't run PCB or stats functions who don't have a namelist offset if we
are being run against a crash dump (!live).
- For the inet and unix PCB routines, we generate the same buffer from KVM
that the sysctl usually generates complete with the header and trailer.
- Don't run bpf stats for !live (before it would just silently always run
live).
- kread() no longer trashes memory when opening the buffer if there is an
error on open and the passed in buffer is smaller than _POSIX2_LINE_MAX.
- The multicast routing code doesn't fallback to kvm on live kernels if
the sysctl fails. Keeping this made the code rather hairy, and netstat
is already tied to the kernel ABI anyway (even when using sysctl's since
things like xinpcb contain an inpcb) so any kernels this is run against
that have the multicast routing stuff should have the sysctls.
- Don't try to dig around in the kernel linker in the netgraph PCB routine
for core dumps.
Other notes:
- sctp's PCB routine only works on live kernels, it looked rather
complicated to generate all the same stuff via KVM. Someone can always
add it later if desired though.
- Fix the ipsec removal bug where N_xxx for IPSEC stats weren't renumbered.
- Use sysctlbyname() everywhere rather than hardcoded mib values.
MFC after: 1 week
Approved by: re (rwatson)
o shorten explainations which are over 80 columns in console.
o group rows
o clean up and change explanations a little bit.
Obtained from: weongyo.jeong@gmail.com
and protocol-independent host mode multicast. The code is written to
accomodate IPv6, IGMPv3 and MLDv2 with only a little additional work.
This change only pertains to FreeBSD's use as a multicast end-station and
does not concern multicast routing; for an IGMPv3/MLDv2 router
implementation, consider the XORP project.
The work is based on Wilbert de Graaf's IGMPv3 code drop for FreeBSD 4.6,
which is available at: http://www.kloosterhof.com/wilbert/igmpv3.html
Summary
* IPv4 multicast socket processing is now moved out of ip_output.c
into a new module, in_mcast.c.
* The in_mcast.c module implements the IPv4 legacy any-source API in
terms of the protocol-independent source-specific API.
* Source filters are lazy allocated as the common case does not use them.
They are part of per inpcb state and are covered by the inpcb lock.
* struct ip_mreqn is now supported to allow applications to specify
multicast joins by interface index in the legacy IPv4 any-source API.
* In UDP, an incoming multicast datagram only requires that the source
port matches the 4-tuple if the socket was already bound by source port.
An unbound socket SHOULD be able to receive multicasts sent from an
ephemeral source port.
* The UDP socket multicast filter mode defaults to exclusive, that is,
sources present in the per-socket list will be blocked from delivery.
* The RFC 3678 userland functions have been added to libc: setsourcefilter,
getsourcefilter, setipv4sourcefilter, getipv4sourcefilter.
* Definitions for IGMPv3 are merged but not yet used.
* struct sockaddr_storage is now referenced from <netinet/in.h>. It
is therefore defined there if not already declared in the same way
as for the C99 types.
* The RFC 1724 hack (specify 0.0.0.0/8 addresses to IP_MULTICAST_IF
which are then interpreted as interface indexes) is now deprecated.
* A patch for the Rhyolite.com routed in the FreeBSD base system
is available in the -net archives. This only affects individuals
running RIPv1 or RIPv2 via point-to-point and/or unnumbered interfaces.
* Make IPv6 detach path similar to IPv4's in code flow; functionally same.
* Bump __FreeBSD_version to 700048; see UPDATING.
This work was financially supported by another FreeBSD committer.
Obtained from: p4://bms_netdev
Submitted by: Wilbert de Graaf (original work)
Reviewed by: rwatson (locking), silence from fenner,
net@ (but with encouragement)
o Print "unknown ICMP" instead of "(null)" if we don't have a description for a icmp type.
Based on code
Submitted by: Christoph Weber-Fahr
PR: misc/112126
MFC after: 2 weeks
in FreeBSD, and originated from INRIA IPv6.
Stub out netstat reference to addr2ascii() I mistakenly introduced.
Update misleading man page sections.
Merge NetBSD's getnameinfo() AF_LINK extensions for a portable way to
print link-layer addresses given a sockaddr_dl(), minus the IEEE 1394
bits which don't map directly to our code.
Obtained from: NetBSD (getnameinfo.c)
Discussed on: current (March 2006)
sidewaysintpr(). This increases the accuracy of the per-interval
counts when they are interpreted as rates. Repeated calls to alarm(n)
give an average interval that is about 2 ticks larger than n and has
a large variance. Periodic itimers normally get the average almost
right but have similarly large variance (due to scheduling delays).
Statistics utilities should use clock_gettime() to determine the
actual interval, but it is still useful to maximize the accuracy of
the interval, especially for cases like netstat -w where counts are
displayed so the program cannot hide the inaccuracy in a rate
conversion.
potential issues where the peer does not close, potentially leaving
thousands of connections in FIN_WAIT_2. This is controlled by a new sysctl
fast_finwait2_recycle, which is disabled by default.
Reviewed by: gnn, silby.
- BIOCGDIRECTION and BIOCSDIRECTION get or set the setting determining
whether incoming, outgoing, or all packets on the interface should be
returned by BPF. Set to BPF_D_IN to see only incoming packets on the
interface. Set to BPF_D_INOUT to see packets originating locally and
remotely on the interface. Set to BPF_D_OUT to see only outgoing
packets on the interface. This setting is initialized to BPF_D_INOUT
by default. BIOCGSEESENT and BIOCSSEESENT are obsoleted by these but
kept for backward compatibility.
- BIOCFEEDBACK sets packet feedback mode. This allows injected packets
to be fed back as input to the interface when output via the interface is
successful. When BPF_D_INOUT direction is set, injected outgoing packet
is not returned by BPF to avoid duplication. This flag is initialized to
zero by default.
Note that libpcap has been modified to support BPF_D_OUT direction for
pcap_setdirection(3) and PCAP_D_OUT direction is functional now.
Reviewed by: rwatson
loaded into the system.
Change wording of comments to reflect the fact we should unconditionally
use KVM if the -M option is used to specify a core file.
Add comments to document the fact that IPv6 multicast forwarding
information display still relies on KVM for gathering information.