- struct plimit includes a mutex to protect a reference count. The plimit
structure is treated similarly to struct ucred in that is is always copy
on write, so having a reference to a structure is sufficient to read from
it without needing a further lock.
- The proc lock protects the p_limit pointer and must be held while reading
limits from a process to keep the limit structure from changing out from
under you while reading from it.
- Various global limits that are ints are not protected by a lock since
int writes are atomic on all the archs we support and thus a lock
wouldn't buy us anything.
- All accesses to individual resource limits from a process are abstracted
behind a simple lim_rlimit(), lim_max(), and lim_cur() API that return
either an rlimit, or the current or max individual limit of the specified
resource from a process.
- dosetrlimit() was renamed to kern_setrlimit() to match existing style of
other similar syscall helper functions.
- The alpha OSF/1 compat layer no longer calls getrlimit() and setrlimit()
(it didn't used the stackgap when it should have) but uses lim_rlimit()
and kern_setrlimit() instead.
- The svr4 compat no longer uses the stackgap for resource limits calls,
but uses lim_rlimit() and kern_setrlimit() instead.
- The ibcs2 compat no longer uses the stackgap for resource limits. It
also no longer uses the stackgap for accessing sysctl's for the
ibcs2_sysconf() syscall but uses kernel_sysctl() instead. As a result,
ibcs2_sysconf() no longer needs Giant.
- The p_rlimit macro no longer exists.
Submitted by: mtm (mostly, I only did a few cleanups and catchups)
Tested on: i386
Compiled on: alpha, amd64
in OpenBSD by Niels Provos. The patch introduces a bitmap of allocated
file descriptors which is used to locate available descriptors when a new
one is needed. It also moves the task of growing the file descriptor table
out of fdalloc(), reducing complexity in both fdalloc() and do_dup().
Debts of gratitude are owed to tjr@ (who provided the original patch on
which this work is based), grog@ (for the gdb(4) man page) and rwatson@
(for assistance with pxeboot(8)).
fd_cmask field in the file descriptor structure for the first process
indirectly from CMASK, and when an fd structure is initialized before
being filled in, and instead just use CMASK. This appears to be an
artifact left over from the initial integration of quotas into BSD.
Suggested by: peter
systems where the data/stack/etc limits are too big for a 32 bit process.
Move the 5 or so identical instances of ELF_RTLD_ADDR() into imgact_elf.c.
Supply an ia32_fixlimits function. Export the clip/default values to
sysctl under the compat.ia32 heirarchy.
Have mmap(0, ...) respect the current p->p_limits[RLIMIT_DATA].rlim_max
value rather than the sysctl tweakable variable. This allows mmap to
place mappings at sensible locations when limits have been reduced.
Have the imgact_elf.c ld-elf.so.1 placement algorithm use the same
method as mmap(0, ...) now does.
Note that we cannot remove all references to the sysctl tweakable
maxdsiz etc variables because /etc/login.conf specifies a datasize
of 'unlimited'. And that causes exec etc to fail since it can no
longer find space to mmap things.
- Move struct sigacts out of the u-area and malloc() it using the
M_SUBPROC malloc bucket.
- Add a small sigacts_*() API for managing sigacts structures: sigacts_alloc(),
sigacts_free(), sigacts_copy(), sigacts_share(), and sigacts_shared().
- Remove the p_sigignore, p_sigacts, and p_sigcatch macros.
- Add a mutex to struct sigacts that protects all the members of the struct.
- Add sigacts locking.
- Remove Giant from nosys(), kill(), killpg(), and kern_sigaction() now
that sigacts is locked.
- Several in-kernel functions such as psignal(), tdsignal(), trapsignal(),
and thread_stopped() are now MP safe.
Reviewed by: arch@
Approved by: re (rwatson)
uptime. Where necessary, convert it back to Unix time by adding boottime
to it. This fixes a potential problem in the accounting code, which would
compute the elapsed time incorrectly if the Unix time was stepped during
the lifetime of the process.
sched_lock around accesses to p_stats->p_timer[] to avoid a potential
race with hardclock. getitimer(), setitimer() and the realitexpire()
callout are now Giant-free.
I'm not convinced there is anything major wrong with the patch but
them's the rules..
I am using my "David's mentor" hat to revert this as he's
offline for a while.
data structure called kse_upcall to manage UPCALL. All KSE binding
and loaning code are gone.
A thread owns an upcall can collect all completed syscall contexts in
its ksegrp, turn itself into UPCALL mode, and takes those contexts back
to userland. Any thread without upcall structure has to export their
contexts and exit at user boundary.
Any thread running in user mode owns an upcall structure, when it enters
kernel, if the kse mailbox's current thread pointer is not NULL, then
when the thread is blocked in kernel, a new UPCALL thread is created and
the upcall structure is transfered to the new UPCALL thread. if the kse
mailbox's current thread pointer is NULL, then when a thread is blocked
in kernel, no UPCALL thread will be created.
Each upcall always has an owner thread. Userland can remove an upcall by
calling kse_exit, when all upcalls in ksegrp are removed, the group is
atomatically shutdown. An upcall owner thread also exits when process is
in exiting state. when an owner thread exits, the upcall it owns is also
removed.
KSE is a pure scheduler entity. it represents a virtual cpu. when a thread
is running, it always has a KSE associated with it. scheduler is free to
assign a KSE to thread according thread priority, if thread priority is changed,
KSE can be moved from one thread to another.
When a ksegrp is created, there is always N KSEs created in the group. the
N is the number of physical cpu in the current system. This makes it is
possible that even an userland UTS is single CPU safe, threads in kernel still
can execute on different cpu in parallel. Userland calls kse_create to add more
upcall structures into ksegrp to increase concurrent in userland itself, kernel
is not restricted by number of upcalls userland provides.
The code hasn't been tested under SMP by author due to lack of hardware.
Reviewed by: julian
was used to control code which were conditional on DEVFS' precense
since this avoided the need for large-scale source pollution with
#include "opt_geom.h"
Now that we approach making DEVFS standard, replace these tests
with an #ifdef to facilitate mechanical removal once DEVFS becomes
non-optional.
No functional change by this commit.
included in the kernel. Include imgact_elf.c in conf/files, instead of
both imgact_elf32.c and imgact_elf64.c, which will use the default word
size for an architecture as defined in machine/elf.h. Architectures that
wish to build an additional image activator for an alternate word size can
include either imgact_elf32.c or imgact_elf64.c in files.${ARCH}, which
allows it to be dependent on MD options instead of solely on architecture.
Glanced at by: peter
(show thread {address})
Remove the IDLE kse state and replace it with a change in
the way threads sahre KSEs. Every KSE now has a thread, which is
considered its "owner" however a KSE may also be lent to other
threads in the same group to allow completion of in-kernel work.
n this case the owner remains the same and the KSE will revert to the
owner when the other work has been completed.
All creations of upcalls etc. is now done from
kse_reassign() which in turn is called from mi_switch or
thread_exit(). This means that special code can be removed from
msleep() and cv_wait().
kse_release() does not leave a KSE with no thread any more but
converts the existing thread into teh KSE's owner, and sets it up
for doing an upcall. It is just inhibitted from being scheduled until
there is some reason to do an upcall.
Remove all trace of the kse_idle queue since it is no-longer needed.
"Idle" KSEs are now on the loanable queue.
data in the scheduler independant structures (proc, ksegrp, kse, thread).
- Implement unused stubs for this mechanism in sched_4bsd.
Approved by: re
Reviewed by: luigi, trb
Tested on: x86, alpha
sched_lock. This means that we no longer access p_limit in mi_switch()
and the p_limit pointer can be protected by the proc lock.
- Remove PRS_ZOMBIE check from CPU limit test in mi_switch(). PRS_ZOMBIE
processes don't call mi_switch(), and even if they did there is no longer
the danger of p_limit being NULL (which is what the original zombie check
was added for).
- When we bump the current processes soft CPU limit in ast(), just bump the
private p_cpulimit instead of the shared rlimit. This fixes an XXX for
some value of fix. There is still a (probably benign) bug in that this
code doesn't check that the new soft limit exceeds the hard limit.
Inspired by: bde (2)
in specific situations. The owner thread must be blocked, and the
borrower can not proceed back to user space with the borrowed KSE.
The borrower will return the KSE on the next context switch where
teh owner wants it back. This removes a lot of possible
race conditions and deadlocks. It is consceivable that the
borrower should inherit the priority of the owner too.
that's another discussion and would be simple to do.
Also, as part of this, the "preallocatd spare thread" is attached to the
thread doing a syscall rather than the KSE. This removes the need to lock
the scheduler when we want to access it, as it's now "at hand".
DDB now shows a lot mor info for threaded proceses though it may need
some optimisation to squeeze it all back into 80 chars again.
(possible JKH project)
Upcalls are now "bound" threads, but "KSE Lending" now means that
other completing syscalls can be completed using that KSE before the upcall
finally makes it back to the UTS. (getting threads OUT OF THE KERNEL is
one of the highest priorities in the KSE system.) The upcall when it happens
will present all the completed syscalls to the KSE for selection.
doesn't give them enough stack to do much before blowing away the pcb.
This adds MI and MD code to allow the allocation of an alternate kstack
who's size can be speficied when calling kthread_create. Passing the
value 0 prevents the alternate kstack from being created. Note that the
ia64 MD code is missing for now, and PowerPC was only partially written
due to the pmap.c being incomplete there.
Though this patch does not modify anything to make use of the alternate
kstack, acpi and usb are good candidates.
Reviewed by: jake, peter, jhb
gets signals operating based on a TailQ, and is good enough to run X11,
GNOME, and do job control. There are some intricate parts which could be
more refined to match the sigset_t versions, but those require further
evaluation of directions in which our signal system can expand and contract
to fit our needs.
After this has been in the tree for a while, I will make in kernel API
changes, most notably to trapsignal(9) and sendsig(9), to use ksiginfo
more robustly, such that we can actually pass information with our
(queued) signals to the userland. That will also result in using a
struct ksiginfo pointer, rather than a signal number, in a lot of
kern_sig.c, to refer to an individual pending signal queue member, but
right now there is no defined behaviour for such.
CODAFS is unfinished in this regard because the logic is unclear in
some places.
Sponsored by: New Gold Technology
Reviewed by: bde, tjr, jake [an older version, logic similar]
constants VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS, USRSTACK and PS_STRINGS.
This is mainly so that they can be variable even for the native abi, based
on different machine types. Get stack protections from the sysentvec too.
This makes it trivial to map the stack non-executable for certain abis, on
machines that support it.
next step is to allow > 1 to be allocated per process. This would give
multi-processor threads. (when the rest of the infrastructure is
in place)
While doing this I noticed libkvm and sys/kern/kern_proc.c:fill_kinfo_proc
are diverging more than they should.. corrective action needed soon.
sysentvec. Initialized all fields of all sysentvecs, which will allow
them to be used instead of constants in more places. Provided stack
fixup routines for emulations that previously used the default.
a kernel-internal kern_*() version and a wrapper that is called via
the syscall vector table. For paths and structure pointers, the
internal version either takes a uio_seg parameter or requires the
caller to copyin() the data to kernel memory as appropiate. This
will permit emulation layers to use these syscalls without having
to copy out translated arguments to the stack gap.
Discussed on: -arch
Review/suggestions: bde, jhb, peter, marcel
the initproc credential from the proc0 credential. Otherwise, the
proc0 credential is used instead of initproc's credentil when authorizing
start_init() activities prior to initproc hitting userland for the
first time. This could result in the incorrect credential being used
to authorize mounting of the root file system, which could in turn cause
problems for NFS when used in combination with uid/gid ipfw rules, or
with MAC.
Discussed with: julian
kernel access control.
Invoke the necessary MAC entry points to maintain labels on
mount structures. In particular, invoke entry points for
intialization and destruction in various scenarios (root,
non-root). Also introduce an entry point in the boot procedure
following the mount of the root file system, but prior to the
start of the userland init process to permit policies to
perform further initialization.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
kernel access control.
Invoke the necessary MAC entry points to maintain labels on
process credentials. In particular, invoke entry points for
the initialization and destruction of struct ucred, the copying
of struct ucred, and permit the initial labels to be set for
both process 0 (parent of all kernel processes) and process 1
(parent of all user processes).
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs
handler in the kernel at the same time. Also, allow for the
exec_new_vmspace() code to build a different sized vmspace depending on
the executable environment. This is a big help for execing i386 binaries
on ia64. The ELF exec code grows the ability to map partial pages when
there is a page size difference, eg: emulating 4K pages on 8K or 16K
hardware pages.
Flesh out the i386 emulation support for ia64. At this point, the only
binary that I know of that fails is cvsup, because the cvsup runtime
tries to execute code in pages not marked executable.
Obtained from: dfr (mostly, many tweaks from me).
formulated. The correct states should be:
IDLE: On the idle KSE list for that KSEG
RUNQ: Linked onto the system run queue.
THREAD: Attached to a thread and slaved to whatever state the thread is in.
This means that most places where we were adjusting kse state can go away
as it is just moving around because the thread is..
The only places we need to adjust the KSE state is in transition to and from
the idle and run queues.
Reviewed by: jhb@freebsd.org
The ability to schedule multiple threads per process
(one one cpu) by making ALL system calls optionally asynchronous.
to come: ia64 and power-pc patches, patches for gdb, test program (in tools)
Reviewed by: Almost everyone who counts
(at various times, peter, jhb, matt, alfred, mini, bernd,
and a cast of thousands)
NOTE: this is still Beta code, and contains lots of debugging stuff.
expect slight instability in signals..
needed in the current code, in the MAC tree, create_init() relies on the
ability to modify the credentials present for initproc, and should not
perform that modification on a shared credential. Pro-active diff
reduction against MAC changes that are in the queue; also facilitates
other work, including the capabilities implementation.
Submitted by: green
Obtained from: TrustedBSD Project
Sponsored by: DARPA, NAI Labs