interacts with interrupts, query ACPI and use MWAIT for entrance into
Cx sleep states. Support C1 "I/O then halt" mode. See Intel'
document 302223-007 "Intelб╝ Processor Vendor-Specific ACPI Interface
Specification" for description.
Move the acpi_cpu_c1() function into x86/cpu_machdep.c and use
it instead of inlining "sti; hlt" sequence in several places.
In the acpi(4) man page, besides documenting the dev.cpu.N.cx_methods
sysctl, correct the names for dev.cpu.N.{cx_usage,cx_lowest,cx_supported}
sysctls.
Both jkim and avg have some other patches implementing the mwait
functionality; this work is unrelated. Linux does not rely on the
ACPI to provide correct tables describing Cx modes. Instead, the
driver has pre-defined knowledge of the CPU models, it was supplied by
Intel.
Tested by: pho (previous versions)
Sponsored by: The FreeBSD Foundation
These changes prevent sysctl(8) from returning proper output,
such as:
1) no output from sysctl(8)
2) erroneously returning ENOMEM with tools like truss(1)
or uname(1)
truss: can not get etype: Cannot allocate memory
there is an environment variable which shall initialize the SYSCTL
during early boot. This works for all SYSCTL types both statically and
dynamically created ones, except for the SYSCTL NODE type and SYSCTLs
which belong to VNETs. A new flag, CTLFLAG_NOFETCH, has been added to
be used in the case a tunable sysctl has a custom initialisation
function allowing the sysctl to still be marked as a tunable. The
kernel SYSCTL API is mostly the same, with a few exceptions for some
special operations like iterating childrens of a static/extern SYSCTL
node. This operation should probably be made into a factored out
common macro, hence some device drivers use this. The reason for
changing the SYSCTL API was the need for a SYSCTL parent OID pointer
and not only the SYSCTL parent OID list pointer in order to quickly
generate the sysctl path. The motivation behind this patch is to avoid
parameter loading cludges inside the OFED driver subsystem. Instead of
adding special code to the OFED driver subsystem to post-load tunables
into dynamically created sysctls, we generalize this in the kernel.
Other changes:
- Corrected a possibly incorrect sysctl name from "hw.cbb.intr_mask"
to "hw.pcic.intr_mask".
- Removed redundant TUNABLE statements throughout the kernel.
- Some minor code rewrites in connection to removing not needed
TUNABLE statements.
- Added a missing SYSCTL_DECL().
- Wrapped two very long lines.
- Avoid malloc()/free() inside sysctl string handling, in case it is
called to initialize a sysctl from a tunable, hence malloc()/free() is
not ready when sysctls from the sysctl dataset are registered.
- Bumped FreeBSD version to indicate SYSCTL API change.
MFC after: 2 weeks
Sponsored by: Mellanox Technologies
checksums as the base acpi(4) driver. This fixes a problem where the MADT
parser would reject the MADT table during early boot causing the MP Table
to be, but then the acpi(4) driver would attach and use non-SMP interrupt
routing.
Tested by: Alastair Hogge agh of coolrhaug com
MFC after: 1 week
- Allocate memory for wakeup code after ACPI bus is attached. The early
memory allocation hack was inherited from i386 but amd64 does not need it.
- Exclude real mode IVT and BDA explicitly. Improve comments about memory
allocation and reason for the exclusions. It is a no-op in reality, though.
- Remove an unnecessary CLD from wakeup code and re-align.
startup and genericize it so it can be reused to map other tables as well:
- Add a routine to walk a list of ACPI subtables such as those used in the
APIC and SRAT tables in the MI acpi(4) driver.
- Move the routines for mapping and unmapping an ACPI table as well as
mapping the RSDT or XSDT and searching for a table with a given signature
out into acpica_machdep.c for both amd64 and i386.
- Call acpi_resync_clock() to reset system time before hardclock is ready
to tick. Note we assume the current timecounter hardware and RTC are
already available for read operation.
Tested by: mav
This code is heavily inspired by Takanori Watanabe's experimental SMP patch
for i386 and large portion was shamelessly cut and pasted from Peter Wemm's
AP boot code.
different "platforms" on x86 machines. The existing code already handles
having two platforms: ACPI and legacy. However, the existing approach was
rather hardcoded and difficult to extend. These changes take the approach
that each x86 hardware platform should provide its own nexus(4) driver (it
can inherit most of its behavior from the default legacy nexus(4) driver)
which is responsible for probing for the platform and performing
appropriate platform-specific setup during attach (such as adding a
platform-specific bus device). This does mean changing the x86 platform
busses to no longer use an identify routine for probing, but to move that
logic into their matching nexus(4) driver instead.
- Make the default nexus(4) driver in nexus.c on i386 and amd64 handle the
legacy platform. It's probe routine now returns BUS_PROBE_GENERIC so it
can be overriden.
- Expose a nexus_init_resources() routine which initializes the various
resource managers so that subclassed nexus(4) drivers can invoke it from
their attach routine.
- The legacy nexus(4) driver explicitly adds a legacy0 device in its
attach routine.
- The ACPI driver no longer contains an new-bus identify method. Instead
it exposes a public function (acpi_identify()) which is a probe routine
that the MD nexus(4) drivers can use to probe for ACPI. All of the
probe logic in acpi_probe() is now moved into acpi_identify() and
acpi_probe() is just a stub.
- On i386 and amd64, an ACPI-specific nexus(4) driver checks for ACPI via
acpi_identify() and claims the nexus0 device if the probe succeeds. It
then explicitly adds an acpi0 device in its attach routine.
- The legacy(4) driver no longer knows anything about the acpi0 device.
- On ia64 if acpi_identify() fails you basically end up with no devices.
This matches the previous behavior where the old acpi_identify() would
fail to add an acpi0 device again leaving you with no devices.
Discussed with: imp
Silence on: arch@
a heavily stripped down FreeBSD/i386 (brutally stripped down actually) to
attempt to get a stable base to start from. There is a lot missing still.
Worth noting:
- The kernel runs at 1GB in order to cheat with the pmap code. pmap uses
a variation of the PAE code in order to avoid having to worry about 4
levels of page tables yet.
- It boots in 64 bit "long mode" with a tiny trampoline embedded in the
i386 loader. This simplifies locore.s greatly.
- There are still quite a few fragments of i386-specific code that have
not been translated yet, and some that I cheated and wrote dumb C
versions of (bcopy etc).
- It has both int 0x80 for syscalls (but using registers for argument
passing, as is native on the amd64 ABI), and the 'syscall' instruction
for syscalls. int 0x80 preserves all registers, 'syscall' does not.
- I have tried to minimize looking at the NetBSD code, except in a couple
of places (eg: to find which register they use to replace the trashed
%rcx register in the syscall instruction). As a result, there is not a
lot of similarity. I did look at NetBSD a few times while debugging to
get some ideas about what I might have done wrong in my first attempt.
branches:
Initialize struct cdevsw using C99 sparse initializtion and remove
all initializations to default values.
This patch is automatically generated and has been tested by compiling
LINT with all the fields in struct cdevsw in reverse order on alpha,
sparc64 and i386.
Approved by: re(scottl)
macro for use when parsing MADT tables, thus we always tried to set the
interrupt model to APIC. This proved to be harmful on UP machines with
IO APIC's (or for UP kernels on SMP machines) since the wrong interrupt
routing information would be returned.
Pointy hat to: jhb
Approved by: re (rwatson)
and attach routines have succeeded so that if they fail we can still use
the PnP BIOS to find ISA on-board devices. The fact that we do this here
is gross but fixing it properly involves a lot more work.
This emulates APM device node interface APIs (mainly ioctl) and
provides APM services for the applications. The goal is to support
most of APM applications without any changes.
Implemented ioctls in this commit are:
- APMIO_SUSPEND (mapped ACPI S3 as default but changable by sysctl)
- APMIO_STANDBY (mapped ACPI S1 as default but changable by sysctl)
- APMIO_GETINFO and APMIO_GETINFO_OLD
- APMIO_GETPWSTATUS
With above, many APM applications which get batteries, ac-line
info. and transition the system into suspend/standby mode (such as
wmapm, xbatt) should work with ACPI enabled kernel (if ACPI works well :-)
Reviewed by: arch@, audit@ and some guys