This will help application developers simulate end of tape conditions.
To inject an error in sa0:
sysctl kern.cam.sa.0.inject_eom=1
This will return the next read or write request queued with 0 bytes
written. Any subsequent writes or reads will go along as usual.
This will also cause the early warning position flag to get set
for the next position query. So, 'mt status' will show the BPEW
(Beyond Programmable Early Warning) flag on the first query after
an error injection. After that, the position flags will be as they
are in the underlying tape drive.
Also, update the sa(4) man page to describe tape parameters,
which can be set via 'mt param'.
sys/cam/scsi/scsi_sa.c:
In saregister(), create the inject_eom sysctl variable.
In sastart(), check to see whether inject_eom is set. If
so, return the read or write with 0 bytes written to
indicate EOM. Set the set_pews_status flag so that we
fake PEWS status in the next position call for reads, and the
next 3 calls for writes. This allows the user to see the BPEW
flag one time via 'mt status'.
In sagetpos(), check the set_pews_status flag and fake
PEWS status and decrement the counter if it is set.
share/man/man4/sa.4:
Document the inject_eom sysctl variable.
Document all of the parameters currently supported via
'mt param'.
usr.bin/mt/mt.1:
Point the user to the sa(4) man page for more details on
supported parameters.
MFC after: 3 days
Sponsored by: Spectra Logic
The primary focus of these changes is to modernize FreeBSD's
tape infrastructure so that we can take advantage of some of the
features of modern tape drives and allow support for LTFS.
Significant changes and new features include:
o sa(4) driver status and parameter information is now exported via an
XML structure. This will allow for changes and improvements later
on that will not break userland applications. The old MTIOCGET
status ioctl remains, so applications using the existing interface
will not break.
o 'mt status' now reports drive-reported tape position information
as well as the previously available calculated tape position
information. These numbers will be different at times, because
the drive-reported block numbers are relative to BOP (Beginning
of Partition), but the block numbers calculated previously via
sa(4) (and still provided) are relative to the last filemark.
Both numbers are now provided. 'mt status' now also shows the
drive INQUIRY information, serial number and any position flags
(BOP, EOT, etc.) provided with the tape position information.
'mt status -v' adds information on the maximum possible I/O size,
and the underlying values used to calculate it.
o The extra sa(4) /dev entries (/dev/saN.[0-3]) have been removed.
The extra devices were originally added as place holders for
density-specific device nodes. Some OSes (NetBSD, NetApp's OnTap
and Solaris) have had device nodes that, when you write to them,
will automatically select a given density for particular tape drives.
This is a convenient way of switching densities, but it was never
implemented in FreeBSD. Only the device nodes were there, and that
sometimes confused users.
For modern tape devices, the density is generally not selectable
(e.g. with LTO) or defaults to the highest availble density when
the tape is rewritten from BOT (e.g. TS11X0). So, for most users,
density selection won't be necessary. If they do need to select
the density, it is easy enough to use 'mt density' to change it.
o Protection information is now supported. This is either a
Reed-Solomon CRC or CRC32 that is included at the end of each block
read and written. On write, the tape drive verifies the CRC, and
on read, the tape drive provides a CRC for the userland application
to verify.
o New, extensible tape driver parameter get/set interface.
o Density reporting information. For drives that support it,
'mt getdensity' will show detailed information on what formats the
tape drive supports, and what formats the tape drive supports.
o Some mt(1) functionality moved into a new mt(3) library so that
external applications can reuse the code.
o The new mt(3) library includes helper routines to aid in parsing
the XML output of the sa(4) driver, and build a tree of driver
metadata.
o Support for the MTLOAD (load a tape in the drive) and MTWEOFI
(write filemark immediate) ioctls needed by IBM's LTFS
implementation.
o Improve device departure behavior for the sa(4) driver. The previous
implementation led to hangs when the device was open.
o This has been tested on the following types of drives:
IBM TS1150
IBM TS1140
IBM LTO-6
IBM LTO-5
HP LTO-2
Seagate DDS-4
Quantum DLT-4000
Exabyte 8505
Sony DDS-2
contrib/groff/tmac/doc-syms,
share/mk/bsd.libnames.mk,
lib/Makefile,
Add libmt.
lib/libmt/Makefile,
lib/libmt/mt.3,
lib/libmt/mtlib.c,
lib/libmt/mtlib.h,
New mt(3) library that contains functions moved from mt(1) and
new functions needed to interact with the updated sa(4) driver.
This includes XML parser helper functions that application writers
can use when writing code to query tape parameters.
rescue/rescue/Makefile:
Add -lmt to CRUNCH_LIBS.
src/share/man/man4/mtio.4
Clarify this man page a bit, and since it contains what is
essentially the mtio.h header file, add new ioctls and structure
definitions from mtio.h.
src/share/man/man4/sa.4
Update BUGS and maintainer section.
sys/cam/scsi/scsi_all.c,
sys/cam/scsi/scsi_all.h:
Add SCSI SECURITY PROTOCOL IN/OUT CDB definitions and CDB building
functions.
sys/cam/scsi/scsi_sa.c
sys/cam/scsi/scsi_sa.h
Many tape driver changes, largely outlined above.
Increase the sa(4) driver read/write timeout from 4 to 32
minutes. This is based on the recommended values for IBM LTO
5/6 drives. This may also avoid timeouts for other tape
hardware that can take a long time to do retries and error
recovery. Longer term, a better way to handle this is to ask
the drive for recommended timeout values using the REPORT
SUPPORTED OPCODES command. Modern IBM and Oracle tape drives
at least support that command, and it would allow for more
accurate timeout values.
Add XML status generation. This is done with a series of
macros to eliminate as much duplicate code as possible. The
new XML-based status values are reported through the new
MTIOCEXTGET ioctl.
Add XML driver parameter reporting, using the new MTIOCPARAMGET
ioctl.
Add a new driver parameter setting interface, using the new
MTIOCPARAMSET and MTIOCSETLIST ioctls.
Add a new MTIOCRBLIM ioctl to get block limits information.
Add CCB/CDB building routines scsi_locate_16, scsi_locate_10,
and scsi_read_position_10().
scsi_locate_10 implements the LOCATE command, as does the
existing scsi_set_position() command. It just supports
additional arguments and features. If/when we figure out a
good way to provide backward compatibility for older
applications using the old function API, we can just revamp
scsi_set_position(). The same goes for
scsi_read_position_10() and the existing scsi_read_position()
function.
Revamp sasetpos() to take the new mtlocate structure as an
argument. It now will use either scsi_locate_10() or
scsi_locate_16(), depending upon the arguments the user
supplies. As before, once we change position we don't have a
clear idea of what the current logical position of the tape
drive is.
For tape drives that support long form position data, we
read the current position and store that for later reporting
after changing the position. This should help applications
like Bacula speed tape access under FreeBSD once they are
modified to support the new ioctls.
Add a new quirk, SA_QUIRK_NO_LONG_POS, that is set for all
drives that report SCSI-2 or older, as well as drives that
report an Illegal Request type error for READ POSITION with
the long format. So we should automatically detect drives
that don't support the long form and stop asking for it after
an initial try.
Add a partition number to the sa(4) softc.
Improve device departure handling. The previous implementation
led to hangs when the device was open.
If an application had the sa(4) driver open, and attempted to
close it after it went away, the cam_periph_release() call in
saclose() would cause the periph to get destroyed because that
was the last reference to it. Because destroy_dev() was
called from the sa(4) driver's cleanup routine (sacleanup()),
and would block waiting for the close to happen, a deadlock
would result.
So instead of calling destroy_dev() from the cleanup routine,
call destroy_dev_sched_cb() from saoninvalidate() and wait for
the callback.
Acquire a reference for devfs in saregister(), and release it
in the new sadevgonecb() routine when all devfs devices for
the particular sa(4) driver instance are gone.
Add a new function, sasetupdev(), to centralize setting
per-instance devfs device parameters instead of repeating the
code in saregister().
Add an open count to the softc, so we know how many
peripheral driver references are a result of open
sessions.
Add the D_TRACKCLOSE flag to the cdevsw flags so
that we get a 1:1 mapping of open to close calls
instead of a N:1 mapping.
This should be a no-op for everything except the
control device, since we don't allow more than one
open on non-control devices.
However, since we do allow multiple opens on the
control device, the combination of the open count
and the D_TRACKCLOSE flag should result in an
accurate peripheral driver reference count, and an
accurate open count.
The accurate open count allows us to release all
peripheral driver references that are the result
of open contexts once we get the callback from devfs.
sys/sys/mtio.h:
Add a number of new mt(4) ioctls and the requisite data
structures. None of the existing interfaces been removed
or changed.
This includes definitions for the following new ioctls:
MTIOCRBLIM /* get block limits */
MTIOCEXTLOCATE /* seek to position */
MTIOCEXTGET /* get tape status */
MTIOCPARAMGET /* get tape params */
MTIOCPARAMSET /* set tape params */
MTIOCSETLIST /* set N params */
usr.bin/mt/Makefile:
mt(1) now depends on libmt, libsbuf and libbsdxml.
usr.bin/mt/mt.1:
Document new mt(1) features and subcommands.
usr.bin/mt/mt.c:
Implement support for mt(1) subcommands that need to
use getopt(3) for their arguments.
Implement a new 'mt status' command to replace the old
'mt status' command. The old status command has been
renamed 'ostatus'.
The new status function uses the MTIOCEXTGET ioctl, and
therefore parses the XML data to determine drive status.
The -x argument to 'mt status' allows the user to dump out
the raw XML reported by the kernel.
The new status display is mostly the same as the old status
display, except that it doesn't print the redundant density
mode information, and it does print the current partition
number and position flags.
Add a new command, 'mt locate', that will supersede the
old 'mt setspos' and 'mt sethpos' commands. 'mt locate'
implements all of the functionality of the MTIOCEXTLOCATE
ioctl, and allows the user to change the logical position
of the tape drive in a number of ways. (Partition,
block number, file number, set mark number, end of data.)
The immediate bit and the explicit address bits are
implemented, but not documented in the man page.
Add a new 'mt weofi' command to use the new MTWEOFI ioctl.
This allows the user to ask the drive to write a filemark
without waiting around for the operation to complete.
Add a new 'mt getdensity' command that gets the XML-based
tape drive density report from the sa(4) driver and displays
it. This uses the SCSI REPORT DENSITY SUPPORT command
to get comprehensive information from the tape drive about
what formats it is able to read and write.
Add a new 'mt protect' command that allows getting and setting
tape drive protection information. The protection information
is a CRC tacked on to the end of every read/write from and to
the tape drive.
Sponsored by: Spectra Logic
MFC after: 1 month
configure sa(4) to request no I/O splitting by default.
For tape devices, the user needs to be able to clearly understand
what blocksize is actually being used when writing to a tape
device. The previous behavior of physio(9) was that it would split
up any I/O that was too large for the device, or too large to fit
into MAXPHYS. This means that if, for instance, the user wrote a
1MB block to a tape device, and MAXPHYS was 128KB, the 1MB write
would be split into 8 128K chunks. This would be done without
informing the user.
This has suboptimal effects, especially when trying to communicate
status to the user. In the event of an error writing to a tape
(e.g. physical end of tape) in the middle of a 1MB block that has
been split into 8 pieces, the user could have the first two 128K
pieces written successfully, the third returned with an error, and
the last 5 returned with 0 bytes written. If the user is using
a standard write(2) system call, all he will see is the ENOSPC
error. He won't have a clue how much actually got written. (With
a writev(2) system call, he should be able to determine how much
got written in addition to the error.)
The solution is to prevent physio(9) from splitting the I/O. The
new cdev flag, SI_NOSPLIT, tells physio that the driver does not
want I/O to be split beforehand.
Although the sa(4) driver now enables SI_NOSPLIT by default,
that can be disabled by two loader tunables for now. It will not
be configurable starting in FreeBSD 11.0. kern.cam.sa.allow_io_split
allows the user to configure I/O splitting for all sa(4) driver
instances. kern.cam.sa.%d.allow_io_split allows the user to
configure I/O splitting for a specific sa(4) instance.
There are also now three sa(4) driver sysctl variables that let the
users see some sa(4) driver values. kern.cam.sa.%d.allow_io_split
shows whether I/O splitting is turned on. kern.cam.sa.%d.maxio shows
the maximum I/O size allowed by kernel configuration parameters
(e.g. MAXPHYS, DFLTPHYS) and the capabilities of the controller.
kern.cam.sa.%d.cpi_maxio shows the maximum I/O size supported by
the controller.
Note that a better long term solution would be to implement support
for chaining buffers, so that that MAXPHYS is no longer a limiting
factor for I/O size to tape and disk devices. At that point, the
controller and the tape drive would become the limiting factors.
sys/conf.h: Add a new cdev flag, SI_NOSPLIT, that allows a
driver to tell physio not to split up I/O.
sys/param.h: Bump __FreeBSD_version to 1000049 for the addition
of the SI_NOSPLIT cdev flag.
kern_physio.c: If the SI_NOSPLIT flag is set on the cdev, return
any I/O that is larger than si_iosize_max or
MAXPHYS, has more than one segment, or would have
to be split because of misalignment with EFBIG.
(File too large).
In the event of an error, print a console message to
give the user a clue about what happened.
scsi_sa.c: Set the SI_NOSPLIT cdev flag on the devices created
for the sa(4) driver by default.
Add tunables to control whether we allow I/O splitting
in physio(9).
Explain in the comments that allowing I/O splitting
will be deprecated for the sa(4) driver in FreeBSD
11.0.
Add sysctl variables to display the maximum I/O
size we can do (which could be further limited by
read block limits) and the maximum I/O size that
the controller can do.
Limit our maximum I/O size (recorded in the cdev's
si_iosize_max) by MAXPHYS. This isn't strictly
necessary, because physio(9) will limit it to
MAXPHYS, but it will provide some clarity for the
application.
Record the controller's maximum I/O size reported
in the Path Inquiry CCB.
sa.4: Document the block size behavior, and explain that
the option of allowing physio(9) to split the I/O
will disappear in FreeBSD 11.0.
Sponsored by: Spectra Logic
- Change lines referring to kernel configuration file:
device foo0 at isa port xxx irq yyy...
to
device foo
Describe resource "hints" in /boot/device.hints.
- Try to describe resource allocation and probe/attach behavior in the
newbus framework.
cd src/share; find man[1-9] -type f|xargs perl -pi -e 's/[ \t]+$//'
BTW, what editors are the culprits? I'm using vim and it shows
me whitespace at EOL in troff files with a thick blue block...
Reviewed by: Silence from cvs diff -b
MFC after: 7 days
(QIC) written under 2.X may not be easily read under the current
driver without explicitly setting to variable mode or to the blocksize
these tapes were written under 2.X with.
PR: 6681
st(4) man page.
Take out most of the sd(4) and st(4) man pages and point to the new
da(4) and sa(4) man pages.
Add sa.4 to the makefile.
Reviewed by: ken
Submitted by: gibbs