/*- * Copyright (c) 2000 Doug Rabson * Copyright (c) 2014 Jeff Roberson * Copyright (c) 2016 Matthew Macy * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static MALLOC_DEFINE(M_GTASKQUEUE, "gtaskqueue", "Group Task Queues"); static void gtaskqueue_thread_enqueue(void *); static void gtaskqueue_thread_loop(void *arg); static int task_is_running(struct gtaskqueue *queue, struct gtask *gtask); static void gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask); TASKQGROUP_DEFINE(softirq, mp_ncpus, 1); TASKQGROUP_DEFINE(config, 1, 1); struct gtaskqueue_busy { struct gtask *tb_running; u_int tb_seq; LIST_ENTRY(gtaskqueue_busy) tb_link; }; typedef void (*gtaskqueue_enqueue_fn)(void *context); struct gtaskqueue { STAILQ_HEAD(, gtask) tq_queue; LIST_HEAD(, gtaskqueue_busy) tq_active; u_int tq_seq; int tq_callouts; struct mtx_padalign tq_mutex; gtaskqueue_enqueue_fn tq_enqueue; void *tq_context; char *tq_name; struct thread **tq_threads; int tq_tcount; int tq_spin; int tq_flags; taskqueue_callback_fn tq_callbacks[TASKQUEUE_NUM_CALLBACKS]; void *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS]; }; #define TQ_FLAGS_ACTIVE (1 << 0) #define TQ_FLAGS_BLOCKED (1 << 1) #define TQ_FLAGS_UNLOCKED_ENQUEUE (1 << 2) #define DT_CALLOUT_ARMED (1 << 0) #define TQ_LOCK(tq) \ do { \ if ((tq)->tq_spin) \ mtx_lock_spin(&(tq)->tq_mutex); \ else \ mtx_lock(&(tq)->tq_mutex); \ } while (0) #define TQ_ASSERT_LOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_OWNED) #define TQ_UNLOCK(tq) \ do { \ if ((tq)->tq_spin) \ mtx_unlock_spin(&(tq)->tq_mutex); \ else \ mtx_unlock(&(tq)->tq_mutex); \ } while (0) #define TQ_ASSERT_UNLOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED) #ifdef INVARIANTS static void gtask_dump(struct gtask *gtask) { printf("gtask: %p ta_flags=%x ta_priority=%d ta_func=%p ta_context=%p\n", gtask, gtask->ta_flags, gtask->ta_priority, gtask->ta_func, gtask->ta_context); } #endif static __inline int TQ_SLEEP(struct gtaskqueue *tq, void *p, const char *wm) { if (tq->tq_spin) return (msleep_spin(p, (struct mtx *)&tq->tq_mutex, wm, 0)); return (msleep(p, &tq->tq_mutex, 0, wm, 0)); } static struct gtaskqueue * _gtaskqueue_create(const char *name, int mflags, taskqueue_enqueue_fn enqueue, void *context, int mtxflags, const char *mtxname __unused) { struct gtaskqueue *queue; char *tq_name; tq_name = malloc(TASKQUEUE_NAMELEN, M_GTASKQUEUE, mflags | M_ZERO); if (!tq_name) return (NULL); snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue"); queue = malloc(sizeof(struct gtaskqueue), M_GTASKQUEUE, mflags | M_ZERO); if (!queue) { free(tq_name, M_GTASKQUEUE); return (NULL); } STAILQ_INIT(&queue->tq_queue); LIST_INIT(&queue->tq_active); queue->tq_enqueue = enqueue; queue->tq_context = context; queue->tq_name = tq_name; queue->tq_spin = (mtxflags & MTX_SPIN) != 0; queue->tq_flags |= TQ_FLAGS_ACTIVE; if (enqueue == gtaskqueue_thread_enqueue) queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE; mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags); return (queue); } /* * Signal a taskqueue thread to terminate. */ static void gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq) { while (tq->tq_tcount > 0 || tq->tq_callouts > 0) { wakeup(tq); TQ_SLEEP(tq, pp, "gtq_destroy"); } } static void gtaskqueue_free(struct gtaskqueue *queue) { TQ_LOCK(queue); queue->tq_flags &= ~TQ_FLAGS_ACTIVE; gtaskqueue_terminate(queue->tq_threads, queue); KASSERT(LIST_EMPTY(&queue->tq_active), ("Tasks still running?")); KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks")); mtx_destroy(&queue->tq_mutex); free(queue->tq_threads, M_GTASKQUEUE); free(queue->tq_name, M_GTASKQUEUE); free(queue, M_GTASKQUEUE); } /* * Wait for all to complete, then prevent it from being enqueued */ void grouptask_block(struct grouptask *grouptask) { struct gtaskqueue *queue = grouptask->gt_taskqueue; struct gtask *gtask = &grouptask->gt_task; #ifdef INVARIANTS if (queue == NULL) { gtask_dump(gtask); panic("queue == NULL"); } #endif TQ_LOCK(queue); gtask->ta_flags |= TASK_NOENQUEUE; gtaskqueue_drain_locked(queue, gtask); TQ_UNLOCK(queue); } void grouptask_unblock(struct grouptask *grouptask) { struct gtaskqueue *queue = grouptask->gt_taskqueue; struct gtask *gtask = &grouptask->gt_task; #ifdef INVARIANTS if (queue == NULL) { gtask_dump(gtask); panic("queue == NULL"); } #endif TQ_LOCK(queue); gtask->ta_flags &= ~TASK_NOENQUEUE; TQ_UNLOCK(queue); } int grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask) { #ifdef INVARIANTS if (queue == NULL) { gtask_dump(gtask); panic("queue == NULL"); } #endif TQ_LOCK(queue); if (gtask->ta_flags & TASK_ENQUEUED) { TQ_UNLOCK(queue); return (0); } if (gtask->ta_flags & TASK_NOENQUEUE) { TQ_UNLOCK(queue); return (EAGAIN); } STAILQ_INSERT_TAIL(&queue->tq_queue, gtask, ta_link); gtask->ta_flags |= TASK_ENQUEUED; TQ_UNLOCK(queue); if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0) queue->tq_enqueue(queue->tq_context); return (0); } static void gtaskqueue_task_nop_fn(void *context) { } /* * Block until all currently queued tasks in this taskqueue * have begun execution. Tasks queued during execution of * this function are ignored. */ static void gtaskqueue_drain_tq_queue(struct gtaskqueue *queue) { struct gtask t_barrier; if (STAILQ_EMPTY(&queue->tq_queue)) return; /* * Enqueue our barrier after all current tasks, but with * the highest priority so that newly queued tasks cannot * pass it. Because of the high priority, we can not use * taskqueue_enqueue_locked directly (which drops the lock * anyway) so just insert it at tail while we have the * queue lock. */ GTASK_INIT(&t_barrier, 0, USHRT_MAX, gtaskqueue_task_nop_fn, &t_barrier); STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link); t_barrier.ta_flags |= TASK_ENQUEUED; /* * Once the barrier has executed, all previously queued tasks * have completed or are currently executing. */ while (t_barrier.ta_flags & TASK_ENQUEUED) TQ_SLEEP(queue, &t_barrier, "gtq_qdrain"); } /* * Block until all currently executing tasks for this taskqueue * complete. Tasks that begin execution during the execution * of this function are ignored. */ static void gtaskqueue_drain_tq_active(struct gtaskqueue *queue) { struct gtaskqueue_busy *tb; u_int seq; if (LIST_EMPTY(&queue->tq_active)) return; /* Block taskq_terminate().*/ queue->tq_callouts++; /* Wait for any active task with sequence from the past. */ seq = queue->tq_seq; restart: LIST_FOREACH(tb, &queue->tq_active, tb_link) { if ((int)(tb->tb_seq - seq) <= 0) { TQ_SLEEP(queue, tb->tb_running, "gtq_adrain"); goto restart; } } /* Release taskqueue_terminate(). */ queue->tq_callouts--; if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0) wakeup_one(queue->tq_threads); } void gtaskqueue_block(struct gtaskqueue *queue) { TQ_LOCK(queue); queue->tq_flags |= TQ_FLAGS_BLOCKED; TQ_UNLOCK(queue); } void gtaskqueue_unblock(struct gtaskqueue *queue) { TQ_LOCK(queue); queue->tq_flags &= ~TQ_FLAGS_BLOCKED; if (!STAILQ_EMPTY(&queue->tq_queue)) queue->tq_enqueue(queue->tq_context); TQ_UNLOCK(queue); } static void gtaskqueue_run_locked(struct gtaskqueue *queue) { struct gtaskqueue_busy tb; struct gtask *gtask; KASSERT(queue != NULL, ("tq is NULL")); TQ_ASSERT_LOCKED(queue); tb.tb_running = NULL; LIST_INSERT_HEAD(&queue->tq_active, &tb, tb_link); while ((gtask = STAILQ_FIRST(&queue->tq_queue)) != NULL) { STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link); gtask->ta_flags &= ~TASK_ENQUEUED; tb.tb_running = gtask; tb.tb_seq = ++queue->tq_seq; TQ_UNLOCK(queue); KASSERT(gtask->ta_func != NULL, ("task->ta_func is NULL")); gtask->ta_func(gtask->ta_context); TQ_LOCK(queue); wakeup(gtask); } LIST_REMOVE(&tb, tb_link); } static int task_is_running(struct gtaskqueue *queue, struct gtask *gtask) { struct gtaskqueue_busy *tb; TQ_ASSERT_LOCKED(queue); LIST_FOREACH(tb, &queue->tq_active, tb_link) { if (tb->tb_running == gtask) return (1); } return (0); } static int gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask) { if (gtask->ta_flags & TASK_ENQUEUED) STAILQ_REMOVE(&queue->tq_queue, gtask, gtask, ta_link); gtask->ta_flags &= ~TASK_ENQUEUED; return (task_is_running(queue, gtask) ? EBUSY : 0); } int gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask) { int error; TQ_LOCK(queue); error = gtaskqueue_cancel_locked(queue, gtask); TQ_UNLOCK(queue); return (error); } static void gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask) { while ((gtask->ta_flags & TASK_ENQUEUED) || task_is_running(queue, gtask)) TQ_SLEEP(queue, gtask, "gtq_drain"); } void gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask) { if (!queue->tq_spin) WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); TQ_LOCK(queue); gtaskqueue_drain_locked(queue, gtask); TQ_UNLOCK(queue); } void gtaskqueue_drain_all(struct gtaskqueue *queue) { if (!queue->tq_spin) WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); TQ_LOCK(queue); gtaskqueue_drain_tq_queue(queue); gtaskqueue_drain_tq_active(queue); TQ_UNLOCK(queue); } static int _gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri, cpuset_t *mask, const char *name, va_list ap) { char ktname[MAXCOMLEN + 1]; struct thread *td; struct gtaskqueue *tq; int i, error; if (count <= 0) return (EINVAL); vsnprintf(ktname, sizeof(ktname), name, ap); tq = *tqp; tq->tq_threads = malloc(sizeof(struct thread *) * count, M_GTASKQUEUE, M_NOWAIT | M_ZERO); if (tq->tq_threads == NULL) { printf("%s: no memory for %s threads\n", __func__, ktname); return (ENOMEM); } for (i = 0; i < count; i++) { if (count == 1) error = kthread_add(gtaskqueue_thread_loop, tqp, NULL, &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname); else error = kthread_add(gtaskqueue_thread_loop, tqp, NULL, &tq->tq_threads[i], RFSTOPPED, 0, "%s_%d", ktname, i); if (error) { /* should be ok to continue, taskqueue_free will dtrt */ printf("%s: kthread_add(%s): error %d", __func__, ktname, error); tq->tq_threads[i] = NULL; /* paranoid */ } else tq->tq_tcount++; } for (i = 0; i < count; i++) { if (tq->tq_threads[i] == NULL) continue; td = tq->tq_threads[i]; if (mask) { error = cpuset_setthread(td->td_tid, mask); /* * Failing to pin is rarely an actual fatal error; * it'll just affect performance. */ if (error) printf("%s: curthread=%llu: can't pin; " "error=%d\n", __func__, (unsigned long long) td->td_tid, error); } thread_lock(td); sched_prio(td, pri); sched_add(td, SRQ_BORING); thread_unlock(td); } return (0); } static int gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri, const char *name, ...) { va_list ap; int error; va_start(ap, name); error = _gtaskqueue_start_threads(tqp, count, pri, NULL, name, ap); va_end(ap); return (error); } static inline void gtaskqueue_run_callback(struct gtaskqueue *tq, enum taskqueue_callback_type cb_type) { taskqueue_callback_fn tq_callback; TQ_ASSERT_UNLOCKED(tq); tq_callback = tq->tq_callbacks[cb_type]; if (tq_callback != NULL) tq_callback(tq->tq_cb_contexts[cb_type]); } static void gtaskqueue_thread_loop(void *arg) { struct gtaskqueue **tqp, *tq; tqp = arg; tq = *tqp; gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT); TQ_LOCK(tq); while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) { /* XXX ? */ gtaskqueue_run_locked(tq); /* * Because taskqueue_run() can drop tq_mutex, we need to * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the * meantime, which means we missed a wakeup. */ if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0) break; TQ_SLEEP(tq, tq, "-"); } gtaskqueue_run_locked(tq); /* * This thread is on its way out, so just drop the lock temporarily * in order to call the shutdown callback. This allows the callback * to look at the taskqueue, even just before it dies. */ TQ_UNLOCK(tq); gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN); TQ_LOCK(tq); /* rendezvous with thread that asked us to terminate */ tq->tq_tcount--; wakeup_one(tq->tq_threads); TQ_UNLOCK(tq); kthread_exit(); } static void gtaskqueue_thread_enqueue(void *context) { struct gtaskqueue **tqp, *tq; tqp = context; tq = *tqp; wakeup_any(tq); } static struct gtaskqueue * gtaskqueue_create_fast(const char *name, int mflags, taskqueue_enqueue_fn enqueue, void *context) { return _gtaskqueue_create(name, mflags, enqueue, context, MTX_SPIN, "fast_taskqueue"); } struct taskqgroup_cpu { LIST_HEAD(, grouptask) tgc_tasks; struct gtaskqueue *tgc_taskq; int tgc_cnt; int tgc_cpu; }; struct taskqgroup { struct taskqgroup_cpu tqg_queue[MAXCPU]; struct mtx tqg_lock; const char * tqg_name; int tqg_adjusting; int tqg_stride; int tqg_cnt; }; struct taskq_bind_task { struct gtask bt_task; int bt_cpuid; }; static void taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu) { struct taskqgroup_cpu *qcpu; qcpu = &qgroup->tqg_queue[idx]; LIST_INIT(&qcpu->tgc_tasks); qcpu->tgc_taskq = gtaskqueue_create_fast(NULL, M_WAITOK, taskqueue_thread_enqueue, &qcpu->tgc_taskq); gtaskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT, "%s_%d", qgroup->tqg_name, idx); qcpu->tgc_cpu = cpu; } static void taskqgroup_cpu_remove(struct taskqgroup *qgroup, int idx) { gtaskqueue_free(qgroup->tqg_queue[idx].tgc_taskq); } /* * Find the taskq with least # of tasks that doesn't currently have any * other queues from the uniq identifier. */ static int taskqgroup_find(struct taskqgroup *qgroup, void *uniq) { struct grouptask *n; int i, idx, mincnt; int strict; mtx_assert(&qgroup->tqg_lock, MA_OWNED); if (qgroup->tqg_cnt == 0) return (0); idx = -1; mincnt = INT_MAX; /* * Two passes; First scan for a queue with the least tasks that * does not already service this uniq id. If that fails simply find * the queue with the least total tasks; */ for (strict = 1; mincnt == INT_MAX; strict = 0) { for (i = 0; i < qgroup->tqg_cnt; i++) { if (qgroup->tqg_queue[i].tgc_cnt > mincnt) continue; if (strict) { LIST_FOREACH(n, &qgroup->tqg_queue[i].tgc_tasks, gt_list) if (n->gt_uniq == uniq) break; if (n != NULL) continue; } mincnt = qgroup->tqg_queue[i].tgc_cnt; idx = i; } } if (idx == -1) panic("%s: failed to pick a qid.", __func__); return (idx); } /* * smp_started is unusable since it is not set for UP kernels or even for * SMP kernels when there is 1 CPU. This is usually handled by adding a * (mp_ncpus == 1) test, but that would be broken here since we need to * to synchronize with the SI_SUB_SMP ordering. Even in the pure SMP case * smp_started only gives a fuzzy ordering relative to SI_SUB_SMP. * * So maintain our own flag. It must be set after all CPUs are started * and before SI_SUB_SMP:SI_ORDER_ANY so that the SYSINIT for delayed * adjustment is properly delayed. SI_ORDER_FOURTH is clearly before * SI_ORDER_ANY and unclearly after the CPUs are started. It would be * simpler for adjustment to pass a flag indicating if it is delayed. */ static int tqg_smp_started; static void tqg_record_smp_started(void *arg) { tqg_smp_started = 1; } SYSINIT(tqg_record_smp_started, SI_SUB_SMP, SI_ORDER_FOURTH, tqg_record_smp_started, NULL); void taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask, void *uniq, device_t dev, struct resource *irq, const char *name) { int cpu, qid, error; gtask->gt_uniq = uniq; snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask"); gtask->gt_dev = dev; gtask->gt_irq = irq; gtask->gt_cpu = -1; mtx_lock(&qgroup->tqg_lock); qid = taskqgroup_find(qgroup, uniq); qgroup->tqg_queue[qid].tgc_cnt++; LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; if (dev != NULL && irq != NULL && tqg_smp_started) { cpu = qgroup->tqg_queue[qid].tgc_cpu; gtask->gt_cpu = cpu; mtx_unlock(&qgroup->tqg_lock); error = bus_bind_intr(dev, irq, cpu); if (error) printf("%s: binding interrupt failed for %s: %d\n", __func__, gtask->gt_name, error); } else mtx_unlock(&qgroup->tqg_lock); } static void taskqgroup_attach_deferred(struct taskqgroup *qgroup, struct grouptask *gtask) { int qid, cpu, error; mtx_lock(&qgroup->tqg_lock); qid = taskqgroup_find(qgroup, gtask->gt_uniq); cpu = qgroup->tqg_queue[qid].tgc_cpu; if (gtask->gt_dev != NULL && gtask->gt_irq != NULL) { mtx_unlock(&qgroup->tqg_lock); error = bus_bind_intr(gtask->gt_dev, gtask->gt_irq, cpu); mtx_lock(&qgroup->tqg_lock); if (error) printf("%s: binding interrupt failed for %s: %d\n", __func__, gtask->gt_name, error); } qgroup->tqg_queue[qid].tgc_cnt++; LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL); gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; mtx_unlock(&qgroup->tqg_lock); } int taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask, void *uniq, int cpu, device_t dev, struct resource *irq, const char *name) { int i, qid, error; qid = -1; gtask->gt_uniq = uniq; snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask"); gtask->gt_dev = dev; gtask->gt_irq = irq; gtask->gt_cpu = cpu; mtx_lock(&qgroup->tqg_lock); if (tqg_smp_started) { for (i = 0; i < qgroup->tqg_cnt; i++) if (qgroup->tqg_queue[i].tgc_cpu == cpu) { qid = i; break; } if (qid == -1) { mtx_unlock(&qgroup->tqg_lock); printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu); return (EINVAL); } } else qid = 0; qgroup->tqg_queue[qid].tgc_cnt++; LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; cpu = qgroup->tqg_queue[qid].tgc_cpu; mtx_unlock(&qgroup->tqg_lock); if (dev != NULL && irq != NULL && tqg_smp_started) { error = bus_bind_intr(dev, irq, cpu); if (error) printf("%s: binding interrupt failed for %s: %d\n", __func__, gtask->gt_name, error); } return (0); } static int taskqgroup_attach_cpu_deferred(struct taskqgroup *qgroup, struct grouptask *gtask) { device_t dev; struct resource *irq; int cpu, error, i, qid; qid = -1; dev = gtask->gt_dev; irq = gtask->gt_irq; cpu = gtask->gt_cpu; MPASS(tqg_smp_started); mtx_lock(&qgroup->tqg_lock); for (i = 0; i < qgroup->tqg_cnt; i++) if (qgroup->tqg_queue[i].tgc_cpu == cpu) { qid = i; break; } if (qid == -1) { mtx_unlock(&qgroup->tqg_lock); printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu); return (EINVAL); } qgroup->tqg_queue[qid].tgc_cnt++; LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); MPASS(qgroup->tqg_queue[qid].tgc_taskq != NULL); gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; mtx_unlock(&qgroup->tqg_lock); if (dev != NULL && irq != NULL) { error = bus_bind_intr(dev, irq, cpu); if (error) printf("%s: binding interrupt failed for %s: %d\n", __func__, gtask->gt_name, error); } return (0); } void taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask) { int i; grouptask_block(gtask); mtx_lock(&qgroup->tqg_lock); for (i = 0; i < qgroup->tqg_cnt; i++) if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue) break; if (i == qgroup->tqg_cnt) panic("%s: task %s not in group", __func__, gtask->gt_name); qgroup->tqg_queue[i].tgc_cnt--; LIST_REMOVE(gtask, gt_list); mtx_unlock(&qgroup->tqg_lock); gtask->gt_taskqueue = NULL; gtask->gt_task.ta_flags &= ~TASK_NOENQUEUE; } static void taskqgroup_binder(void *ctx) { struct taskq_bind_task *gtask = (struct taskq_bind_task *)ctx; cpuset_t mask; int error; CPU_ZERO(&mask); CPU_SET(gtask->bt_cpuid, &mask); error = cpuset_setthread(curthread->td_tid, &mask); thread_lock(curthread); sched_bind(curthread, gtask->bt_cpuid); thread_unlock(curthread); if (error) printf("%s: binding curthread failed: %d\n", __func__, error); free(gtask, M_DEVBUF); } static void taskqgroup_bind(struct taskqgroup *qgroup) { struct taskq_bind_task *gtask; int i; /* * Bind taskqueue threads to specific CPUs, if they have been assigned * one. */ if (qgroup->tqg_cnt == 1) return; for (i = 0; i < qgroup->tqg_cnt; i++) { gtask = malloc(sizeof (*gtask), M_DEVBUF, M_WAITOK); GTASK_INIT(>ask->bt_task, 0, 0, taskqgroup_binder, gtask); gtask->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu; grouptaskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq, >ask->bt_task); } } static void taskqgroup_config_init(void *arg) { struct taskqgroup *qgroup = qgroup_config; LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL); LIST_SWAP(>ask_head, &qgroup->tqg_queue[0].tgc_tasks, grouptask, gt_list); qgroup->tqg_queue[0].tgc_cnt = 0; taskqgroup_cpu_create(qgroup, 0, 0); qgroup->tqg_cnt = 1; qgroup->tqg_stride = 1; } SYSINIT(taskqgroup_config_init, SI_SUB_TASKQ, SI_ORDER_SECOND, taskqgroup_config_init, NULL); static int _taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride) { LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL); struct grouptask *gtask; int i, k, old_cnt, old_cpu, cpu; mtx_assert(&qgroup->tqg_lock, MA_OWNED); if (cnt < 1 || cnt * stride > mp_ncpus || !tqg_smp_started) { printf("%s: failed cnt: %d stride: %d " "mp_ncpus: %d tqg_smp_started: %d\n", __func__, cnt, stride, mp_ncpus, tqg_smp_started); return (EINVAL); } if (qgroup->tqg_adjusting) { printf("%s failed: adjusting\n", __func__); return (EBUSY); } qgroup->tqg_adjusting = 1; old_cnt = qgroup->tqg_cnt; old_cpu = 0; if (old_cnt < cnt) old_cpu = qgroup->tqg_queue[old_cnt].tgc_cpu; mtx_unlock(&qgroup->tqg_lock); /* * Set up queue for tasks added before boot. */ if (old_cnt == 0) { LIST_SWAP(>ask_head, &qgroup->tqg_queue[0].tgc_tasks, grouptask, gt_list); qgroup->tqg_queue[0].tgc_cnt = 0; } /* * If new taskq threads have been added. */ cpu = old_cpu; for (i = old_cnt; i < cnt; i++) { taskqgroup_cpu_create(qgroup, i, cpu); for (k = 0; k < stride; k++) cpu = CPU_NEXT(cpu); } mtx_lock(&qgroup->tqg_lock); qgroup->tqg_cnt = cnt; qgroup->tqg_stride = stride; /* * Adjust drivers to use new taskqs. */ for (i = 0; i < old_cnt; i++) { while ((gtask = LIST_FIRST(&qgroup->tqg_queue[i].tgc_tasks))) { LIST_REMOVE(gtask, gt_list); qgroup->tqg_queue[i].tgc_cnt--; LIST_INSERT_HEAD(>ask_head, gtask, gt_list); } } mtx_unlock(&qgroup->tqg_lock); while ((gtask = LIST_FIRST(>ask_head))) { LIST_REMOVE(gtask, gt_list); if (gtask->gt_cpu == -1) taskqgroup_attach_deferred(qgroup, gtask); else if (taskqgroup_attach_cpu_deferred(qgroup, gtask)) taskqgroup_attach_deferred(qgroup, gtask); } #ifdef INVARIANTS mtx_lock(&qgroup->tqg_lock); for (i = 0; i < qgroup->tqg_cnt; i++) { MPASS(qgroup->tqg_queue[i].tgc_taskq != NULL); LIST_FOREACH(gtask, &qgroup->tqg_queue[i].tgc_tasks, gt_list) MPASS(gtask->gt_taskqueue != NULL); } mtx_unlock(&qgroup->tqg_lock); #endif /* * If taskq thread count has been reduced. */ for (i = cnt; i < old_cnt; i++) taskqgroup_cpu_remove(qgroup, i); taskqgroup_bind(qgroup); mtx_lock(&qgroup->tqg_lock); qgroup->tqg_adjusting = 0; return (0); } int taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride) { int error; mtx_lock(&qgroup->tqg_lock); error = _taskqgroup_adjust(qgroup, cnt, stride); mtx_unlock(&qgroup->tqg_lock); return (error); } struct taskqgroup * taskqgroup_create(const char *name) { struct taskqgroup *qgroup; qgroup = malloc(sizeof(*qgroup), M_GTASKQUEUE, M_WAITOK | M_ZERO); mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF); qgroup->tqg_name = name; LIST_INIT(&qgroup->tqg_queue[0].tgc_tasks); return (qgroup); } void taskqgroup_destroy(struct taskqgroup *qgroup) { } void taskqgroup_config_gtask_init(void *ctx, struct grouptask *gtask, gtask_fn_t *fn, const char *name) { GROUPTASK_INIT(gtask, 0, fn, ctx); taskqgroup_attach(qgroup_config, gtask, gtask, NULL, NULL, name); } void taskqgroup_config_gtask_deinit(struct grouptask *gtask) { taskqgroup_detach(qgroup_config, gtask); }