/*- * Copyright (C) 1994, David Greenman * Copyright (c) 1990, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * the University of Utah, and William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)trap.c 7.4 (Berkeley) 5/13/91 * $Id: trap.c,v 1.39 1994/10/11 22:37:14 sos Exp $ */ /* * 386 Trap and System call handling */ #include #include #include #include #include #include #include #include #ifdef KTRACE #include #endif #include #include #include #include #include #include #include #include #include #include "isa.h" #include "npx.h" int trap_pfault __P((struct trapframe *, int)); void trap_fatal __P((struct trapframe *)); #define MAX_TRAP_MSG 27 char *trap_msg[] = { "reserved addressing fault", /* 0 T_RESADFLT */ "privileged instruction fault", /* 1 T_PRIVINFLT */ "reserved operand fault", /* 2 T_RESOPFLT */ "breakpoint instruction fault", /* 3 T_BPTFLT */ "", /* 4 unused */ "system call trap", /* 5 T_SYSCALL */ "arithmetic trap", /* 6 T_ARITHTRAP */ "system forced exception", /* 7 T_ASTFLT */ "segmentation (limit) fault", /* 8 T_SEGFLT */ "general protection fault", /* 9 T_PROTFLT */ "trace trap", /* 10 T_TRCTRAP */ "", /* 11 unused */ "page fault", /* 12 T_PAGEFLT */ "page table fault", /* 13 T_TABLEFLT */ "alignment fault", /* 14 T_ALIGNFLT */ "kernel stack pointer not valid", /* 15 T_KSPNOTVAL */ "bus error", /* 16 T_BUSERR */ "kernel debugger fault", /* 17 T_KDBTRAP */ "integer divide fault", /* 18 T_DIVIDE */ "non-maskable interrupt trap", /* 19 T_NMI */ "overflow trap", /* 20 T_OFLOW */ "FPU bounds check fault", /* 21 T_BOUND */ "FPU device not available", /* 22 T_DNA */ "double fault", /* 23 T_DOUBLEFLT */ "FPU operand fetch fault", /* 24 T_FPOPFLT */ "invalid TSS fault", /* 25 T_TSSFLT */ "segment not present fault", /* 26 T_SEGNPFLT */ "stack fault", /* 27 T_STKFLT */ }; static inline void userret(p, frame, oticks) struct proc *p; struct trapframe *frame; u_quad_t oticks; { int sig, s; while ((sig = CURSIG(p)) != 0) postsig(sig); p->p_priority = p->p_usrpri; if (want_resched) { /* * Since we are curproc, clock will normally just change * our priority without moving us from one queue to another * (since the running process is not on a queue.) * If that happened after we setrunqueue ourselves but before we * mi_switch()'ed, we might not be on the queue indicated by * our priority. */ s = splclock(); setrunqueue(p); p->p_stats->p_ru.ru_nivcsw++; mi_switch(); splx(s); while ((sig = CURSIG(p)) != 0) postsig(sig); } if (p->p_stats->p_prof.pr_scale) { u_quad_t ticks = p->p_sticks - oticks; if (ticks) { #ifdef PROFTIMER extern int profscale; addupc(frame->tf_eip, &p->p_stats->p_prof, ticks * profscale); #else addupc(frame->tf_eip, &p->p_stats->p_prof, ticks); #endif } } curpriority = p->p_priority; } /* * trap(frame): * Exception, fault, and trap interface to the FreeBSD kernel. * This common code is called from assembly language IDT gate entry * routines that prepare a suitable stack frame, and restore this * frame after the exception has been processed. */ /*ARGSUSED*/ void trap(frame) struct trapframe frame; { struct proc *p = curproc; u_quad_t sticks = 0; int i = 0, ucode = 0, type, code; #ifdef DIAGNOSTIC u_long eva; #endif frame.tf_eflags &= ~PSL_NT; /* clear nested trap XXX */ type = frame.tf_trapno; code = frame.tf_err; if (ISPL(frame.tf_cs) == SEL_UPL) { /* user trap */ sticks = p->p_sticks; p->p_md.md_regs = (int *)&frame; switch (type) { case T_RESADFLT: /* reserved addressing fault */ case T_PRIVINFLT: /* privileged instruction fault */ case T_RESOPFLT: /* reserved operand fault */ ucode = type; i = SIGILL; break; case T_BPTFLT: /* bpt instruction fault */ case T_TRCTRAP: /* trace trap */ frame.tf_eflags &= ~PSL_T; i = SIGTRAP; break; case T_ARITHTRAP: /* arithmetic trap */ ucode = code; i = SIGFPE; break; case T_ASTFLT: /* Allow process switch */ astoff(); cnt.v_soft++; if ((p->p_flag & P_OWEUPC) && p->p_stats->p_prof.pr_scale) { addupc(frame.tf_eip, &p->p_stats->p_prof, 1); p->p_flag &= ~P_OWEUPC; } goto out; case T_PROTFLT: /* general protection fault */ case T_SEGNPFLT: /* segment not present fault */ case T_STKFLT: /* stack fault */ ucode = code + BUS_SEGM_FAULT ; i = SIGBUS; break; case T_PAGEFLT: /* page fault */ i = trap_pfault(&frame, TRUE); if (i == 0) goto out; ucode = T_PAGEFLT; break; case T_DIVIDE: /* integer divide fault */ ucode = FPE_INTDIV_TRAP; i = SIGFPE; break; #if NISA > 0 case T_NMI: #ifdef DDB /* NMI can be hooked up to a pushbutton for debugging */ printf ("NMI ... going to debugger\n"); if (kdb_trap (type, 0, &frame)) return; #endif /* machine/parity/power fail/"kitchen sink" faults */ if (isa_nmi(code) == 0) return; panic("NMI indicates hardware failure"); #endif case T_OFLOW: /* integer overflow fault */ ucode = FPE_INTOVF_TRAP; i = SIGFPE; break; case T_BOUND: /* bounds check fault */ ucode = FPE_SUBRNG_TRAP; i = SIGFPE; break; case T_DNA: #if NNPX > 0 /* if a transparent fault (due to context switch "late") */ if (npxdna()) return; #endif /* NNPX > 0 */ #if defined(MATH_EMULATE) || defined(GPL_MATH_EMULATE) i = math_emulate(&frame); if (i == 0) return; #else /* MATH_EMULATE || GPL_MATH_EMULATE */ panic("trap: math emulation necessary!"); #endif /* MATH_EMULATE || GPL_MATH_EMULATE */ ucode = FPE_FPU_NP_TRAP; break; case T_FPOPFLT: /* FPU operand fetch fault */ ucode = T_FPOPFLT; i = SIGILL; break; default: trap_fatal(&frame); } } else { /* kernel trap */ switch (type) { case T_PAGEFLT: /* page fault */ (void) trap_pfault(&frame, FALSE); return; case T_PROTFLT: /* general protection fault */ case T_SEGNPFLT: /* segment not present fault */ if (curpcb && curpcb->pcb_onfault) { frame.tf_eip = (int)curpcb->pcb_onfault; return; } break; #ifdef DDB case T_BPTFLT: case T_TRCTRAP: if (kdb_trap (type, 0, &frame)) return; break; #else case T_TRCTRAP: /* trace trap -- someone single stepping lcall's */ /* Q: how do we turn it on again? */ frame.tf_eflags &= ~PSL_T; return; #endif #if NISA > 0 case T_NMI: #ifdef DDB /* NMI can be hooked up to a pushbutton for debugging */ printf ("NMI ... going to debugger\n"); if (kdb_trap (type, 0, &frame)) return; #endif /* machine/parity/power fail/"kitchen sink" faults */ if (isa_nmi(code) == 0) return; /* FALL THROUGH */ #endif } trap_fatal(&frame); } trapsignal(p, i, ucode); #ifdef DIAGNOSTIC eva = rcr2(); if (type <= MAX_TRAP_MSG) { uprintf("fatal process exception: %s", trap_msg[type]); if ((type == T_PAGEFLT) || (type == T_PROTFLT)) uprintf(", fault VA = 0x%x", eva); uprintf("\n"); } #endif out: userret(p, &frame, sticks); } int trap_pfault(frame, usermode) struct trapframe *frame; int usermode; { vm_offset_t va; struct vmspace *vm = NULL; vm_map_t map = 0; int rv = 0; vm_prot_t ftype; extern vm_map_t kernel_map; int eva; struct proc *p = curproc; eva = rcr2(); va = trunc_page((vm_offset_t)eva); if (va >= KERNBASE) { /* * Don't allow user-mode faults in kernel address space. */ if (usermode) goto nogo; map = kernel_map; } else { /* * This is a fault on non-kernel virtual memory. * vm is initialized above to NULL. If curproc is NULL * or curproc->p_vmspace is NULL the fault is fatal. */ if (p != NULL) vm = p->p_vmspace; if (vm == NULL) goto nogo; map = &vm->vm_map; } if (frame->tf_err & PGEX_W) ftype = VM_PROT_READ | VM_PROT_WRITE; else ftype = VM_PROT_READ; if (map != kernel_map) { vm_offset_t v = (vm_offset_t) vtopte(va); vm_page_t ptepg; /* * Keep swapout from messing with us during this * critical time. */ ++p->p_lock; /* * Grow the stack if necessary */ if ((caddr_t)va > vm->vm_maxsaddr && (caddr_t)va < (caddr_t)USRSTACK) { if (!grow(p, va)) { rv = KERN_FAILURE; --p->p_lock; goto nogo; } } /* * Check if page table is mapped, if not, * fault it first */ /* Fault the pte only if needed: */ *(volatile char *)v += 0; ptepg = (vm_page_t) pmap_pte_vm_page(vm_map_pmap(map), v); if( ptepg->hold_count == 0) ptepg->act_count += 3; vm_page_hold(ptepg); /* Fault in the user page: */ rv = vm_fault(map, va, ftype, FALSE); vm_page_unhold(ptepg); /* * page table pages don't need to be kept if they * are not held */ if( ptepg->hold_count == 0 && ptepg->wire_count == 0) { pmap_page_protect( VM_PAGE_TO_PHYS(ptepg), VM_PROT_NONE); vm_page_free(ptepg); } --p->p_lock; } else { /* * Since we know that kernel virtual address addresses * always have pte pages mapped, we just have to fault * the page. */ rv = vm_fault(map, va, ftype, FALSE); } if (rv == KERN_SUCCESS) return (0); nogo: if (!usermode) { if (curpcb && curpcb->pcb_onfault) { frame->tf_eip = (int)curpcb->pcb_onfault; return (0); } trap_fatal(frame); } /* kludge to pass faulting virtual address to sendsig */ frame->tf_err = eva; return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV); } void trap_fatal(frame) struct trapframe *frame; { int code, type, eva; struct soft_segment_descriptor softseg; code = frame->tf_err; type = frame->tf_trapno; eva = rcr2(); sdtossd(gdt + IDXSEL(frame->tf_cs & 0xffff), &softseg); if (type <= MAX_TRAP_MSG) printf("\n\nFatal trap %d: %s while in %s mode\n", type, trap_msg[type], ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel"); if (type == T_PAGEFLT) { printf("fault virtual address = 0x%x\n", eva); printf("fault code = %s %s, %s\n", code & PGEX_U ? "user" : "supervisor", code & PGEX_W ? "write" : "read", code & PGEX_P ? "protection violation" : "page not present"); } printf("instruction pointer = 0x%x:0x%x\n", frame->tf_cs & 0xffff, frame->tf_eip); printf("code segment = base 0x%x, limit 0x%x, type 0x%x\n", softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type); printf(" = DPL %d, pres %d, def32 %d, gran %d\n", softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_def32, softseg.ssd_gran); printf("processor eflags = "); if (frame->tf_eflags & PSL_T) printf("trace/trap, "); if (frame->tf_eflags & PSL_I) printf("interrupt enabled, "); if (frame->tf_eflags & PSL_NT) printf("nested task, "); if (frame->tf_eflags & PSL_RF) printf("resume, "); if (frame->tf_eflags & PSL_VM) printf("vm86, "); printf("IOPL = %d\n", (frame->tf_eflags & PSL_IOPL) >> 12); printf("current process = "); if (curproc) { printf("%lu (%s)\n", (u_long)curproc->p_pid, curproc->p_comm ? curproc->p_comm : ""); } else { printf("Idle\n"); } printf("interrupt mask = "); if ((cpl & net_imask) == net_imask) printf("net "); if ((cpl & tty_imask) == tty_imask) printf("tty "); if ((cpl & bio_imask) == bio_imask) printf("bio "); if (cpl == 0) printf("none"); printf("\n"); #ifdef KDB if (kdb_trap(&psl)) return; #endif #ifdef DDB if (kdb_trap (type, 0, frame)) return; #endif if (type <= MAX_TRAP_MSG) panic(trap_msg[type]); else panic("unknown/reserved trap"); } /* * Compensate for 386 brain damage (missing URKR). * This is a little simpler than the pagefault handler in trap() because * it the page tables have already been faulted in and high addresses * are thrown out early for other reasons. */ int trapwrite(addr) unsigned addr; { struct proc *p; vm_offset_t va, v; struct vmspace *vm; int rv; va = trunc_page((vm_offset_t)addr); /* * XXX - MAX is END. Changed > to >= for temp. fix. */ if (va >= VM_MAXUSER_ADDRESS) return (1); p = curproc; vm = p->p_vmspace; ++p->p_lock; if ((caddr_t)va >= vm->vm_maxsaddr && (caddr_t)va < (caddr_t)USRSTACK) { if (!grow(p, va)) { --p->p_lock; return (1); } } v = trunc_page(vtopte(va)); /* * wire the pte page */ if (va < USRSTACK) { vm_map_pageable(&vm->vm_map, v, round_page(v+1), FALSE); } /* * fault the data page */ rv = vm_fault(&vm->vm_map, va, VM_PROT_READ|VM_PROT_WRITE, FALSE); /* * unwire the pte page */ if (va < USRSTACK) { vm_map_pageable(&vm->vm_map, v, round_page(v+1), TRUE); } --p->p_lock; if (rv != KERN_SUCCESS) return 1; return (0); } /* * syscall(frame): * System call request from POSIX system call gate interface to kernel. * Like trap(), argument is call by reference. */ /*ARGSUSED*/ void syscall(frame) struct trapframe frame; { caddr_t params; int i; struct sysent *callp; struct proc *p = curproc; u_quad_t sticks; int error, opc; int args[8], rval[2]; u_int code; sticks = p->p_sticks; if (ISPL(frame.tf_cs) != SEL_UPL) panic("syscall"); code = frame.tf_eax; p->p_md.md_regs = (int *)&frame; params = (caddr_t)frame.tf_esp + sizeof (int) ; /* * Reconstruct pc, assuming lcall $X,y is 7 bytes, as it is always. */ opc = frame.tf_eip - 7; /* * Need to check if this is a 32 bit or 64 bit syscall. */ if (code == SYS_syscall) { /* * Code is first argument, followed by actual args. */ code = fuword(params); params += sizeof (int); } else if (code == SYS___syscall) { /* * Like syscall, but code is a quad, so as to maintain * quad alignment for the rest of the arguments. */ code = fuword(params + _QUAD_LOWWORD * sizeof(int)); params += sizeof(quad_t); } if (p->p_sysent->sv_mask) code = code & p->p_sysent->sv_mask; if (code >= p->p_sysent->sv_size) callp = &p->p_sysent->sv_table[0]; else callp = &p->p_sysent->sv_table[code]; if ((i = callp->sy_narg * sizeof (int)) && (error = copyin(params, (caddr_t)args, (u_int)i))) { #ifdef KTRACE if (KTRPOINT(p, KTR_SYSCALL)) ktrsyscall(p->p_tracep, code, callp->sy_narg, args); #endif goto bad; } #ifdef KTRACE if (KTRPOINT(p, KTR_SYSCALL)) ktrsyscall(p->p_tracep, code, callp->sy_narg, args); #endif rval[0] = 0; rval[1] = frame.tf_edx; error = (*callp->sy_call)(p, args, rval); switch (error) { case 0: /* * Reinitialize proc pointer `p' as it may be different * if this is a child returning from fork syscall. */ p = curproc; frame.tf_eax = rval[0]; frame.tf_edx = rval[1]; frame.tf_eflags &= ~PSL_C; /* carry bit */ break; case ERESTART: frame.tf_eip = opc; break; case EJUSTRETURN: break; default: bad: if (p->p_sysent->sv_errsize) if (error >= p->p_sysent->sv_errsize) error = -1; /* XXX */ else error = p->p_sysent->sv_errtbl[error]; frame.tf_eax = error; frame.tf_eflags |= PSL_C; /* carry bit */ break; } userret(p, &frame, sticks); #ifdef KTRACE if (KTRPOINT(p, KTR_SYSRET)) ktrsysret(p->p_tracep, code, error, rval[0]); #endif }