/*- * Copyright (c) 2002 Mitsuru IWASAKI * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_acpi.h" #include #include #include #include #include #include #include "acpi.h" #include #include #include #include #include #include "pcib_if.h" /* Hooks for the ACPI CA debugging infrastructure. */ #define _COMPONENT ACPI_BUS ACPI_MODULE_NAME("PCI_LINK") ACPI_SERIAL_DECL(pci_link, "ACPI PCI link"); #define NUM_ISA_INTERRUPTS 16 #define NUM_ACPI_INTERRUPTS 256 /* * An ACPI PCI link device may contain multiple links. Each link has its * own ACPI resource. _PRT entries specify which link is being used via * the Source Index. * * XXX: A note about Source Indices and DPFs: Currently we assume that * the DPF start and end tags are not counted towards the index that * Source Index corresponds to. Also, we assume that when DPFs are in use * they various sets overlap in terms of Indices. Here's an example * resource list indicating these assumptions: * * Resource Index * -------- ----- * I/O Port 0 * Start DPF - * IRQ 1 * MemIO 2 * Start DPF - * IRQ 1 * MemIO 2 * End DPF - * DMA Channel 3 * * The XXX is because I'm not sure if this is a valid assumption to make. */ /* States during DPF processing. */ #define DPF_OUTSIDE 0 #define DPF_FIRST 1 #define DPF_IGNORE 2 struct link; struct acpi_pci_link_softc { int pl_num_links; int pl_crs_bad; struct link *pl_links; device_t pl_dev; }; struct link { struct acpi_pci_link_softc *l_sc; uint8_t l_bios_irq; uint8_t l_irq; uint8_t l_initial_irq; int l_res_index; int l_num_irqs; int *l_irqs; int l_references; int l_routed:1; int l_isa_irq:1; ACPI_RESOURCE l_prs_template; }; struct link_count_request { int in_dpf; int count; }; struct link_res_request { struct acpi_pci_link_softc *sc; int in_dpf; int res_index; int link_index; }; MALLOC_DEFINE(M_PCI_LINK, "PCI Link", "ACPI PCI Link structures"); static int pci_link_interrupt_weights[NUM_ACPI_INTERRUPTS]; static int pci_link_bios_isa_irqs; static char *pci_link_ids[] = { "PNP0C0F", NULL }; /* * Fetch the short name associated with an ACPI handle and save it in the * passed in buffer. */ static ACPI_STATUS acpi_short_name(ACPI_HANDLE handle, char *buffer, size_t buflen) { ACPI_BUFFER buf; buf.Length = buflen; buf.Pointer = buffer; return (AcpiGetName(handle, ACPI_SINGLE_NAME, &buf)); } static int acpi_pci_link_probe(device_t dev) { char descr[28], name[12]; /* * We explicitly do not check _STA since not all systems set it to * sensible values. */ if (acpi_disabled("pci_link") || ACPI_ID_PROBE(device_get_parent(dev), dev, pci_link_ids) == NULL) return (ENXIO); if (ACPI_SUCCESS(acpi_short_name(acpi_get_handle(dev), name, sizeof(name)))) { snprintf(descr, sizeof(descr), "ACPI PCI Link %s", name); device_set_desc_copy(dev, descr); } else device_set_desc(dev, "ACPI PCI Link"); return (0); } static ACPI_STATUS acpi_count_irq_resources(ACPI_RESOURCE *res, void *context) { struct link_count_request *req; req = (struct link_count_request *)context; switch (res->Id) { case ACPI_RSTYPE_START_DPF: switch (req->in_dpf) { case DPF_OUTSIDE: /* We've started the first DPF. */ req->in_dpf = DPF_FIRST; break; case DPF_FIRST: /* We've started the second DPF. */ req->in_dpf = DPF_IGNORE; break; } break; case ACPI_RSTYPE_END_DPF: /* We are finished with DPF parsing. */ KASSERT(req->in_dpf != DPF_OUTSIDE, ("%s: end dpf when not parsing a dpf", __func__)); req->in_dpf = DPF_OUTSIDE; break; case ACPI_RSTYPE_IRQ: case ACPI_RSTYPE_EXT_IRQ: /* * Don't count resources if we are in a DPF set that we are * ignoring. */ if (req->in_dpf != DPF_IGNORE) req->count++; } return (AE_OK); } static ACPI_STATUS link_add_crs(ACPI_RESOURCE *res, void *context) { struct link_res_request *req; struct link *link; ACPI_SERIAL_ASSERT(pci_link); req = (struct link_res_request *)context; switch (res->Id) { case ACPI_RSTYPE_START_DPF: switch (req->in_dpf) { case DPF_OUTSIDE: /* We've started the first DPF. */ req->in_dpf = DPF_FIRST; break; case DPF_FIRST: /* We've started the second DPF. */ panic( "%s: Multiple dependent functions within a current resource", __func__); break; } break; case ACPI_RSTYPE_END_DPF: /* We are finished with DPF parsing. */ KASSERT(req->in_dpf != DPF_OUTSIDE, ("%s: end dpf when not parsing a dpf", __func__)); req->in_dpf = DPF_OUTSIDE; break; case ACPI_RSTYPE_IRQ: case ACPI_RSTYPE_EXT_IRQ: KASSERT(req->link_index < req->sc->pl_num_links, ("%s: array boundary violation", __func__)); link = &req->sc->pl_links[req->link_index]; link->l_res_index = req->res_index; req->link_index++; req->res_index++; /* * Only use the current value if there's one IRQ. Some * systems return multiple IRQs (which is nonsense for _CRS) * when the link hasn't been programmed. */ if (res->Id == ACPI_RSTYPE_IRQ) { if (res->Data.Irq.NumberOfInterrupts == 1) link->l_irq = res->Data.Irq.Interrupts[0]; } else if (res->Data.ExtendedIrq.NumberOfInterrupts == 1) link->l_irq = res->Data.ExtendedIrq.Interrupts[0]; /* * An IRQ of zero means that the link isn't routed. */ if (link->l_irq == 0) link->l_irq = PCI_INVALID_IRQ; break; default: req->res_index++; } return (AE_OK); } /* * Populate the set of possible IRQs for each device. */ static ACPI_STATUS link_add_prs(ACPI_RESOURCE *res, void *context) { struct link_res_request *req; struct link *link; UINT32 *irqs; int i; ACPI_SERIAL_ASSERT(pci_link); req = (struct link_res_request *)context; switch (res->Id) { case ACPI_RSTYPE_START_DPF: switch (req->in_dpf) { case DPF_OUTSIDE: /* We've started the first DPF. */ req->in_dpf = DPF_FIRST; break; case DPF_FIRST: /* We've started the second DPF. */ req->in_dpf = DPF_IGNORE; break; } break; case ACPI_RSTYPE_END_DPF: /* We are finished with DPF parsing. */ KASSERT(req->in_dpf != DPF_OUTSIDE, ("%s: end dpf when not parsing a dpf", __func__)); req->in_dpf = DPF_OUTSIDE; break; case ACPI_RSTYPE_IRQ: case ACPI_RSTYPE_EXT_IRQ: /* * Don't parse resources if we are in a DPF set that we are * ignoring. */ if (req->in_dpf == DPF_IGNORE) break; KASSERT(req->link_index < req->sc->pl_num_links, ("%s: array boundary violation", __func__)); link = &req->sc->pl_links[req->link_index]; if (link->l_res_index == -1) { KASSERT(req->sc->pl_crs_bad, ("res_index should be set")); link->l_res_index = req->res_index; } req->link_index++; req->res_index++; /* * Stash a copy of the resource for later use when doing * _SRS. */ bcopy(res, &link->l_prs_template, sizeof(ACPI_RESOURCE)); if (res->Id == ACPI_RSTYPE_IRQ) { link->l_num_irqs = res->Data.Irq.NumberOfInterrupts; irqs = res->Data.Irq.Interrupts; } else { link->l_num_irqs = res->Data.ExtendedIrq.NumberOfInterrupts; irqs = res->Data.ExtendedIrq.Interrupts; } if (link->l_num_irqs == 0) break; /* * Save a list of the valid IRQs. Also, if all of the * valid IRQs are ISA IRQs, then mark this link as * routed via an ISA interrupt. */ link->l_isa_irq = TRUE; link->l_irqs = malloc(sizeof(int) * link->l_num_irqs, M_PCI_LINK, M_WAITOK | M_ZERO); for (i = 0; i < link->l_num_irqs; i++) { link->l_irqs[i] = irqs[i]; if (irqs[i] >= NUM_ISA_INTERRUPTS) link->l_isa_irq = FALSE; } break; default: if (req->in_dpf == DPF_IGNORE) break; if (req->sc->pl_crs_bad) device_printf(req->sc->pl_dev, "Warning: possible resource %d will be lost during _SRS\n", req->res_index); req->res_index++; } return (AE_OK); } static int link_valid_irq(struct link *link, int irq) { int i; ACPI_SERIAL_ASSERT(pci_link); /* Invalid interrupts are never valid. */ if (!PCI_INTERRUPT_VALID(irq)) return (FALSE); /* Any interrupt in the list of possible interrupts is valid. */ for (i = 0; i < link->l_num_irqs; i++) if (link->l_irqs[i] == irq) return (TRUE); /* * For links routed via an ISA interrupt, if the SCI is routed via * an ISA interrupt, the SCI is always treated as a valid IRQ. */ if (link->l_isa_irq && AcpiGbl_FADT->SciInt == irq && irq < NUM_ISA_INTERRUPTS) return (TRUE); /* If the interrupt wasn't found in the list it is not valid. */ return (FALSE); } static void acpi_pci_link_dump(struct acpi_pci_link_softc *sc) { struct link *link; int i, j; ACPI_SERIAL_ASSERT(pci_link); printf("Index IRQ Rtd Ref IRQs\n"); for (i = 0; i < sc->pl_num_links; i++) { link = &sc->pl_links[i]; printf("%5d %3d %c %3d ", i, link->l_irq, link->l_routed ? 'Y' : 'N', link->l_references); if (link->l_num_irqs == 0) printf(" none"); else for (j = 0; j < link->l_num_irqs; j++) printf(" %d", link->l_irqs[j]); printf("\n"); } } static int acpi_pci_link_attach(device_t dev) { struct acpi_pci_link_softc *sc; struct link_count_request creq; struct link_res_request rreq; ACPI_STATUS status; int i; sc = device_get_softc(dev); sc->pl_dev = dev; ACPI_SERIAL_BEGIN(pci_link); /* * Count the number of current resources so we know how big of * a link array to allocate. On some systems, _CRS is broken, * so for those systems try to derive the count from _PRS instead. */ creq.in_dpf = DPF_OUTSIDE; creq.count = 0; status = AcpiWalkResources(acpi_get_handle(dev), "_CRS", acpi_count_irq_resources, &creq); sc->pl_crs_bad = ACPI_FAILURE(status); if (sc->pl_crs_bad) { creq.in_dpf = DPF_OUTSIDE; creq.count = 0; status = AcpiWalkResources(acpi_get_handle(dev), "_PRS", acpi_count_irq_resources, &creq); if (ACPI_FAILURE(status)) { device_printf(dev, "Unable to parse _CRS or _PRS: %s\n", AcpiFormatException(status)); ACPI_SERIAL_END(pci_link); return (ENXIO); } } sc->pl_num_links = creq.count; if (creq.count == 0) return (0); sc->pl_links = malloc(sizeof(struct link) * sc->pl_num_links, M_PCI_LINK, M_WAITOK | M_ZERO); /* Initialize the child links. */ for (i = 0; i < sc->pl_num_links; i++) { sc->pl_links[i].l_irq = PCI_INVALID_IRQ; sc->pl_links[i].l_bios_irq = PCI_INVALID_IRQ; sc->pl_links[i].l_sc = sc; sc->pl_links[i].l_isa_irq = FALSE; sc->pl_links[i].l_res_index = -1; } /* Try to read the current settings from _CRS if it is valid. */ if (!sc->pl_crs_bad) { rreq.in_dpf = DPF_OUTSIDE; rreq.link_index = 0; rreq.res_index = 0; rreq.sc = sc; status = AcpiWalkResources(acpi_get_handle(dev), "_CRS", link_add_crs, &rreq); if (ACPI_FAILURE(status)) { device_printf(dev, "Unable to parse _CRS: %s\n", AcpiFormatException(status)); goto fail; } } /* * Try to read the possible settings from _PRS. Note that if the * _CRS is toast, we depend on having a working _PRS. However, if * _CRS works, then it is ok for _PRS to be missing. */ rreq.in_dpf = DPF_OUTSIDE; rreq.link_index = 0; rreq.res_index = 0; rreq.sc = sc; status = AcpiWalkResources(acpi_get_handle(dev), "_PRS", link_add_prs, &rreq); if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND || sc->pl_crs_bad)) { device_printf(dev, "Unable to parse _PRS: %s\n", AcpiFormatException(status)); goto fail; } if (bootverbose) { device_printf(dev, "Links after initial probe:\n"); acpi_pci_link_dump(sc); } /* Verify initial IRQs if we have _PRS. */ if (status != AE_NOT_FOUND) for (i = 0; i < sc->pl_num_links; i++) if (!link_valid_irq(&sc->pl_links[i], sc->pl_links[i].l_irq)) sc->pl_links[i].l_irq = PCI_INVALID_IRQ; if (bootverbose) { device_printf(dev, "Links after initial validation:\n"); acpi_pci_link_dump(sc); } /* Save initial IRQs. */ for (i = 0; i < sc->pl_num_links; i++) sc->pl_links[i].l_initial_irq = sc->pl_links[i].l_irq; /* * Try to disable this link. If successful, set the current IRQ to * zero and flags to indicate this link is not routed. If we can't * run _DIS (i.e., the method doesn't exist), assume the initial * IRQ was routed by the BIOS. */ if (ACPI_SUCCESS(AcpiEvaluateObject(acpi_get_handle(dev), "_DIS", NULL, NULL))) for (i = 0; i < sc->pl_num_links; i++) sc->pl_links[i].l_irq = PCI_INVALID_IRQ; else for (i = 0; i < sc->pl_num_links; i++) if (PCI_INTERRUPT_VALID(sc->pl_links[i].l_irq)) sc->pl_links[i].l_routed = TRUE; if (bootverbose) { device_printf(dev, "Links after disable:\n"); acpi_pci_link_dump(sc); } ACPI_SERIAL_END(pci_link); return (0); fail: ACPI_SERIAL_END(pci_link); for (i = 0; i < sc->pl_num_links; i++) if (sc->pl_links[i].l_irqs != NULL) free(sc->pl_links[i].l_irqs, M_PCI_LINK); free(sc->pl_links, M_PCI_LINK); return (ENXIO); } /* XXX: Note that this is identical to pci_pir_search_irq(). */ static uint8_t acpi_pci_link_search_irq(int bus, int device, int pin) { uint32_t value; uint8_t func, maxfunc; /* See if we have a valid device at function 0. */ value = pci_cfgregread(bus, device, 0, PCIR_HDRTYPE, 1); if ((value & PCIM_HDRTYPE) > PCI_MAXHDRTYPE) return (PCI_INVALID_IRQ); if (value & PCIM_MFDEV) maxfunc = PCI_FUNCMAX; else maxfunc = 0; /* Scan all possible functions at this device. */ for (func = 0; func <= maxfunc; func++) { value = pci_cfgregread(bus, device, func, PCIR_DEVVENDOR, 4); if (value == 0xffffffff) continue; value = pci_cfgregread(bus, device, func, PCIR_INTPIN, 1); /* * See if it uses the pin in question. Note that the passed * in pin uses 0 for A, .. 3 for D whereas the intpin * register uses 0 for no interrupt, 1 for A, .. 4 for D. */ if (value != pin + 1) continue; value = pci_cfgregread(bus, device, func, PCIR_INTLINE, 1); if (bootverbose) printf( "ACPI: Found matching pin for %d.%d.INT%c at func %d: %d\n", bus, device, pin + 'A', func, value); if (value != PCI_INVALID_IRQ) return (value); } return (PCI_INVALID_IRQ); } /* * Find the link structure that corresponds to the resource index passed in * via 'source_index'. */ static struct link * acpi_pci_link_lookup(device_t dev, int source_index) { struct acpi_pci_link_softc *sc; int i; ACPI_SERIAL_ASSERT(pci_link); sc = device_get_softc(dev); for (i = 0; i < sc->pl_num_links; i++) if (sc->pl_links[i].l_res_index == source_index) return (&sc->pl_links[i]); return (NULL); } void acpi_pci_link_add_reference(device_t dev, int index, device_t pcib, int slot, int pin) { struct link *link; uint8_t bios_irq; /* Bump the reference count. */ ACPI_SERIAL_BEGIN(pci_link); link = acpi_pci_link_lookup(dev, index); if (link == NULL) panic("%s: apparently invalid index %d", __func__, index); link->l_references++; if (link->l_routed) pci_link_interrupt_weights[link->l_irq]++; /* Try to find a BIOS IRQ setting from any matching devices. */ bios_irq = acpi_pci_link_search_irq(pcib_get_bus(pcib), slot, pin); if (!PCI_INTERRUPT_VALID(bios_irq)) { ACPI_SERIAL_END(pci_link); return; } /* Validate the BIOS IRQ. */ if (!link_valid_irq(link, bios_irq)) { device_printf(dev, "BIOS IRQ %u for %d.%d.INT%c is invalid\n", bios_irq, pcib_get_bus(pcib), slot, pin + 'A'); } else if (!PCI_INTERRUPT_VALID(link->l_bios_irq)) { link->l_bios_irq = bios_irq; if (bios_irq < NUM_ISA_INTERRUPTS) pci_link_bios_isa_irqs |= (1 << bios_irq); if (bios_irq != link->l_initial_irq && PCI_INTERRUPT_VALID(link->l_initial_irq)) device_printf(dev, "BIOS IRQ %u does not match initial IRQ %u\n", bios_irq, link->l_initial_irq); } else if (bios_irq != link->l_bios_irq) device_printf(dev, "BIOS IRQ %u for %d.%d.INT%c does not match previous BIOS IRQ %u\n", bios_irq, pcib_get_bus(pcib), slot, pin + 'A', link->l_bios_irq); ACPI_SERIAL_END(pci_link); } static ACPI_STATUS acpi_pci_link_srs_from_crs(struct acpi_pci_link_softc *sc, ACPI_BUFFER *srsbuf) { ACPI_RESOURCE *resource, *end, newres, *resptr; ACPI_BUFFER crsbuf; ACPI_STATUS status; struct link *link; int i, in_dpf; /* Fetch the _CRS. */ ACPI_SERIAL_ASSERT(pci_link); crsbuf.Pointer = NULL; crsbuf.Length = ACPI_ALLOCATE_BUFFER; status = AcpiGetCurrentResources(acpi_get_handle(sc->pl_dev), &crsbuf); if (ACPI_SUCCESS(status) && crsbuf.Pointer == NULL) status = AE_NO_MEMORY; if (ACPI_FAILURE(status)) { if (bootverbose) device_printf(sc->pl_dev, "Unable to fetch current resources: %s\n", AcpiFormatException(status)); return (status); } /* Fill in IRQ resources via link structures. */ srsbuf->Pointer = NULL; link = sc->pl_links; i = 0; in_dpf = DPF_OUTSIDE; resource = (ACPI_RESOURCE *)crsbuf.Pointer; end = (ACPI_RESOURCE *)((char *)crsbuf.Pointer + crsbuf.Length); for (;;) { switch (resource->Id) { case ACPI_RSTYPE_START_DPF: switch (in_dpf) { case DPF_OUTSIDE: /* We've started the first DPF. */ in_dpf = DPF_FIRST; break; case DPF_FIRST: /* We've started the second DPF. */ panic( "%s: Multiple dependent functions within a current resource", __func__); break; } resptr = NULL; break; case ACPI_RSTYPE_END_DPF: /* We are finished with DPF parsing. */ KASSERT(in_dpf != DPF_OUTSIDE, ("%s: end dpf when not parsing a dpf", __func__)); in_dpf = DPF_OUTSIDE; resptr = NULL; break; case ACPI_RSTYPE_IRQ: MPASS(i < sc->pl_num_links); MPASS(link->l_prs_template.Id == ACPI_RSTYPE_IRQ); newres = link->l_prs_template; resptr = &newres; resptr->Data.Irq.NumberOfInterrupts = 1; if (PCI_INTERRUPT_VALID(link->l_irq)) { KASSERT(link->l_irq < NUM_ISA_INTERRUPTS, ("%s: can't put non-ISA IRQ %d in legacy IRQ resource type", __func__, link->l_irq)); resptr->Data.Irq.Interrupts[0] = link->l_irq; } else resptr->Data.Irq.Interrupts[0] = 0; link++; i++; break; case ACPI_RSTYPE_EXT_IRQ: MPASS(i < sc->pl_num_links); MPASS(link->l_prs_template.Id == ACPI_RSTYPE_EXT_IRQ); newres = link->l_prs_template; resptr = &newres; resptr->Data.ExtendedIrq.NumberOfInterrupts = 1; if (PCI_INTERRUPT_VALID(link->l_irq)) resptr->Data.ExtendedIrq.Interrupts[0] = link->l_irq; else resptr->Data.ExtendedIrq.Interrupts[0] = 0; link++; i++; break; default: resptr = resource; } if (resptr != NULL) { status = acpi_AppendBufferResource(srsbuf, resptr); if (ACPI_FAILURE(status)) { device_printf(sc->pl_dev, "Unable to build resources: %s\n", AcpiFormatException(status)); if (srsbuf->Pointer != NULL) AcpiOsFree(srsbuf->Pointer); AcpiOsFree(crsbuf.Pointer); return (status); } } if (resource->Id == ACPI_RSTYPE_END_TAG) break; resource = ACPI_NEXT_RESOURCE(resource); if (resource >= end) break; } AcpiOsFree(crsbuf.Pointer); return (AE_OK); } static ACPI_STATUS acpi_pci_link_srs_from_links(struct acpi_pci_link_softc *sc, ACPI_BUFFER *srsbuf) { ACPI_RESOURCE newres; ACPI_STATUS status; struct link *link; int i; /* Start off with an empty buffer. */ srsbuf->Pointer = NULL; link = sc->pl_links; for (i = 0; i < sc->pl_num_links; i++) { /* Add a new IRQ resource from each link. */ link = &sc->pl_links[i]; newres = link->l_prs_template; if (newres.Id == ACPI_RSTYPE_IRQ) { /* Build an IRQ resource. */ newres.Data.Irq.NumberOfInterrupts = 1; if (PCI_INTERRUPT_VALID(link->l_irq)) { KASSERT(link->l_irq < NUM_ISA_INTERRUPTS, ("%s: can't put non-ISA IRQ %d in legacy IRQ resource type", __func__, link->l_irq)); newres.Data.Irq.Interrupts[0] = link->l_irq; } else newres.Data.Irq.Interrupts[0] = 0; } else { /* Build an ExtIRQ resuorce. */ newres.Data.ExtendedIrq.NumberOfInterrupts = 1; if (PCI_INTERRUPT_VALID(link->l_irq)) newres.Data.ExtendedIrq.Interrupts[0] = link->l_irq; else newres.Data.ExtendedIrq.Interrupts[0] = 0; } /* Add the new resource to the end of the _SRS buffer. */ status = acpi_AppendBufferResource(srsbuf, &newres); if (ACPI_FAILURE(status)) { device_printf(sc->pl_dev, "Unable to build resources: %s\n", AcpiFormatException(status)); if (srsbuf->Pointer != NULL) AcpiOsFree(srsbuf->Pointer); return (status); } } return (AE_OK); } static ACPI_STATUS acpi_pci_link_route_irqs(device_t dev) { struct acpi_pci_link_softc *sc; ACPI_RESOURCE *resource, *end; ACPI_BUFFER srsbuf; ACPI_STATUS status; struct link *link; int i; ACPI_SERIAL_ASSERT(pci_link); sc = device_get_softc(dev); if (sc->pl_crs_bad) status = acpi_pci_link_srs_from_links(sc, &srsbuf); else status = acpi_pci_link_srs_from_crs(sc, &srsbuf); /* Write out new resources via _SRS. */ status = AcpiSetCurrentResources(acpi_get_handle(dev), &srsbuf); if (ACPI_FAILURE(status)) { device_printf(dev, "Unable to route IRQs: %s\n", AcpiFormatException(status)); AcpiOsFree(srsbuf.Pointer); return (status); } /* * Perform acpi_config_intr() on each IRQ resource if it was just * routed for the first time. */ link = sc->pl_links; i = 0; resource = (ACPI_RESOURCE *)srsbuf.Pointer; end = (ACPI_RESOURCE *)((char *)srsbuf.Pointer + srsbuf.Length); for (;;) { if (resource->Id == ACPI_RSTYPE_END_TAG) break; switch (resource->Id) { case ACPI_RSTYPE_IRQ: case ACPI_RSTYPE_EXT_IRQ: MPASS(i < sc->pl_num_links); /* * Only configure the interrupt and update the * weights if this link has a valid IRQ and was * previously unrouted. */ if (!link->l_routed && PCI_INTERRUPT_VALID(link->l_irq)) { link->l_routed = TRUE; acpi_config_intr(dev, resource); pci_link_interrupt_weights[link->l_irq] += link->l_references; } link++; i++; break; } resource = ACPI_NEXT_RESOURCE(resource); if (resource >= end) break; } AcpiOsFree(srsbuf.Pointer); return (AE_OK); } static int acpi_pci_link_resume(device_t dev) { ACPI_STATUS status; ACPI_SERIAL_BEGIN(pci_link); status = acpi_pci_link_route_irqs(dev); ACPI_SERIAL_END(pci_link); if (ACPI_FAILURE(status)) return (ENXIO); else return (0); } /* * Pick an IRQ to use for this unrouted link. */ static uint8_t acpi_pci_link_choose_irq(device_t dev, struct link *link) { char tunable_buffer[64], link_name[5]; u_int8_t best_irq, pos_irq; int best_weight, pos_weight, i; KASSERT(!link->l_routed, ("%s: link already routed", __func__)); KASSERT(!PCI_INTERRUPT_VALID(link->l_irq), ("%s: link already has an IRQ", __func__)); /* Check for a tunable override and use it if it is valid. */ if (ACPI_SUCCESS(acpi_short_name(acpi_get_handle(dev), link_name, sizeof(link_name)))) { snprintf(tunable_buffer, sizeof(tunable_buffer), "hw.pci.link.%s.%d.irq", link_name, link->l_res_index); if (getenv_int(tunable_buffer, &i) && PCI_INTERRUPT_VALID(i) && link_valid_irq(link, i)) return (i); snprintf(tunable_buffer, sizeof(tunable_buffer), "hw.pci.link.%s.irq", link_name); if (getenv_int(tunable_buffer, &i) && PCI_INTERRUPT_VALID(i) && link_valid_irq(link, i)) return (i); } /* * If we have a valid BIOS IRQ, use that. We trust what the BIOS * says it routed over what _CRS says the link thinks is routed. */ if (PCI_INTERRUPT_VALID(link->l_bios_irq)) return (link->l_bios_irq); /* * If we don't have a BIOS IRQ but do have a valid IRQ from _CRS, * then use that. */ if (PCI_INTERRUPT_VALID(link->l_initial_irq)) return (link->l_initial_irq); /* * Ok, we have no useful hints, so we have to pick from the * possible IRQs. For ISA IRQs we only use interrupts that * have already been used by the BIOS. */ best_irq = PCI_INVALID_IRQ; best_weight = INT_MAX; for (i = 0; i < link->l_num_irqs; i++) { pos_irq = link->l_irqs[i]; if (pos_irq < NUM_ISA_INTERRUPTS && (pci_link_bios_isa_irqs & 1 << pos_irq) == 0) continue; pos_weight = pci_link_interrupt_weights[pos_irq]; if (pos_weight < best_weight) { best_weight = pos_weight; best_irq = pos_irq; } } /* * If this is an ISA IRQ, try using the SCI if it is also an ISA * interrupt as a fallback. */ if (link->l_isa_irq) { pos_irq = AcpiGbl_FADT->SciInt; pos_weight = pci_link_interrupt_weights[pos_irq]; if (pos_weight < best_weight) { best_weight = pos_weight; best_irq = pos_irq; } } if (PCI_INTERRUPT_VALID(best_irq)) { if (bootverbose) device_printf(dev, "Picked IRQ %u with weight %d\n", best_irq, best_weight); } else device_printf(dev, "Unable to choose an IRQ\n"); return (best_irq); } int acpi_pci_link_route_interrupt(device_t dev, int index) { struct link *link; ACPI_SERIAL_BEGIN(pci_link); link = acpi_pci_link_lookup(dev, index); if (link == NULL) panic("%s: apparently invalid index %d", __func__, index); /* * If this link device is already routed to an interrupt, just return * the interrupt it is routed to. */ if (link->l_routed) { KASSERT(PCI_INTERRUPT_VALID(link->l_irq), ("%s: link is routed but has an invalid IRQ", __func__)); ACPI_SERIAL_END(pci_link); return (link->l_irq); } /* Choose an IRQ if we need one. */ if (!PCI_INTERRUPT_VALID(link->l_irq)) { link->l_irq = acpi_pci_link_choose_irq(dev, link); /* * Try to route the interrupt we picked. If it fails, then * assume the interrupt is not routed. */ if (PCI_INTERRUPT_VALID(link->l_irq)) { acpi_pci_link_route_irqs(dev); if (!link->l_routed) link->l_irq = PCI_INVALID_IRQ; } } ACPI_SERIAL_END(pci_link); return (link->l_irq); } /* * This is gross, but we abuse the identify routine to perform one-time * SYSINIT() style initialization for the driver. */ static void acpi_pci_link_identify(driver_t *driver, device_t parent) { /* * If the SCI is an ISA IRQ, add it to the bitmask of known good * ISA IRQs. * * XXX: If we are using the APIC, the SCI might have been * rerouted to an APIC pin in which case this is invalid. However, * if we are using the APIC, we also shouldn't be having any PCI * interrupts routed via ISA IRQs, so this is probably ok. */ if (AcpiGbl_FADT->SciInt < NUM_ISA_INTERRUPTS) pci_link_bios_isa_irqs |= (1 << AcpiGbl_FADT->SciInt); } static device_method_t acpi_pci_link_methods[] = { /* Device interface */ DEVMETHOD(device_identify, acpi_pci_link_identify), DEVMETHOD(device_probe, acpi_pci_link_probe), DEVMETHOD(device_attach, acpi_pci_link_attach), DEVMETHOD(device_resume, acpi_pci_link_resume), {0, 0} }; static driver_t acpi_pci_link_driver = { "pci_link", acpi_pci_link_methods, sizeof(struct acpi_pci_link_softc), }; static devclass_t pci_link_devclass; DRIVER_MODULE(acpi_pci_link, acpi, acpi_pci_link_driver, pci_link_devclass, 0, 0); MODULE_DEPEND(acpi_pci_link, acpi, 1, 1, 1);