/* * Written by Julian Elischer (julian@tfs.com) * for TRW Financial Systems for use under the MACH(2.5) operating system. * * TRW Financial Systems, in accordance with their agreement with Carnegie * Mellon University, makes this software available to CMU to distribute * or use in any manner that they see fit as long as this message is kept with * the software. For this reason TFS also grants any other persons or * organisations permission to use or modify this software. * * TFS supplies this software to be publicly redistributed * on the understanding that TFS is not responsible for the correct * functioning of this software in any circumstances. * * Ported to run under 386BSD by Julian Elischer (julian@tfs.com) Sept 1992 * * $Id: cd.c,v 1.23 1994/08/31 22:50:08 se Exp $ */ #define SPLCD splbio #define ESUCCESS 0 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* rw_big and start_stop come from there */ #include /* static function prototypes */ static errval cd_get_parms(int, int); static errval cd_get_mode(u_int32, struct cd_mode_data *, u_int32); static errval cd_set_mode(u_int32 unit, struct cd_mode_data *); static errval cd_read_toc(u_int32, u_int32, u_int32, struct cd_toc_entry *, u_int32); int32 cdstrats, cdqueues; #ifdef DDB #else /* DDB */ #define Debugger(x) #endif /* DDB */ #define PAGESIZ 4096 #define SECSIZE 2048 /* XXX */ /* default only */ #define CDOUTSTANDING 2 #define CDRETRIES 1 #define UNITSHIFT 3 #define PARTITION(z) (minor(z) & 0x07) #define RAW_PART 2 #define UNIT(z) ( (minor(z) >> UNITSHIFT) ) errval cdstrategy(); void cdstart(); struct scsi_device cd_switch = { NULL, /* use default error handler */ cdstart, /* we have a queue, which is started by this */ NULL, /* we do not have an async handler */ NULL, /* use default 'done' routine */ "cd", /* we are to be refered to by this name */ 0, /* no device specific flags */ 0, 0 /* spares not used */ }; struct cd_data { u_int32 flags; #define CDINIT 0x04 /* device has been init'd */ struct scsi_link *sc_link; /* address of scsi low level switch */ u_int32 ad_info; /* info about the adapter */ u_int32 cmdscount; /* cmds allowed outstanding by board */ struct cd_parms { u_int32 blksize; u_long disksize; /* total number sectors */ } params; struct disklabel disklabel; u_int32 partflags[MAXPARTITIONS]; /* per partition flags */ #define CDOPEN 0x01 u_int32 openparts; /* one bit for each open partition */ u_int32 xfer_block_wait; struct buf buf_queue; }; #define CD_STOP 0 #define CD_START 1 #define CD_EJECT -2 struct cd_driver { u_int32 size; struct cd_data **cd_data; } cd_driver; static u_int32 next_cd_unit = 0; /* * The routine called by the low level scsi routine when it discovers * A device suitable for this driver */ int cdattach(sc_link) struct scsi_link *sc_link; { u_int32 unit, i; unsigned char *tbl; struct cd_data *cd, **cdrealloc; struct cd_parms *dp; SC_DEBUG(sc_link, SDEV_DB2, ("cdattach ")); /* * Fill out any more info in the * Link structure that we can */ unit = next_cd_unit++; sc_link->device = &cd_switch; sc_link->dev_unit = unit; /* * allocate the resources for another drive * if we have already allocate a cd_data pointer we must * copy the old pointers into a new region that is * larger and release the old region, aka realloc */ /* XXX * This if will always be true for now, but future code may * preallocate more units to reduce overhead. This would be * done by changing the malloc to be (next_cd_unit * x) and * the cd_driver.size++ to be +x */ if (unit >= cd_driver.size) { cdrealloc = malloc(sizeof(cd_driver.cd_data) * next_cd_unit, M_DEVBUF, M_NOWAIT); if (!cdrealloc) { printf("cd%d: malloc failed for cdrealloc\n", unit); return (0); } /* Make sure we have something to copy before we copy it */ bzero(cdrealloc, sizeof(cd_driver.cd_data) * next_cd_unit); if (cd_driver.size) { bcopy(cd_driver.cd_data, cdrealloc, sizeof(cd_driver.cd_data) * cd_driver.size); free(cd_driver.cd_data, M_DEVBUF); } cd_driver.cd_data = cdrealloc; cd_driver.cd_data[unit] = NULL; cd_driver.size++; } if (cd_driver.cd_data[unit]) { printf("cd%d: Already has storage!\n", unit); return (0); } /* * allocate the per drive data area */ cd = cd_driver.cd_data[unit] = malloc(sizeof(struct cd_data), M_DEVBUF, M_NOWAIT); if (!cd) { printf("cd%d: malloc failed for cd_data\n", unit); return (0); } bzero(cd, sizeof(struct cd_data)); dp = &(cd->params); /* * Store information needed to contact our base driver */ cd->sc_link = sc_link; sc_link->device = &cd_switch; sc_link->dev_unit = unit; if (cd->sc_link->adapter->adapter_info) { cd->ad_info = ((*(cd->sc_link->adapter->adapter_info)) (sc_link->adapter_unit)); cd->cmdscount = cd->ad_info & AD_INF_MAX_CMDS; if (cd->cmdscount > CDOUTSTANDING) cd->cmdscount = CDOUTSTANDING; } else { cd->ad_info = 1; cd->cmdscount = 1; } sc_link->opennings = cd->cmdscount; /* * Use the subdriver to request information regarding * the drive. We cannot use interrupts yet, so the * request must specify this. */ cd_get_parms(unit, SCSI_NOSLEEP | SCSI_NOMASK); if (dp->disksize) { printf("cd%d: cd present.[%d x %d byte records]\n", unit, cd->params.disksize, cd->params.blksize); } else { printf("cd%d: drive empty\n", unit); } cd->flags |= CDINIT; return (1); } /* * open the device. Make sure the partition info is a up-to-date as can be. */ errval cdopen(dev) dev_t dev; { errval errcode = 0; u_int32 unit, part; struct cd_parms cd_parms; struct cd_data *cd; struct scsi_link *sc_link; u_int32 heldflags; unit = UNIT(dev); part = PARTITION(dev); /* * Check the unit is legal */ if (unit >= cd_driver.size) { return (ENXIO); } cd = cd_driver.cd_data[unit]; /* * Make sure the device has been initialised */ if ((cd == NULL) || (!(cd->flags & CDINIT))) return (ENXIO); sc_link = cd->sc_link; SC_DEBUG(sc_link, SDEV_DB1, ("cdopen: dev=0x%x (unit %d (of %d),partition %d)\n", dev, unit, cd_driver.size, part)); /* * If it's been invalidated, and not everybody has closed it then * forbid re-entry. (may have changed media) */ if ((!(sc_link->flags & SDEV_MEDIA_LOADED)) && (cd->openparts)) return (ENXIO); /* * Check that it is still responding and ok. * if the media has been changed this will result in a * "unit attention" error which the error code will * disregard because the SDEV_MEDIA_LOADED flag is not yet set */ scsi_test_unit_ready(sc_link, SCSI_SILENT); /* * Next time actually take notice of error returns */ sc_link->flags |= SDEV_OPEN; /* unit attn errors are now errors */ if (scsi_test_unit_ready(sc_link, SCSI_SILENT) != 0) { SC_DEBUG(sc_link, SDEV_DB3, ("not ready\n")); errcode = ENXIO; goto bad; } SC_DEBUG(sc_link, SDEV_DB3, ("Device present\n")); /* * In case it is a funny one, tell it to start * not needed for some drives */ scsi_start_unit(sc_link, CD_START); scsi_prevent(sc_link, PR_PREVENT, SCSI_SILENT); SC_DEBUG(sc_link, SDEV_DB3, ("started ")); /* * Load the physical device parameters */ if (cd_get_parms(unit, 0)) { errcode = ENXIO; goto bad; } SC_DEBUG(sc_link, SDEV_DB3, ("Params loaded ")); /* * Make up some partition information */ cdgetdisklabel(unit); SC_DEBUG(sc_link, SDEV_DB3, ("Disklabel fabricated ")); /* * Check the partition is legal */ if ((part >= cd->disklabel.d_npartitions) && (part != RAW_PART)) { SC_DEBUG(sc_link, SDEV_DB3, ("partition %d > %d\n", part ,cd->disklabel.d_npartitions)); errcode = ENXIO; goto bad; } /* * Check that the partition exists */ if ((cd->disklabel.d_partitions[part].p_fstype == FS_UNUSED) && (part != RAW_PART)) { SC_DEBUG(sc_link, SDEV_DB3, ("part %d type UNUSED\n", part)); errcode = ENXIO; goto bad; } cd->partflags[part] |= CDOPEN; cd->openparts |= (1 << part); SC_DEBUG(sc_link, SDEV_DB3, ("open complete\n")); sc_link->flags |= SDEV_MEDIA_LOADED; return (0); bad: /* * if we would have been the only open * then leave things back as they were */ if (!(cd->openparts)) { sc_link->flags &= ~SDEV_OPEN; scsi_prevent(sc_link, PR_ALLOW, SCSI_SILENT); } return (errcode); } /* * close the device.. only called if we are the LAST * occurence of an open device */ errval cdclose(dev) dev_t dev; { u_int8 unit, part; u_int32 old_priority; struct cd_data *cd; struct scsi_link *sc_link; unit = UNIT(dev); part = PARTITION(dev); cd = cd_driver.cd_data[unit]; sc_link = cd->sc_link; SC_DEBUG(sc_link, SDEV_DB2, ("cd%d: closing part %d\n", unit, part)); cd->partflags[part] &= ~CDOPEN; cd->openparts &= ~(1 << part); /* * If we were the last open of the entire device, release it. */ if (!(cd->openparts)) { scsi_prevent(sc_link, PR_ALLOW, SCSI_SILENT); cd->sc_link->flags &= ~SDEV_OPEN; } return (0); } /* * trim the size of the transfer if needed, * called by physio * basically the smaller of our max and the scsi driver's * minphys (note we have no max ourselves) * * Trim buffer length if buffer-size is bigger than page size */ void cdminphys(bp) struct buf *bp; { (*(cd_driver.cd_data[UNIT(bp->b_dev)]->sc_link->adapter->scsi_minphys)) (bp); } /* * Actually translate the requested transfer into one the physical driver can * understand. The transfer is described by a buf and will include only one * physical transfer. */ errval cdstrategy(bp) struct buf *bp; { struct buf *dp; u_int32 opri; u_int32 unit = UNIT((bp->b_dev)); struct cd_data *cd = cd_driver.cd_data[unit]; cdstrats++; SC_DEBUG(cd->sc_link, SDEV_DB2, ("\ncdstrategy ")); SC_DEBUG(cd->sc_link, SDEV_DB1, ("cd%d: %d bytes @ blk%d\n", unit, bp->b_bcount, bp->b_blkno)); cdminphys(bp); /* * If the device has been made invalid, error out * maybe the media changed */ if (!(cd->sc_link->flags & SDEV_MEDIA_LOADED)) { bp->b_error = EIO; goto bad; } /* * can't ever write to a CD */ if ((bp->b_flags & B_READ) == 0) { bp->b_error = EROFS; goto bad; } /* * If it's a null transfer, return immediatly */ if (bp->b_bcount == 0) { goto done; } /* * Decide which unit and partition we are talking about */ if (PARTITION(bp->b_dev) != RAW_PART) { /* * do bounds checking, adjust transfer. if error, process. * if end of partition, just return */ if (bounds_check_with_label(bp, &cd->disklabel, 1) <= 0) goto done; /* otherwise, process transfer request */ } else { bp->b_pblkno = bp->b_blkno; bp->b_resid = 0; } opri = SPLCD(); dp = &cd->buf_queue; /* * Use a bounce buffer if necessary */ #ifdef BOUNCE_BUFFERS if (cd->sc_link->flags & SDEV_BOUNCE) vm_bounce_alloc(bp); #endif /* * Place it in the queue of disk activities for this disk */ disksort(dp, bp); /* * Tell the device to get going on the transfer if it's * not doing anything, otherwise just wait for completion */ cdstart(unit); splx(opri); return 0; /* XXX ??? is this the right return? */ bad: bp->b_flags |= B_ERROR; done: /* * Correctly set the buf to indicate a completed xfer */ bp->b_resid = bp->b_bcount; biodone(bp); return (0); } /* * cdstart looks to see if there is a buf waiting for the device * and that the device is not already busy. If both are true, * It deques the buf and creates a scsi command to perform the * transfer in the buf. The transfer request will call scsi_done * on completion, which will in turn call this routine again * so that the next queued transfer is performed. * The bufs are queued by the strategy routine (cdstrategy) * * This routine is also called after other non-queued requests * have been made of the scsi driver, to ensure that the queue * continues to be drained. * * must be called at the correct (highish) spl level * cdstart() is called at SPLCD from cdstrategy and scsi_done */ void cdstart(unit) u_int32 unit; { register struct buf *bp = 0; register struct buf *dp; struct scsi_rw_big cmd; u_int32 blkno, nblk; struct partition *p; struct cd_data *cd = cd_driver.cd_data[unit]; struct scsi_link *sc_link = cd->sc_link; SC_DEBUG(sc_link, SDEV_DB2, ("cdstart%d ", unit)); /* * See if there is a buf to do and we are not already * doing one */ if (!sc_link->opennings) { return; /* no room for us, unit already underway */ } if (sc_link->flags & SDEV_WAITING) { /* is room, but a special waits */ return; /* give the special that's waiting a chance to run */ } dp = &cd->buf_queue; if ((bp = dp->b_actf) != NULL) { /* yes, an assign */ dp->b_actf = bp->b_actf; } else { return; } /* * Should reject all queued entries if SDEV_MEDIA_LOADED is not true. */ if (!(sc_link->flags & SDEV_MEDIA_LOADED)) { goto bad; /* no I/O.. media changed or something */ } /* * We have a buf, now we should make a command * * First, translate the block to absolute and put it in terms of the * logical blocksize of the device. Really a bit silly until we have * real partitions, but. */ blkno = bp->b_blkno / (cd->params.blksize / 512); if (PARTITION(bp->b_dev) != RAW_PART) { p = cd->disklabel.d_partitions + PARTITION(bp->b_dev); blkno += p->p_offset; } nblk = (bp->b_bcount + (cd->params.blksize - 1)) / (cd->params.blksize); /* what if something asks for 512 bytes not on a 2k boundary? *//*XXX */ /* * Fill out the scsi command */ bzero(&cmd, sizeof(cmd)); cmd.op_code = READ_BIG; cmd.addr_3 = (blkno & 0xff000000UL) >> 24; cmd.addr_2 = (blkno & 0xff0000) >> 16; cmd.addr_1 = (blkno & 0xff00) >> 8; cmd.addr_0 = blkno & 0xff; cmd.length2 = (nblk & 0xff00) >> 8; cmd.length1 = (nblk & 0xff); /* * Call the routine that chats with the adapter. * Note: we cannot sleep as we may be an interrupt */ if (scsi_scsi_cmd(sc_link, (struct scsi_generic *) &cmd, sizeof(cmd), (u_char *) bp->b_un.b_addr, bp->b_bcount, CDRETRIES, 30000, bp, SCSI_NOSLEEP | ((bp->b_flags & B_READ) ? SCSI_DATA_IN : SCSI_DATA_OUT)) != SUCCESSFULLY_QUEUED) { bad: printf("cd%d: oops not queued", unit); bp->b_error = EIO; bp->b_flags |= B_ERROR; biodone(bp); return; } cdqueues++; } /* * Perform special action on behalf of the user. * Knows about the internals of this device */ errval cdioctl(dev_t dev, int cmd, caddr_t addr, int flag) { errval error = 0; u_int32 opri; u_int8 unit, part; register struct cd_data *cd; /* * Find the device that the user is talking about */ unit = UNIT(dev); part = PARTITION(dev); cd = cd_driver.cd_data[unit]; SC_DEBUG(cd->sc_link, SDEV_DB2, ("cdioctl 0x%x ", cmd)); /* * If the device is not valid.. abandon ship */ if (!(cd->sc_link->flags & SDEV_MEDIA_LOADED)) return (EIO); switch (cmd) { case DIOCSBAD: error = EINVAL; break; case DIOCGDINFO: *(struct disklabel *) addr = cd->disklabel; break; case DIOCGPART: ((struct partinfo *) addr)->disklab = &cd->disklabel; ((struct partinfo *) addr)->part = &cd->disklabel.d_partitions[PARTITION(dev)]; break; /* * a bit silly, but someone might want to test something on a * section of cdrom. */ case DIOCWDINFO: case DIOCSDINFO: if ((flag & FWRITE) == 0) error = EBADF; else error = setdisklabel(&cd->disklabel, (struct disklabel *) addr, 0, 0); if (error == 0) break; case DIOCWLABEL: error = EBADF; break; case CDIOCPLAYTRACKS: { struct ioc_play_track *args = (struct ioc_play_track *) addr; struct cd_mode_data data; if (error = cd_get_mode(unit, &data, AUDIO_PAGE)) break; data.page.audio.flags &= ~CD_PA_SOTC; data.page.audio.flags |= CD_PA_IMMED; if (error = cd_set_mode(unit, &data)) break; return (cd_play_tracks(unit ,args->start_track ,args->start_index ,args->end_track ,args->end_index )); } break; case CDIOCPLAYMSF: { struct ioc_play_msf *args = (struct ioc_play_msf *) addr; struct cd_mode_data data; if (error = cd_get_mode(unit, &data, AUDIO_PAGE)) break; data.page.audio.flags &= ~CD_PA_SOTC; data.page.audio.flags |= CD_PA_IMMED; if (error = cd_set_mode(unit, &data)) break; return (cd_play_msf(unit ,args->start_m ,args->start_s ,args->start_f ,args->end_m ,args->end_s ,args->end_f )); } break; case CDIOCPLAYBLOCKS: { struct ioc_play_blocks *args = (struct ioc_play_blocks *) addr; struct cd_mode_data data; if (error = cd_get_mode(unit, &data, AUDIO_PAGE)) break; data.page.audio.flags &= ~CD_PA_SOTC; data.page.audio.flags |= CD_PA_IMMED; if (error = cd_set_mode(unit, &data)) break; return (cd_play(unit, args->blk, args->len)); } break; case CDIOCREADSUBCHANNEL: { struct ioc_read_subchannel *args = (struct ioc_read_subchannel *) addr; struct cd_sub_channel_info data; u_int32 len = args->data_len; if (len > sizeof(data) || len < sizeof(struct cd_sub_channel_header)) { error = EINVAL; break; } if (error = cd_read_subchannel(unit, args->address_format, args->data_format, args->track, &data, len)) { break; } len = min(len, ((data.header.data_len[0] << 8) + data.header.data_len[1] + sizeof(struct cd_sub_channel_header))); if (copyout(&data, args->data, len) != 0) { error = EFAULT; } } break; case CDIOREADTOCHEADER: { /* ??? useless bcopy? XXX */ struct ioc_toc_header th; if (error = cd_read_toc(unit, 0, 0, (struct cd_toc_entry *)&th, sizeof th)) break; th.len = (th.len & 0xff) << 8 + ((th.len >> 8) & 0xff); bcopy(&th, addr, sizeof th); } break; case CDIOREADTOCENTRYS: { struct cd_toc { struct ioc_toc_header header; struct cd_toc_entry entries[65]; } data; struct ioc_read_toc_entry *te = (struct ioc_read_toc_entry *) addr; struct ioc_toc_header *th; u_int32 len = te->data_len; th = &data.header; if (len > sizeof(data.entries) || len < sizeof(struct cd_toc_entry)) { error = EINVAL; break; } if (error = cd_read_toc(unit, te->address_format, te->starting_track, (struct cd_toc_entry *)&data, len + sizeof(struct ioc_toc_header))) break; len = min(len, ((((th->len & 0xff) << 8) + ((th->len >> 8))) - (sizeof(th->starting_track) + sizeof(th->ending_track)))); if (copyout(data.entries, te->data, len) != 0) { error = EFAULT; } } break; case CDIOCSETPATCH: { struct ioc_patch *arg = (struct ioc_patch *) addr; struct cd_mode_data data; if (error = cd_get_mode(unit, &data, AUDIO_PAGE)) break; data.page.audio.port[LEFT_PORT].channels = arg->patch[0]; data.page.audio.port[RIGHT_PORT].channels = arg->patch[1]; data.page.audio.port[2].channels = arg->patch[2]; data.page.audio.port[3].channels = arg->patch[3]; if (error = cd_set_mode(unit, &data)) break; /* eh? */ } break; case CDIOCGETVOL: { struct ioc_vol *arg = (struct ioc_vol *) addr; struct cd_mode_data data; if (error = cd_get_mode(unit, &data, AUDIO_PAGE)) break; arg->vol[LEFT_PORT] = data.page.audio.port[LEFT_PORT].volume; arg->vol[RIGHT_PORT] = data.page.audio.port[RIGHT_PORT].volume; arg->vol[2] = data.page.audio.port[2].volume; arg->vol[3] = data.page.audio.port[3].volume; } break; case CDIOCSETVOL: { struct ioc_vol *arg = (struct ioc_vol *) addr; struct cd_mode_data data; if (error = cd_get_mode(unit, &data, AUDIO_PAGE)) break; data.page.audio.port[LEFT_PORT].channels = CHANNEL_0; data.page.audio.port[LEFT_PORT].volume = arg->vol[LEFT_PORT]; data.page.audio.port[RIGHT_PORT].channels = CHANNEL_1; data.page.audio.port[RIGHT_PORT].volume = arg->vol[RIGHT_PORT]; data.page.audio.port[2].volume = arg->vol[2]; data.page.audio.port[3].volume = arg->vol[3]; if (error = cd_set_mode(unit, &data)) break; } break; case CDIOCSETMONO: { struct ioc_vol *arg = (struct ioc_vol *) addr; struct cd_mode_data data; if (error = cd_get_mode(unit, &data, AUDIO_PAGE)) break; data.page.audio.port[LEFT_PORT].channels = LEFT_CHANNEL | RIGHT_CHANNEL | 4 | 8; data.page.audio.port[RIGHT_PORT].channels = LEFT_CHANNEL | RIGHT_CHANNEL; data.page.audio.port[2].channels = 0; data.page.audio.port[3].channels = 0; if (error = cd_set_mode(unit, &data)) break; } break; case CDIOCSETSTERIO: { struct ioc_vol *arg = (struct ioc_vol *) addr; struct cd_mode_data data; if (error = cd_get_mode(unit, &data, AUDIO_PAGE)) break; data.page.audio.port[LEFT_PORT].channels = LEFT_CHANNEL; data.page.audio.port[RIGHT_PORT].channels = RIGHT_CHANNEL; data.page.audio.port[2].channels = 0; data.page.audio.port[3].channels = 0; if (error = cd_set_mode(unit, &data)) break; } break; case CDIOCSETMUTE: { struct ioc_vol *arg = (struct ioc_vol *) addr; struct cd_mode_data data; if (error = cd_get_mode(unit, &data, AUDIO_PAGE)) break; data.page.audio.port[LEFT_PORT].channels = 0; data.page.audio.port[RIGHT_PORT].channels = 0; data.page.audio.port[2].channels = 0; data.page.audio.port[3].channels = 0; if (error = cd_set_mode(unit, &data)) break; } break; case CDIOCSETLEFT: { struct ioc_vol *arg = (struct ioc_vol *) addr; struct cd_mode_data data; if (error = cd_get_mode(unit, &data, AUDIO_PAGE)) break; data.page.audio.port[LEFT_PORT].channels = LEFT_CHANNEL; data.page.audio.port[RIGHT_PORT].channels = LEFT_CHANNEL; data.page.audio.port[2].channels = 0; data.page.audio.port[3].channels = 0; if (error = cd_set_mode(unit, &data)) break; } break; case CDIOCSETRIGHT: { struct ioc_vol *arg = (struct ioc_vol *) addr; struct cd_mode_data data; if (error = cd_get_mode(unit, &data, AUDIO_PAGE)) break; data.page.audio.port[LEFT_PORT].channels = RIGHT_CHANNEL; data.page.audio.port[RIGHT_PORT].channels = RIGHT_CHANNEL; data.page.audio.port[2].channels = 0; data.page.audio.port[3].channels = 0; if (error = cd_set_mode(unit, &data)) break; } break; case CDIOCRESUME: error = cd_pause(unit, 1); break; case CDIOCPAUSE: error = cd_pause(unit, 0); break; case CDIOCSTART: error = scsi_start_unit(cd->sc_link, 0); break; case CDIOCSTOP: error = scsi_stop_unit(cd->sc_link, 0, 0); break; case CDIOCEJECT: error = scsi_stop_unit(cd->sc_link, 1, 0); break; case CDIOCALLOW: error = scsi_prevent(cd->sc_link, PR_ALLOW, 0); break; case CDIOCPREVENT: error = scsi_prevent(cd->sc_link, PR_PREVENT, 0); break; case CDIOCSETDEBUG: cd->sc_link->flags |= (SDEV_DB1 | SDEV_DB2); break; case CDIOCCLRDEBUG: cd->sc_link->flags &= ~(SDEV_DB1 | SDEV_DB2); break; case CDIOCRESET: return (cd_reset(unit)); break; default: if(part == RAW_PART) error = scsi_do_ioctl(cd->sc_link,cmd,addr,flag); else error = ENOTTY; break; } return (error); } /* * Load the label information on the named device * Actually fabricate a disklabel * * EVENTUALLY take information about different * data tracks from the TOC and put it in the disklabel */ errval cdgetdisklabel(unit) u_int8 unit; { /*unsigned int n, m; */ char *errstring; struct cd_data *cd; cd = cd_driver.cd_data[unit]; bzero(&cd->disklabel, sizeof(struct disklabel)); /* * make partition 0 the whole disk */ strncpy(cd->disklabel.d_typename, "scsi cd_rom", 16); strncpy(cd->disklabel.d_packname, "ficticious", 16); cd->disklabel.d_secsize = cd->params.blksize; /* as long as it's not 0 */ cd->disklabel.d_nsectors = 100; cd->disklabel.d_ntracks = 1; cd->disklabel.d_ncylinders = (cd->params.disksize / 100) + 1; cd->disklabel.d_secpercyl = 100; cd->disklabel.d_secperunit = cd->params.disksize; cd->disklabel.d_rpm = 300; cd->disklabel.d_interleave = 1; cd->disklabel.d_flags = D_REMOVABLE; /* * remember that comparisons with the partition are done * assuming the blocks are 512 bytes so fudge it. */ cd->disklabel.d_npartitions = 1; cd->disklabel.d_partitions[0].p_offset = 0; cd->disklabel.d_partitions[0].p_size = cd->params.disksize * (cd->params.blksize / 512); cd->disklabel.d_partitions[0].p_fstype = 9; cd->disklabel.d_magic = DISKMAGIC; cd->disklabel.d_magic2 = DISKMAGIC; cd->disklabel.d_checksum = dkcksum(&(cd->disklabel)); /* * Signal to other users and routines that we now have a * disklabel that represents the media (maybe) */ return (ESUCCESS); } /* * Find out from the device what it's capacity is */ u_int32 cd_size(unit, flags) int unit; int flags; { struct scsi_read_cd_cap_data rdcap; struct scsi_read_cd_capacity scsi_cmd; u_int32 size; u_int32 blksize; struct cd_data *cd = cd_driver.cd_data[unit]; /* * make up a scsi command and ask the scsi driver to do * it for you. */ bzero(&scsi_cmd, sizeof(scsi_cmd)); scsi_cmd.op_code = READ_CD_CAPACITY; /* * If the command works, interpret the result as a 4 byte * number of blocks and a blocksize */ if (scsi_scsi_cmd(cd->sc_link, (struct scsi_generic *) &scsi_cmd, sizeof(scsi_cmd), (u_char *) & rdcap, sizeof(rdcap), CDRETRIES, 20000, /* might be a disk-changer */ NULL, SCSI_DATA_IN | flags) != 0) { printf("cd%d: could not get size\n", unit); return (0); } else { size = rdcap.addr_0 + 1; size += rdcap.addr_1 << 8; size += rdcap.addr_2 << 16; size += rdcap.addr_3 << 24; blksize = rdcap.length_0; blksize += rdcap.length_1 << 8; blksize += rdcap.length_2 << 16; blksize += rdcap.length_3 << 24; } if (blksize < 512) blksize = 2048; /* some drives lie ! */ if (size < 100) size = 400000; /* ditto */ SC_DEBUG(cd->sc_link, SDEV_DB3, ("cd%d: %d %d byte blocks\n" ,unit, size, blksize)); cd->params.disksize = size; cd->params.blksize = blksize; return (size); } /* * Get the requested page into the buffer given */ static errval cd_get_mode(unit, data, page) u_int32 unit; struct cd_mode_data *data; u_int32 page; { struct scsi_mode_sense scsi_cmd; errval retval; bzero(&scsi_cmd, sizeof(scsi_cmd)); bzero(data, sizeof(*data)); scsi_cmd.op_code = MODE_SENSE; scsi_cmd.page = page; scsi_cmd.length = sizeof(*data) & 0xff; retval = scsi_scsi_cmd(cd_driver.cd_data[unit]->sc_link, (struct scsi_generic *) &scsi_cmd, sizeof(scsi_cmd), (u_char *) data, sizeof(*data), CDRETRIES, 20000, /* should be immed */ NULL, SCSI_DATA_IN); return (retval); } /* * Get the requested page into the buffer given */ errval cd_set_mode(unit, data) u_int32 unit; struct cd_mode_data *data; { struct scsi_mode_select scsi_cmd; bzero(&scsi_cmd, sizeof(scsi_cmd)); scsi_cmd.op_code = MODE_SELECT; scsi_cmd.byte2 |= SMS_PF; scsi_cmd.length = sizeof(*data) & 0xff; data->header.data_length = 0; return (scsi_scsi_cmd(cd_driver.cd_data[unit]->sc_link, (struct scsi_generic *) &scsi_cmd, sizeof(scsi_cmd), (u_char *) data, sizeof(*data), CDRETRIES, 20000, /* should be immed */ NULL, SCSI_DATA_OUT)); } /* * Get scsi driver to send a "start playing" command */ errval cd_play(unit, blk, len) u_int32 unit, blk, len; { struct scsi_play scsi_cmd; errval retval; bzero(&scsi_cmd, sizeof(scsi_cmd)); scsi_cmd.op_code = PLAY; scsi_cmd.blk_addr[0] = (blk >> 24) & 0xff; scsi_cmd.blk_addr[1] = (blk >> 16) & 0xff; scsi_cmd.blk_addr[2] = (blk >> 8) & 0xff; scsi_cmd.blk_addr[3] = blk & 0xff; scsi_cmd.xfer_len[0] = (len >> 8) & 0xff; scsi_cmd.xfer_len[1] = len & 0xff; return (scsi_scsi_cmd(cd_driver.cd_data[unit]->sc_link, (struct scsi_generic *) &scsi_cmd, sizeof(scsi_cmd), 0, 0, CDRETRIES, 200000, /* should be immed */ NULL, 0)); } /* * Get scsi driver to send a "start playing" command */ errval cd_play_big(unit, blk, len) u_int32 unit, blk, len; { struct scsi_play_big scsi_cmd; errval retval; bzero(&scsi_cmd, sizeof(scsi_cmd)); scsi_cmd.op_code = PLAY_BIG; scsi_cmd.blk_addr[0] = (blk >> 24) & 0xff; scsi_cmd.blk_addr[1] = (blk >> 16) & 0xff; scsi_cmd.blk_addr[2] = (blk >> 8) & 0xff; scsi_cmd.blk_addr[3] = blk & 0xff; scsi_cmd.xfer_len[0] = (len >> 24) & 0xff; scsi_cmd.xfer_len[1] = (len >> 16) & 0xff; scsi_cmd.xfer_len[2] = (len >> 8) & 0xff; scsi_cmd.xfer_len[3] = len & 0xff; return (scsi_scsi_cmd(cd_driver.cd_data[unit]->sc_link, (struct scsi_generic *) &scsi_cmd, sizeof(scsi_cmd), 0, 0, CDRETRIES, 20000, /* should be immed */ NULL, 0)); } /* * Get scsi driver to send a "start playing" command */ errval cd_play_tracks(unit, strack, sindex, etrack, eindex) u_int32 unit, strack, sindex, etrack, eindex; { struct scsi_play_track scsi_cmd; errval retval; bzero(&scsi_cmd, sizeof(scsi_cmd)); scsi_cmd.op_code = PLAY_TRACK; scsi_cmd.start_track = strack; scsi_cmd.start_index = sindex; scsi_cmd.end_track = etrack; scsi_cmd.end_index = eindex; return (scsi_scsi_cmd(cd_driver.cd_data[unit]->sc_link, (struct scsi_generic *) &scsi_cmd, sizeof(scsi_cmd), 0, 0, CDRETRIES, 20000, /* should be immed */ NULL, 0)); } /* * Get scsi driver to send a "play msf" command */ errval cd_play_msf(unit, startm, starts, startf, endm, ends, endf) u_int32 unit, startm, starts, startf, endm, ends, endf; { struct scsi_play_msf scsi_cmd; bzero(&scsi_cmd, sizeof(scsi_cmd)); scsi_cmd.op_code = PLAY_MSF; scsi_cmd.start_m = startm; scsi_cmd.start_s = starts; scsi_cmd.start_f = startf; scsi_cmd.end_m = endm; scsi_cmd.end_s = ends; scsi_cmd.end_f = endf; return (scsi_scsi_cmd(cd_driver.cd_data[unit]->sc_link, (struct scsi_generic *) &scsi_cmd, sizeof(scsi_cmd), 0, 0, CDRETRIES, 2000, NULL, 0)); } /* * Get scsi driver to send a "start up" command */ errval cd_pause(unit, go) u_int32 unit, go; { struct scsi_pause scsi_cmd; bzero(&scsi_cmd, sizeof(scsi_cmd)); scsi_cmd.op_code = PAUSE; scsi_cmd.resume = go; return (scsi_scsi_cmd(cd_driver.cd_data[unit]->sc_link, (struct scsi_generic *) &scsi_cmd, sizeof(scsi_cmd), 0, 0, CDRETRIES, 2000, NULL, 0)); } /* * Get scsi driver to send a "RESET" command */ errval cd_reset(unit) u_int32 unit; { return (scsi_scsi_cmd(cd_driver.cd_data[unit]->sc_link, 0, 0, 0, 0, CDRETRIES, 2000, NULL, SCSI_RESET)); } /* * Read subchannel */ errval cd_read_subchannel(unit, mode, format, track, data, len) u_int32 unit, mode, format; int track; struct cd_sub_channel_info *data; u_int32 len; { struct scsi_read_subchannel scsi_cmd; errval error; bzero(&scsi_cmd, sizeof(scsi_cmd)); scsi_cmd.op_code = READ_SUBCHANNEL; if (mode == CD_MSF_FORMAT) scsi_cmd.byte2 |= CD_MSF; scsi_cmd.byte3 = SRS_SUBQ; scsi_cmd.subchan_format = format; scsi_cmd.track = track; scsi_cmd.data_len[0] = (len) >> 8; scsi_cmd.data_len[1] = (len) & 0xff; return (scsi_scsi_cmd(cd_driver.cd_data[unit]->sc_link, (struct scsi_generic *) &scsi_cmd, sizeof(struct scsi_read_subchannel), (u_char *) data, len, CDRETRIES, 5000, NULL, SCSI_DATA_IN)); } /* * Read table of contents */ static errval cd_read_toc(unit, mode, start, data, len) u_int32 unit, mode, start; struct cd_toc_entry *data; u_int32 len; { struct scsi_read_toc scsi_cmd; errval error; u_int32 ntoc; bzero(&scsi_cmd, sizeof(scsi_cmd)); /*if(len!=sizeof(struct ioc_toc_header)) * ntoc=((len)-sizeof(struct ioc_toc_header))/sizeof(struct cd_toc_entry); * else */ ntoc = len; scsi_cmd.op_code = READ_TOC; if (mode == CD_MSF_FORMAT) scsi_cmd.byte2 |= CD_MSF; scsi_cmd.from_track = start; scsi_cmd.data_len[0] = (ntoc) >> 8; scsi_cmd.data_len[1] = (ntoc) & 0xff; return (scsi_scsi_cmd(cd_driver.cd_data[unit]->sc_link, (struct scsi_generic *) &scsi_cmd, sizeof(struct scsi_read_toc), (u_char *) data, len, CDRETRIES, 5000, NULL, SCSI_DATA_IN)); } #define b2tol(a) (((unsigned)(a##_1) << 8) + (unsigned)a##_0 ) /* * Get the scsi driver to send a full inquiry to the device and use the * results to fill out the disk parameter structure. */ static errval cd_get_parms(unit, flags) int unit; int flags; { struct cd_data *cd = cd_driver.cd_data[unit]; /* * First check if we have it all loaded */ if (cd->sc_link->flags & SDEV_MEDIA_LOADED) return (0); /* * give a number of sectors so that sec * trks * cyls * is <= disk_size */ if (cd_size(unit, flags)) { cd->sc_link->flags |= SDEV_MEDIA_LOADED; return (0); } else { return (ENXIO); } } int cdsize(dev_t dev) { return (-1); }