/*- * Copyright (c) 2008 Hans Petter Selasky. All rights reserved. * Copyright (c) 2004 The NetBSD Foundation, Inc. All rights reserved. * Copyright (c) 2004 Lennart Augustsson. All rights reserved. * Copyright (c) 2004 Charles M. Hannum. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * USB Enhanced Host Controller Driver, a.k.a. USB 2.0 controller. * * The EHCI 0.96 spec can be found at * http://developer.intel.com/technology/usb/download/ehci-r096.pdf * The EHCI 1.0 spec can be found at * http://developer.intel.com/technology/usb/download/ehci-r10.pdf * and the USB 2.0 spec at * http://www.usb.org/developers/docs/usb_20.zip * */ /* * TODO: * 1) command failures are not recovered correctly */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #define USB_DEBUG_VAR ehcidebug #define usb2_config_td_cc ehci_config_copy #define usb2_config_td_softc ehci_softc #include #include #include #include #include #include #include #include #include #include #include #include #include #define EHCI_BUS2SC(bus) ((ehci_softc_t *)(((uint8_t *)(bus)) - \ USB_P2U(&(((ehci_softc_t *)0)->sc_bus)))) #if USB_DEBUG static int ehcidebug = 0; static int ehcinohighspeed = 0; SYSCTL_NODE(_hw_usb2, OID_AUTO, ehci, CTLFLAG_RW, 0, "USB ehci"); SYSCTL_INT(_hw_usb2_ehci, OID_AUTO, debug, CTLFLAG_RW, &ehcidebug, 0, "Debug level"); SYSCTL_INT(_hw_usb2_ehci, OID_AUTO, no_hs, CTLFLAG_RW, &ehcinohighspeed, 0, "Disable High Speed USB"); static void ehci_dump_regs(ehci_softc_t *sc); static void ehci_dump_sqh(ehci_qh_t *sqh); #endif #define EHCI_INTR_ENDPT 1 extern struct usb2_bus_methods ehci_bus_methods; extern struct usb2_pipe_methods ehci_device_bulk_methods; extern struct usb2_pipe_methods ehci_device_ctrl_methods; extern struct usb2_pipe_methods ehci_device_intr_methods; extern struct usb2_pipe_methods ehci_device_isoc_fs_methods; extern struct usb2_pipe_methods ehci_device_isoc_hs_methods; extern struct usb2_pipe_methods ehci_root_ctrl_methods; extern struct usb2_pipe_methods ehci_root_intr_methods; static usb2_config_td_command_t ehci_root_ctrl_task; static void ehci_do_poll(struct usb2_bus *bus); static void ehci_root_ctrl_poll(struct ehci_softc *sc); static void ehci_device_done(struct usb2_xfer *xfer, usb2_error_t error); static uint8_t ehci_check_transfer(struct usb2_xfer *xfer); static void ehci_timeout(void *arg); static usb2_sw_transfer_func_t ehci_root_intr_done; static usb2_sw_transfer_func_t ehci_root_ctrl_done; struct ehci_std_temp { struct usb2_page_cache *pc; ehci_qtd_t *td; ehci_qtd_t *td_next; uint32_t average; uint32_t qtd_status; uint32_t len; uint16_t max_frame_size; uint8_t shortpkt; uint8_t auto_data_toggle; uint8_t setup_alt_next; uint8_t short_frames_ok; }; void ehci_iterate_hw_softc(struct usb2_bus *bus, usb2_bus_mem_sub_cb_t *cb) { struct ehci_softc *sc = EHCI_BUS2SC(bus); uint32_t i; cb(bus, &sc->sc_hw.pframes_pc, &sc->sc_hw.pframes_pg, sizeof(uint32_t) * EHCI_FRAMELIST_COUNT, EHCI_FRAMELIST_ALIGN); cb(bus, &sc->sc_hw.async_start_pc, &sc->sc_hw.async_start_pg, sizeof(ehci_qh_t), EHCI_QH_ALIGN); for (i = 0; i != EHCI_VIRTUAL_FRAMELIST_COUNT; i++) { cb(bus, sc->sc_hw.intr_start_pc + i, sc->sc_hw.intr_start_pg + i, sizeof(ehci_qh_t), EHCI_QH_ALIGN); } for (i = 0; i != EHCI_VIRTUAL_FRAMELIST_COUNT; i++) { cb(bus, sc->sc_hw.isoc_hs_start_pc + i, sc->sc_hw.isoc_hs_start_pg + i, sizeof(ehci_itd_t), EHCI_ITD_ALIGN); } for (i = 0; i != EHCI_VIRTUAL_FRAMELIST_COUNT; i++) { cb(bus, sc->sc_hw.isoc_fs_start_pc + i, sc->sc_hw.isoc_fs_start_pg + i, sizeof(ehci_sitd_t), EHCI_SITD_ALIGN); } return; } static usb2_error_t ehci_hc_reset(ehci_softc_t *sc) { uint32_t hcr; uint32_t n; EOWRITE4(sc, EHCI_USBCMD, 0); /* Halt controller */ for (n = 0; n != 100; n++) { usb2_pause_mtx(&sc->sc_bus.mtx, 1); hcr = EOREAD4(sc, EHCI_USBSTS); if (hcr & EHCI_STS_HCH) { hcr = 0; break; } } /* * Fall through and try reset anyway even though * Table 2-9 in the EHCI spec says this will result * in undefined behavior. */ EOWRITE4(sc, EHCI_USBCMD, EHCI_CMD_HCRESET); for (n = 0; n != 100; n++) { usb2_pause_mtx(&sc->sc_bus.mtx, 1); hcr = EOREAD4(sc, EHCI_USBCMD); if (!(hcr & EHCI_CMD_HCRESET)) { hcr = 0; break; } } if (hcr) { return (USB_ERR_IOERROR); } return (0); } usb2_error_t ehci_init(ehci_softc_t *sc) { struct usb2_page_search buf_res; uint32_t version; uint32_t sparams; uint32_t cparams; uint32_t hcr; uint16_t i; uint16_t x; uint16_t y; uint16_t bit; usb2_error_t err = 0; mtx_lock(&sc->sc_bus.mtx); DPRINTF("start\n"); usb2_callout_init_mtx(&sc->sc_tmo_pcd, &sc->sc_bus.mtx, CALLOUT_RETURNUNLOCKED); #if USB_DEBUG if (ehcidebug > 2) { ehci_dump_regs(sc); } #endif sc->sc_offs = EREAD1(sc, EHCI_CAPLENGTH); version = EREAD2(sc, EHCI_HCIVERSION); device_printf(sc->sc_bus.bdev, "EHCI version %x.%x\n", version >> 8, version & 0xff); sparams = EREAD4(sc, EHCI_HCSPARAMS); DPRINTF("sparams=0x%x\n", sparams); sc->sc_noport = EHCI_HCS_N_PORTS(sparams); cparams = EREAD4(sc, EHCI_HCCPARAMS); DPRINTF("cparams=0x%x\n", cparams); if (EHCI_HCC_64BIT(cparams)) { DPRINTF("HCC uses 64-bit structures\n"); /* MUST clear segment register if 64 bit capable */ EWRITE4(sc, EHCI_CTRLDSSEGMENT, 0); } sc->sc_bus.usbrev = USB_REV_2_0; /* Reset the controller */ DPRINTF("%s: resetting\n", device_get_nameunit(sc->sc_bus.bdev)); err = ehci_hc_reset(sc); if (err) { device_printf(sc->sc_bus.bdev, "reset timeout\n"); goto done; } /* * use current frame-list-size selection 0: 1024*4 bytes 1: 512*4 * bytes 2: 256*4 bytes 3: unknown */ if (EHCI_CMD_FLS(EOREAD4(sc, EHCI_USBCMD)) == 3) { device_printf(sc->sc_bus.bdev, "invalid frame-list-size\n"); err = USB_ERR_IOERROR; goto done; } /* set up the bus struct */ sc->sc_bus.methods = &ehci_bus_methods; sc->sc_eintrs = EHCI_NORMAL_INTRS; for (i = 0; i < EHCI_VIRTUAL_FRAMELIST_COUNT; i++) { ehci_qh_t *qh; usb2_get_page(sc->sc_hw.intr_start_pc + i, 0, &buf_res); qh = buf_res.buffer; /* initialize page cache pointer */ qh->page_cache = sc->sc_hw.intr_start_pc + i; /* store a pointer to queue head */ sc->sc_intr_p_last[i] = qh; qh->qh_self = htole32(buf_res.physaddr) | htole32(EHCI_LINK_QH); qh->qh_endp = htole32(EHCI_QH_SET_EPS(EHCI_QH_SPEED_HIGH)); qh->qh_endphub = htole32(EHCI_QH_SET_MULT(1)); qh->qh_curqtd = 0; qh->qh_qtd.qtd_next = htole32(EHCI_LINK_TERMINATE); qh->qh_qtd.qtd_altnext = htole32(EHCI_LINK_TERMINATE); qh->qh_qtd.qtd_status = htole32(EHCI_QTD_HALTED); } /* * the QHs are arranged to give poll intervals that are * powers of 2 times 1ms */ bit = EHCI_VIRTUAL_FRAMELIST_COUNT / 2; while (bit) { x = bit; while (x & bit) { ehci_qh_t *qh_x; ehci_qh_t *qh_y; y = (x ^ bit) | (bit / 2); qh_x = sc->sc_intr_p_last[x]; qh_y = sc->sc_intr_p_last[y]; /* * the next QH has half the poll interval */ qh_x->qh_link = qh_y->qh_self; x++; } bit >>= 1; } if (1) { ehci_qh_t *qh; qh = sc->sc_intr_p_last[0]; /* the last (1ms) QH terminates */ qh->qh_link = htole32(EHCI_LINK_TERMINATE); } for (i = 0; i < EHCI_VIRTUAL_FRAMELIST_COUNT; i++) { ehci_sitd_t *sitd; ehci_itd_t *itd; usb2_get_page(sc->sc_hw.isoc_fs_start_pc + i, 0, &buf_res); sitd = buf_res.buffer; /* initialize page cache pointer */ sitd->page_cache = sc->sc_hw.isoc_fs_start_pc + i; /* store a pointer to the transfer descriptor */ sc->sc_isoc_fs_p_last[i] = sitd; /* initialize full speed isochronous */ sitd->sitd_self = htole32(buf_res.physaddr) | htole32(EHCI_LINK_SITD); sitd->sitd_back = htole32(EHCI_LINK_TERMINATE); sitd->sitd_next = sc->sc_intr_p_last[i | (EHCI_VIRTUAL_FRAMELIST_COUNT / 2)]->qh_self; usb2_get_page(sc->sc_hw.isoc_hs_start_pc + i, 0, &buf_res); itd = buf_res.buffer; /* initialize page cache pointer */ itd->page_cache = sc->sc_hw.isoc_hs_start_pc + i; /* store a pointer to the transfer descriptor */ sc->sc_isoc_hs_p_last[i] = itd; /* initialize high speed isochronous */ itd->itd_self = htole32(buf_res.physaddr) | htole32(EHCI_LINK_ITD); itd->itd_next = sitd->sitd_self; } usb2_get_page(&sc->sc_hw.pframes_pc, 0, &buf_res); if (1) { uint32_t *pframes; pframes = buf_res.buffer; /* * execution order: * pframes -> high speed isochronous -> * full speed isochronous -> interrupt QH's */ for (i = 0; i < EHCI_FRAMELIST_COUNT; i++) { pframes[i] = sc->sc_isoc_hs_p_last [i & (EHCI_VIRTUAL_FRAMELIST_COUNT - 1)]->itd_self; } } /* setup sync list pointer */ EOWRITE4(sc, EHCI_PERIODICLISTBASE, buf_res.physaddr); usb2_get_page(&sc->sc_hw.async_start_pc, 0, &buf_res); if (1) { ehci_qh_t *qh; qh = buf_res.buffer; /* initialize page cache pointer */ qh->page_cache = &sc->sc_hw.async_start_pc; /* store a pointer to the queue head */ sc->sc_async_p_last = qh; /* init dummy QH that starts the async list */ qh->qh_self = htole32(buf_res.physaddr) | htole32(EHCI_LINK_QH); /* fill the QH */ qh->qh_endp = htole32(EHCI_QH_SET_EPS(EHCI_QH_SPEED_HIGH) | EHCI_QH_HRECL); qh->qh_endphub = htole32(EHCI_QH_SET_MULT(1)); qh->qh_link = qh->qh_self; qh->qh_curqtd = 0; /* fill the overlay qTD */ qh->qh_qtd.qtd_next = htole32(EHCI_LINK_TERMINATE); qh->qh_qtd.qtd_altnext = htole32(EHCI_LINK_TERMINATE); qh->qh_qtd.qtd_status = htole32(EHCI_QTD_HALTED); } /* flush all cache into memory */ usb2_bus_mem_flush_all(&sc->sc_bus, &ehci_iterate_hw_softc); #if USB_DEBUG if (ehcidebug) { ehci_dump_sqh(sc->sc_async_p_last); } #endif /* setup async list pointer */ EOWRITE4(sc, EHCI_ASYNCLISTADDR, buf_res.physaddr | EHCI_LINK_QH); /* enable interrupts */ EOWRITE4(sc, EHCI_USBINTR, sc->sc_eintrs); /* turn on controller */ EOWRITE4(sc, EHCI_USBCMD, EHCI_CMD_ITC_1 | /* 1 microframes interrupt delay */ (EOREAD4(sc, EHCI_USBCMD) & EHCI_CMD_FLS_M) | EHCI_CMD_ASE | EHCI_CMD_PSE | EHCI_CMD_RS); /* Take over port ownership */ EOWRITE4(sc, EHCI_CONFIGFLAG, EHCI_CONF_CF); for (i = 0; i < 100; i++) { usb2_pause_mtx(&sc->sc_bus.mtx, 1); hcr = EOREAD4(sc, EHCI_USBSTS) & EHCI_STS_HCH; if (!hcr) { break; } } if (hcr) { device_printf(sc->sc_bus.bdev, "run timeout\n"); err = USB_ERR_IOERROR; goto done; } done: mtx_unlock(&sc->sc_bus.mtx); if (!err) { /* catch any lost interrupts */ ehci_do_poll(&sc->sc_bus); } return (err); } /* * shut down the controller when the system is going down */ void ehci_detach(struct ehci_softc *sc) { mtx_lock(&sc->sc_bus.mtx); usb2_callout_stop(&sc->sc_tmo_pcd); EOWRITE4(sc, EHCI_USBINTR, sc->sc_eintrs); if (ehci_hc_reset(sc)) { DPRINTF("reset failed!\n"); } /* XXX let stray task complete */ usb2_pause_mtx(&sc->sc_bus.mtx, 50); mtx_unlock(&sc->sc_bus.mtx); usb2_callout_drain(&sc->sc_tmo_pcd); return; } void ehci_suspend(struct ehci_softc *sc) { uint32_t cmd; uint32_t hcr; uint8_t i; mtx_lock(&sc->sc_bus.mtx); for (i = 1; i <= sc->sc_noport; i++) { cmd = EOREAD4(sc, EHCI_PORTSC(i)); if (((cmd & EHCI_PS_PO) == 0) && ((cmd & EHCI_PS_PE) == EHCI_PS_PE)) { EOWRITE4(sc, EHCI_PORTSC(i), cmd | EHCI_PS_SUSP); } } sc->sc_cmd = EOREAD4(sc, EHCI_USBCMD); cmd = sc->sc_cmd & ~(EHCI_CMD_ASE | EHCI_CMD_PSE); EOWRITE4(sc, EHCI_USBCMD, cmd); for (i = 0; i < 100; i++) { hcr = EOREAD4(sc, EHCI_USBSTS) & (EHCI_STS_ASS | EHCI_STS_PSS); if (hcr == 0) { break; } usb2_pause_mtx(&sc->sc_bus.mtx, 1); } if (hcr != 0) { device_printf(sc->sc_bus.bdev, "reset timeout\n"); } cmd &= ~EHCI_CMD_RS; EOWRITE4(sc, EHCI_USBCMD, cmd); for (i = 0; i < 100; i++) { hcr = EOREAD4(sc, EHCI_USBSTS) & EHCI_STS_HCH; if (hcr == EHCI_STS_HCH) { break; } usb2_pause_mtx(&sc->sc_bus.mtx, 1); } if (hcr != EHCI_STS_HCH) { device_printf(sc->sc_bus.bdev, "config timeout\n"); } mtx_unlock(&sc->sc_bus.mtx); return; } void ehci_resume(struct ehci_softc *sc) { struct usb2_page_search buf_res; uint32_t cmd; uint32_t hcr; uint8_t i; mtx_lock(&sc->sc_bus.mtx); /* restore things in case the bios doesn't */ EOWRITE4(sc, EHCI_CTRLDSSEGMENT, 0); usb2_get_page(&sc->sc_hw.pframes_pc, 0, &buf_res); EOWRITE4(sc, EHCI_PERIODICLISTBASE, buf_res.physaddr); usb2_get_page(&sc->sc_hw.async_start_pc, 0, &buf_res); EOWRITE4(sc, EHCI_ASYNCLISTADDR, buf_res.physaddr | EHCI_LINK_QH); EOWRITE4(sc, EHCI_USBINTR, sc->sc_eintrs); hcr = 0; for (i = 1; i <= sc->sc_noport; i++) { cmd = EOREAD4(sc, EHCI_PORTSC(i)); if (((cmd & EHCI_PS_PO) == 0) && ((cmd & EHCI_PS_SUSP) == EHCI_PS_SUSP)) { EOWRITE4(sc, EHCI_PORTSC(i), cmd | EHCI_PS_FPR); hcr = 1; } } if (hcr) { usb2_pause_mtx(&sc->sc_bus.mtx, USB_RESUME_WAIT); for (i = 1; i <= sc->sc_noport; i++) { cmd = EOREAD4(sc, EHCI_PORTSC(i)); if (((cmd & EHCI_PS_PO) == 0) && ((cmd & EHCI_PS_SUSP) == EHCI_PS_SUSP)) { EOWRITE4(sc, EHCI_PORTSC(i), cmd & ~EHCI_PS_FPR); } } } EOWRITE4(sc, EHCI_USBCMD, sc->sc_cmd); for (i = 0; i < 100; i++) { hcr = EOREAD4(sc, EHCI_USBSTS) & EHCI_STS_HCH; if (hcr != EHCI_STS_HCH) { break; } usb2_pause_mtx(&sc->sc_bus.mtx, 1); } if (hcr == EHCI_STS_HCH) { device_printf(sc->sc_bus.bdev, "config timeout\n"); } usb2_pause_mtx(&sc->sc_bus.mtx, USB_RESUME_WAIT); mtx_unlock(&sc->sc_bus.mtx); /* catch any lost interrupts */ ehci_do_poll(&sc->sc_bus); return; } void ehci_shutdown(ehci_softc_t *sc) { DPRINTF("stopping the HC\n"); mtx_lock(&sc->sc_bus.mtx); if (ehci_hc_reset(sc)) { DPRINTF("reset failed!\n"); } mtx_unlock(&sc->sc_bus.mtx); } #if USB_DEBUG static void ehci_dump_regs(ehci_softc_t *sc) { uint32_t i; i = EOREAD4(sc, EHCI_USBCMD); printf("cmd=0x%08x\n", i); if (i & EHCI_CMD_ITC_1) printf(" EHCI_CMD_ITC_1\n"); if (i & EHCI_CMD_ITC_2) printf(" EHCI_CMD_ITC_2\n"); if (i & EHCI_CMD_ITC_4) printf(" EHCI_CMD_ITC_4\n"); if (i & EHCI_CMD_ITC_8) printf(" EHCI_CMD_ITC_8\n"); if (i & EHCI_CMD_ITC_16) printf(" EHCI_CMD_ITC_16\n"); if (i & EHCI_CMD_ITC_32) printf(" EHCI_CMD_ITC_32\n"); if (i & EHCI_CMD_ITC_64) printf(" EHCI_CMD_ITC_64\n"); if (i & EHCI_CMD_ASPME) printf(" EHCI_CMD_ASPME\n"); if (i & EHCI_CMD_ASPMC) printf(" EHCI_CMD_ASPMC\n"); if (i & EHCI_CMD_LHCR) printf(" EHCI_CMD_LHCR\n"); if (i & EHCI_CMD_IAAD) printf(" EHCI_CMD_IAAD\n"); if (i & EHCI_CMD_ASE) printf(" EHCI_CMD_ASE\n"); if (i & EHCI_CMD_PSE) printf(" EHCI_CMD_PSE\n"); if (i & EHCI_CMD_FLS_M) printf(" EHCI_CMD_FLS_M\n"); if (i & EHCI_CMD_HCRESET) printf(" EHCI_CMD_HCRESET\n"); if (i & EHCI_CMD_RS) printf(" EHCI_CMD_RS\n"); i = EOREAD4(sc, EHCI_USBSTS); printf("sts=0x%08x\n", i); if (i & EHCI_STS_ASS) printf(" EHCI_STS_ASS\n"); if (i & EHCI_STS_PSS) printf(" EHCI_STS_PSS\n"); if (i & EHCI_STS_REC) printf(" EHCI_STS_REC\n"); if (i & EHCI_STS_HCH) printf(" EHCI_STS_HCH\n"); if (i & EHCI_STS_IAA) printf(" EHCI_STS_IAA\n"); if (i & EHCI_STS_HSE) printf(" EHCI_STS_HSE\n"); if (i & EHCI_STS_FLR) printf(" EHCI_STS_FLR\n"); if (i & EHCI_STS_PCD) printf(" EHCI_STS_PCD\n"); if (i & EHCI_STS_ERRINT) printf(" EHCI_STS_ERRINT\n"); if (i & EHCI_STS_INT) printf(" EHCI_STS_INT\n"); printf("ien=0x%08x\n", EOREAD4(sc, EHCI_USBINTR)); printf("frindex=0x%08x ctrdsegm=0x%08x periodic=0x%08x async=0x%08x\n", EOREAD4(sc, EHCI_FRINDEX), EOREAD4(sc, EHCI_CTRLDSSEGMENT), EOREAD4(sc, EHCI_PERIODICLISTBASE), EOREAD4(sc, EHCI_ASYNCLISTADDR)); for (i = 1; i <= sc->sc_noport; i++) { printf("port %d status=0x%08x\n", i, EOREAD4(sc, EHCI_PORTSC(i))); } return; } static void ehci_dump_link(uint32_t link, int type) { link = le32toh(link); printf("0x%08x", link); if (link & EHCI_LINK_TERMINATE) printf(""); else { printf("<"); if (type) { switch (EHCI_LINK_TYPE(link)) { case EHCI_LINK_ITD: printf("ITD"); break; case EHCI_LINK_QH: printf("QH"); break; case EHCI_LINK_SITD: printf("SITD"); break; case EHCI_LINK_FSTN: printf("FSTN"); break; } } printf(">"); } return; } static void ehci_dump_qtd(ehci_qtd_t *qtd) { uint32_t s; printf(" next="); ehci_dump_link(qtd->qtd_next, 0); printf(" altnext="); ehci_dump_link(qtd->qtd_altnext, 0); printf("\n"); s = le32toh(qtd->qtd_status); printf(" status=0x%08x: toggle=%d bytes=0x%x ioc=%d c_page=0x%x\n", s, EHCI_QTD_GET_TOGGLE(s), EHCI_QTD_GET_BYTES(s), EHCI_QTD_GET_IOC(s), EHCI_QTD_GET_C_PAGE(s)); printf(" cerr=%d pid=%d stat=%s%s%s%s%s%s%s%s\n", EHCI_QTD_GET_CERR(s), EHCI_QTD_GET_PID(s), (s & EHCI_QTD_ACTIVE) ? "ACTIVE" : "NOT_ACTIVE", (s & EHCI_QTD_HALTED) ? "-HALTED" : "", (s & EHCI_QTD_BUFERR) ? "-BUFERR" : "", (s & EHCI_QTD_BABBLE) ? "-BABBLE" : "", (s & EHCI_QTD_XACTERR) ? "-XACTERR" : "", (s & EHCI_QTD_MISSEDMICRO) ? "-MISSED" : "", (s & EHCI_QTD_SPLITXSTATE) ? "-SPLIT" : "", (s & EHCI_QTD_PINGSTATE) ? "-PING" : ""); for (s = 0; s < 5; s++) { printf(" buffer[%d]=0x%08x\n", s, le32toh(qtd->qtd_buffer[s])); } for (s = 0; s < 5; s++) { printf(" buffer_hi[%d]=0x%08x\n", s, le32toh(qtd->qtd_buffer_hi[s])); } return; } static uint8_t ehci_dump_sqtd(ehci_qtd_t *sqtd) { uint8_t temp; usb2_pc_cpu_invalidate(sqtd->page_cache); printf("QTD(%p) at 0x%08x:\n", sqtd, le32toh(sqtd->qtd_self)); ehci_dump_qtd(sqtd); temp = (sqtd->qtd_next & htole32(EHCI_LINK_TERMINATE)) ? 1 : 0; return (temp); } static void ehci_dump_sqtds(ehci_qtd_t *sqtd) { uint16_t i; uint8_t stop; stop = 0; for (i = 0; sqtd && (i < 20) && !stop; sqtd = sqtd->obj_next, i++) { stop = ehci_dump_sqtd(sqtd); } if (sqtd) { printf("dump aborted, too many TDs\n"); } return; } static void ehci_dump_sqh(ehci_qh_t *qh) { uint32_t endp, endphub; usb2_pc_cpu_invalidate(qh->page_cache); printf("QH(%p) at 0x%08x:\n", qh, le32toh(qh->qh_self) & ~0x1F); printf(" link="); ehci_dump_link(qh->qh_link, 1); printf("\n"); endp = le32toh(qh->qh_endp); printf(" endp=0x%08x\n", endp); printf(" addr=0x%02x inact=%d endpt=%d eps=%d dtc=%d hrecl=%d\n", EHCI_QH_GET_ADDR(endp), EHCI_QH_GET_INACT(endp), EHCI_QH_GET_ENDPT(endp), EHCI_QH_GET_EPS(endp), EHCI_QH_GET_DTC(endp), EHCI_QH_GET_HRECL(endp)); printf(" mpl=0x%x ctl=%d nrl=%d\n", EHCI_QH_GET_MPL(endp), EHCI_QH_GET_CTL(endp), EHCI_QH_GET_NRL(endp)); endphub = le32toh(qh->qh_endphub); printf(" endphub=0x%08x\n", endphub); printf(" smask=0x%02x cmask=0x%02x huba=0x%02x port=%d mult=%d\n", EHCI_QH_GET_SMASK(endphub), EHCI_QH_GET_CMASK(endphub), EHCI_QH_GET_HUBA(endphub), EHCI_QH_GET_PORT(endphub), EHCI_QH_GET_MULT(endphub)); printf(" curqtd="); ehci_dump_link(qh->qh_curqtd, 0); printf("\n"); printf("Overlay qTD:\n"); ehci_dump_qtd((void *)&qh->qh_qtd); return; } static void ehci_dump_sitd(ehci_sitd_t *sitd) { usb2_pc_cpu_invalidate(sitd->page_cache); printf("SITD(%p) at 0x%08x\n", sitd, le32toh(sitd->sitd_self) & ~0x1F); printf(" next=0x%08x\n", le32toh(sitd->sitd_next)); printf(" portaddr=0x%08x dir=%s addr=%d endpt=0x%x port=0x%x huba=0x%x\n", le32toh(sitd->sitd_portaddr), (sitd->sitd_portaddr & htole32(EHCI_SITD_SET_DIR_IN)) ? "in" : "out", EHCI_SITD_GET_ADDR(le32toh(sitd->sitd_portaddr)), EHCI_SITD_GET_ENDPT(le32toh(sitd->sitd_portaddr)), EHCI_SITD_GET_PORT(le32toh(sitd->sitd_portaddr)), EHCI_SITD_GET_HUBA(le32toh(sitd->sitd_portaddr))); printf(" mask=0x%08x\n", le32toh(sitd->sitd_mask)); printf(" status=0x%08x <%s> len=0x%x\n", le32toh(sitd->sitd_status), (sitd->sitd_status & htole32(EHCI_SITD_ACTIVE)) ? "ACTIVE" : "", EHCI_SITD_GET_LEN(le32toh(sitd->sitd_status))); printf(" back=0x%08x, bp=0x%08x,0x%08x,0x%08x,0x%08x\n", le32toh(sitd->sitd_back), le32toh(sitd->sitd_bp[0]), le32toh(sitd->sitd_bp[1]), le32toh(sitd->sitd_bp_hi[0]), le32toh(sitd->sitd_bp_hi[1])); return; } static void ehci_dump_itd(ehci_itd_t *itd) { usb2_pc_cpu_invalidate(itd->page_cache); printf("ITD(%p) at 0x%08x\n", itd, le32toh(itd->itd_self) & ~0x1F); printf(" next=0x%08x\n", le32toh(itd->itd_next)); printf(" status[0]=0x%08x; <%s>\n", le32toh(itd->itd_status[0]), (itd->itd_status[0] & htole32(EHCI_ITD_ACTIVE)) ? "ACTIVE" : ""); printf(" status[1]=0x%08x; <%s>\n", le32toh(itd->itd_status[1]), (itd->itd_status[1] & htole32(EHCI_ITD_ACTIVE)) ? "ACTIVE" : ""); printf(" status[2]=0x%08x; <%s>\n", le32toh(itd->itd_status[2]), (itd->itd_status[2] & htole32(EHCI_ITD_ACTIVE)) ? "ACTIVE" : ""); printf(" status[3]=0x%08x; <%s>\n", le32toh(itd->itd_status[3]), (itd->itd_status[3] & htole32(EHCI_ITD_ACTIVE)) ? "ACTIVE" : ""); printf(" status[4]=0x%08x; <%s>\n", le32toh(itd->itd_status[4]), (itd->itd_status[4] & htole32(EHCI_ITD_ACTIVE)) ? "ACTIVE" : ""); printf(" status[5]=0x%08x; <%s>\n", le32toh(itd->itd_status[5]), (itd->itd_status[5] & htole32(EHCI_ITD_ACTIVE)) ? "ACTIVE" : ""); printf(" status[6]=0x%08x; <%s>\n", le32toh(itd->itd_status[6]), (itd->itd_status[6] & htole32(EHCI_ITD_ACTIVE)) ? "ACTIVE" : ""); printf(" status[7]=0x%08x; <%s>\n", le32toh(itd->itd_status[7]), (itd->itd_status[7] & htole32(EHCI_ITD_ACTIVE)) ? "ACTIVE" : ""); printf(" bp[0]=0x%08x\n", le32toh(itd->itd_bp[0])); printf(" addr=0x%02x; endpt=0x%01x\n", EHCI_ITD_GET_ADDR(le32toh(itd->itd_bp[0])), EHCI_ITD_GET_ENDPT(le32toh(itd->itd_bp[0]))); printf(" bp[1]=0x%08x\n", le32toh(itd->itd_bp[1])); printf(" dir=%s; mpl=0x%02x\n", (le32toh(itd->itd_bp[1]) & EHCI_ITD_SET_DIR_IN) ? "in" : "out", EHCI_ITD_GET_MPL(le32toh(itd->itd_bp[1]))); printf(" bp[2..6]=0x%08x,0x%08x,0x%08x,0x%08x,0x%08x\n", le32toh(itd->itd_bp[2]), le32toh(itd->itd_bp[3]), le32toh(itd->itd_bp[4]), le32toh(itd->itd_bp[5]), le32toh(itd->itd_bp[6])); printf(" bp_hi=0x%08x,0x%08x,0x%08x,0x%08x,\n" " 0x%08x,0x%08x,0x%08x\n", le32toh(itd->itd_bp_hi[0]), le32toh(itd->itd_bp_hi[1]), le32toh(itd->itd_bp_hi[2]), le32toh(itd->itd_bp_hi[3]), le32toh(itd->itd_bp_hi[4]), le32toh(itd->itd_bp_hi[5]), le32toh(itd->itd_bp_hi[6])); return; } static void ehci_dump_isoc(ehci_softc_t *sc) { ehci_itd_t *itd; ehci_sitd_t *sitd; uint16_t max = 1000; uint16_t pos; pos = (EOREAD4(sc, EHCI_FRINDEX) / 8) & (EHCI_VIRTUAL_FRAMELIST_COUNT - 1); printf("%s: isochronous dump from frame 0x%03x:\n", __FUNCTION__, pos); itd = sc->sc_isoc_hs_p_last[pos]; sitd = sc->sc_isoc_fs_p_last[pos]; while (itd && max && max--) { ehci_dump_itd(itd); itd = itd->prev; } while (sitd && max && max--) { ehci_dump_sitd(sitd); sitd = sitd->prev; } return; } #endif static void ehci_transfer_intr_enqueue(struct usb2_xfer *xfer) { /* check for early completion */ if (ehci_check_transfer(xfer)) { return; } /* put transfer on interrupt queue */ usb2_transfer_enqueue(&xfer->udev->bus->intr_q, xfer); /* start timeout, if any */ if (xfer->timeout != 0) { usb2_transfer_timeout_ms(xfer, &ehci_timeout, xfer->timeout); } return; } #define EHCI_APPEND_FS_TD(std,last) (last) = _ehci_append_fs_td(std,last) static ehci_sitd_t * _ehci_append_fs_td(ehci_sitd_t *std, ehci_sitd_t *last) { DPRINTFN(11, "%p to %p\n", std, last); /* (sc->sc_bus.mtx) must be locked */ std->next = last->next; std->sitd_next = last->sitd_next; std->prev = last; usb2_pc_cpu_flush(std->page_cache); /* * the last->next->prev is never followed: std->next->prev = std; */ last->next = std; last->sitd_next = std->sitd_self; usb2_pc_cpu_flush(last->page_cache); return (std); } #define EHCI_APPEND_HS_TD(std,last) (last) = _ehci_append_hs_td(std,last) static ehci_itd_t * _ehci_append_hs_td(ehci_itd_t *std, ehci_itd_t *last) { DPRINTFN(11, "%p to %p\n", std, last); /* (sc->sc_bus.mtx) must be locked */ std->next = last->next; std->itd_next = last->itd_next; std->prev = last; usb2_pc_cpu_flush(std->page_cache); /* * the last->next->prev is never followed: std->next->prev = std; */ last->next = std; last->itd_next = std->itd_self; usb2_pc_cpu_flush(last->page_cache); return (std); } #define EHCI_APPEND_QH(sqh,last) (last) = _ehci_append_qh(sqh,last) static ehci_qh_t * _ehci_append_qh(ehci_qh_t *sqh, ehci_qh_t *last) { DPRINTFN(11, "%p to %p\n", sqh, last); /* (sc->sc_bus.mtx) must be locked */ sqh->next = last->next; sqh->qh_link = last->qh_link; sqh->prev = last; usb2_pc_cpu_flush(sqh->page_cache); /* * the last->next->prev is never followed: sqh->next->prev = sqh; */ last->next = sqh; last->qh_link = sqh->qh_self; usb2_pc_cpu_flush(last->page_cache); #if USB_DEBUG if (ehcidebug > 5) { printf("%s:\n", __FUNCTION__); ehci_dump_sqh(sqh); } #endif return (sqh); } #define EHCI_REMOVE_FS_TD(std,last) (last) = _ehci_remove_fs_td(std,last) static ehci_sitd_t * _ehci_remove_fs_td(ehci_sitd_t *std, ehci_sitd_t *last) { DPRINTFN(11, "%p from %p\n", std, last); /* (sc->sc_bus.mtx) must be locked */ std->prev->next = std->next; std->prev->sitd_next = std->sitd_next; usb2_pc_cpu_flush(std->prev->page_cache); if (std->next) { std->next->prev = std->prev; usb2_pc_cpu_flush(std->next->page_cache); } return ((last == std) ? std->prev : last); } #define EHCI_REMOVE_HS_TD(std,last) (last) = _ehci_remove_hs_td(std,last) static ehci_itd_t * _ehci_remove_hs_td(ehci_itd_t *std, ehci_itd_t *last) { DPRINTFN(11, "%p from %p\n", std, last); /* (sc->sc_bus.mtx) must be locked */ std->prev->next = std->next; std->prev->itd_next = std->itd_next; usb2_pc_cpu_flush(std->prev->page_cache); if (std->next) { std->next->prev = std->prev; usb2_pc_cpu_flush(std->next->page_cache); } return ((last == std) ? std->prev : last); } #define EHCI_REMOVE_QH(sqh,last) (last) = _ehci_remove_qh(sqh,last) static ehci_qh_t * _ehci_remove_qh(ehci_qh_t *sqh, ehci_qh_t *last) { DPRINTFN(11, "%p from %p\n", sqh, last); /* (sc->sc_bus.mtx) must be locked */ /* only remove if not removed from a queue */ if (sqh->prev) { sqh->prev->next = sqh->next; sqh->prev->qh_link = sqh->qh_link; usb2_pc_cpu_flush(sqh->prev->page_cache); if (sqh->next) { sqh->next->prev = sqh->prev; usb2_pc_cpu_flush(sqh->next->page_cache); } /* * set the Terminate-bit in the e_next of the QH, in case * the transferred packet was short so that the QH still * points at the last used TD */ sqh->qh_qtd.qtd_next = htole32(EHCI_LINK_TERMINATE); last = ((last == sqh) ? sqh->prev : last); sqh->prev = 0; usb2_pc_cpu_flush(sqh->page_cache); } return (last); } static usb2_error_t ehci_non_isoc_done_sub(struct usb2_xfer *xfer) { ehci_qtd_t *td; ehci_qtd_t *td_alt_next; uint32_t status; uint16_t len; td = xfer->td_transfer_cache; td_alt_next = td->alt_next; while (1) { usb2_pc_cpu_invalidate(td->page_cache); status = le32toh(td->qtd_status); len = EHCI_QTD_GET_BYTES(status); /* * Verify the status length and subtract * the remainder from "frlengths[]": */ if (len > td->len) { /* should not happen */ DPRINTF("Invalid status length, " "0x%04x/0x%04x bytes\n", len, td->len); status |= EHCI_QTD_HALTED; } else if (xfer->aframes != xfer->nframes) { xfer->frlengths[xfer->aframes] -= len; } /* Check for last transfer */ if (((void *)td) == xfer->td_transfer_last) { if (len == 0) { /* * Halt is ok if descriptor is last, * and complete: */ status &= ~EHCI_QTD_HALTED; } td = NULL; break; } /* Check for transfer error */ if (status & EHCI_QTD_HALTED) { /* the transfer is finished */ td = NULL; break; } /* Check for short transfer */ if (len > 0) { if (xfer->flags_int.short_frames_ok) { /* follow alt next */ td = td->alt_next; } else { /* the transfer is finished */ td = NULL; } break; } td = td->obj_next; if (td->alt_next != td_alt_next) { /* this USB frame is complete */ break; } } /* update transfer cache */ xfer->td_transfer_cache = td; /* update data toggle */ xfer->pipe->toggle_next = (status & EHCI_QTD_TOGGLE_MASK) ? 1 : 0; #if USB_DEBUG if (status & EHCI_QTD_STATERRS) { DPRINTFN(11, "error, addr=%d, endpt=0x%02x, frame=0x%02x" "status=%s%s%s%s%s%s%s%s\n", xfer->address, xfer->endpoint, xfer->aframes, (status & EHCI_QTD_ACTIVE) ? "[ACTIVE]" : "[NOT_ACTIVE]", (status & EHCI_QTD_HALTED) ? "[HALTED]" : "", (status & EHCI_QTD_BUFERR) ? "[BUFERR]" : "", (status & EHCI_QTD_BABBLE) ? "[BABBLE]" : "", (status & EHCI_QTD_XACTERR) ? "[XACTERR]" : "", (status & EHCI_QTD_MISSEDMICRO) ? "[MISSED]" : "", (status & EHCI_QTD_SPLITXSTATE) ? "[SPLIT]" : "", (status & EHCI_QTD_PINGSTATE) ? "[PING]" : ""); } #endif return ((status & EHCI_QTD_HALTED) ? USB_ERR_STALLED : USB_ERR_NORMAL_COMPLETION); } static void ehci_non_isoc_done(struct usb2_xfer *xfer) { usb2_error_t err = 0; DPRINTFN(13, "xfer=%p pipe=%p transfer done\n", xfer, xfer->pipe); #if USB_DEBUG if (ehcidebug > 10) { ehci_dump_sqtds(xfer->td_transfer_first); } #endif /* reset scanner */ xfer->td_transfer_cache = xfer->td_transfer_first; if (xfer->flags_int.control_xfr) { if (xfer->flags_int.control_hdr) { err = ehci_non_isoc_done_sub(xfer); } xfer->aframes = 1; if (xfer->td_transfer_cache == NULL) { goto done; } } while (xfer->aframes != xfer->nframes) { err = ehci_non_isoc_done_sub(xfer); xfer->aframes++; if (xfer->td_transfer_cache == NULL) { goto done; } } if (xfer->flags_int.control_xfr && !xfer->flags_int.control_act) { err = ehci_non_isoc_done_sub(xfer); } done: ehci_device_done(xfer, err); return; } /*------------------------------------------------------------------------* * ehci_check_transfer * * Return values: * 0: USB transfer is not finished * Else: USB transfer is finished *------------------------------------------------------------------------*/ static uint8_t ehci_check_transfer(struct usb2_xfer *xfer) { struct usb2_pipe_methods *methods = xfer->pipe->methods; uint32_t status; DPRINTFN(13, "xfer=%p checking transfer\n", xfer); if (methods == &ehci_device_isoc_fs_methods) { ehci_sitd_t *td; /* isochronous full speed transfer */ td = xfer->td_transfer_last; usb2_pc_cpu_invalidate(td->page_cache); status = le32toh(td->sitd_status); /* also check if first is complete */ td = xfer->td_transfer_first; usb2_pc_cpu_invalidate(td->page_cache); status |= le32toh(td->sitd_status); if (!(status & EHCI_SITD_ACTIVE)) { ehci_device_done(xfer, USB_ERR_NORMAL_COMPLETION); goto transferred; } } else if (methods == &ehci_device_isoc_hs_methods) { ehci_itd_t *td; /* isochronous high speed transfer */ td = xfer->td_transfer_last; usb2_pc_cpu_invalidate(td->page_cache); status = td->itd_status[0] | td->itd_status[1] | td->itd_status[2] | td->itd_status[3] | td->itd_status[4] | td->itd_status[5] | td->itd_status[6] | td->itd_status[7]; /* also check first transfer */ td = xfer->td_transfer_first; usb2_pc_cpu_invalidate(td->page_cache); status |= td->itd_status[0] | td->itd_status[1] | td->itd_status[2] | td->itd_status[3] | td->itd_status[4] | td->itd_status[5] | td->itd_status[6] | td->itd_status[7]; /* if no transactions are active we continue */ if (!(status & htole32(EHCI_ITD_ACTIVE))) { ehci_device_done(xfer, USB_ERR_NORMAL_COMPLETION); goto transferred; } } else { ehci_qtd_t *td; /* non-isochronous transfer */ /* * check whether there is an error somewhere in the middle, * or whether there was a short packet (SPD and not ACTIVE) */ td = xfer->td_transfer_cache; while (1) { usb2_pc_cpu_invalidate(td->page_cache); status = le32toh(td->qtd_status); /* * if there is an active TD the transfer isn't done */ if (status & EHCI_QTD_ACTIVE) { /* update cache */ xfer->td_transfer_cache = td; goto done; } /* * last transfer descriptor makes the transfer done */ if (((void *)td) == xfer->td_transfer_last) { break; } /* * any kind of error makes the transfer done */ if (status & EHCI_QTD_HALTED) { break; } /* * if there is no alternate next transfer, a short * packet also makes the transfer done */ if (EHCI_QTD_GET_BYTES(status)) { if (xfer->flags_int.short_frames_ok) { /* follow alt next */ if (td->alt_next) { td = td->alt_next; continue; } } /* transfer is done */ break; } td = td->obj_next; } ehci_non_isoc_done(xfer); goto transferred; } done: DPRINTFN(13, "xfer=%p is still active\n", xfer); return (0); transferred: return (1); } static void ehci_pcd_enable(ehci_softc_t *sc) { mtx_assert(&sc->sc_bus.mtx, MA_OWNED); sc->sc_eintrs |= EHCI_STS_PCD; EOWRITE4(sc, EHCI_USBINTR, sc->sc_eintrs); /* acknowledge any PCD interrupt */ EOWRITE4(sc, EHCI_USBSTS, EHCI_STS_PCD); usb2_sw_transfer(&sc->sc_root_intr, &ehci_root_intr_done); mtx_unlock(&sc->sc_bus.mtx); return; } static void ehci_interrupt_poll(ehci_softc_t *sc) { struct usb2_xfer *xfer; repeat: TAILQ_FOREACH(xfer, &sc->sc_bus.intr_q.head, wait_entry) { /* * check if transfer is transferred */ if (ehci_check_transfer(xfer)) { /* queue has been modified */ goto repeat; } } return; } /*------------------------------------------------------------------------* * ehci_interrupt - EHCI interrupt handler * * NOTE: Do not access "sc->sc_bus.bdev" inside the interrupt handler, * hence the interrupt handler will be setup before "sc->sc_bus.bdev" * is present ! *------------------------------------------------------------------------*/ void ehci_interrupt(ehci_softc_t *sc) { uint32_t status; mtx_lock(&sc->sc_bus.mtx); DPRINTFN(16, "real interrupt\n"); #if USB_DEBUG if (ehcidebug > 15) { ehci_dump_regs(sc); } #endif status = EHCI_STS_INTRS(EOREAD4(sc, EHCI_USBSTS)); if (status == 0) { /* the interrupt was not for us */ goto done; } if (!(status & sc->sc_eintrs)) { goto done; } EOWRITE4(sc, EHCI_USBSTS, status); /* acknowledge */ status &= sc->sc_eintrs; if (status & EHCI_STS_HSE) { printf("%s: unrecoverable error, " "controller halted\n", __FUNCTION__); #if USB_DEBUG ehci_dump_regs(sc); ehci_dump_isoc(sc); #endif } if (status & EHCI_STS_PCD) { /* * Disable PCD interrupt for now, because it will be * on until the port has been reset. */ sc->sc_eintrs &= ~EHCI_STS_PCD; EOWRITE4(sc, EHCI_USBINTR, sc->sc_eintrs); usb2_sw_transfer(&sc->sc_root_intr, &ehci_root_intr_done); /* do not allow RHSC interrupts > 1 per second */ usb2_callout_reset(&sc->sc_tmo_pcd, hz, (void *)&ehci_pcd_enable, sc); } status &= ~(EHCI_STS_INT | EHCI_STS_ERRINT | EHCI_STS_PCD | EHCI_STS_IAA); if (status != 0) { /* block unprocessed interrupts */ sc->sc_eintrs &= ~status; EOWRITE4(sc, EHCI_USBINTR, sc->sc_eintrs); printf("%s: blocking interrupts 0x%x\n", __FUNCTION__, status); } /* poll all the USB transfers */ ehci_interrupt_poll(sc); done: mtx_unlock(&sc->sc_bus.mtx); return; } /* * called when a request does not complete */ static void ehci_timeout(void *arg) { struct usb2_xfer *xfer = arg; ehci_softc_t *sc = xfer->usb2_sc; DPRINTF("xfer=%p\n", xfer); mtx_assert(&sc->sc_bus.mtx, MA_OWNED); /* transfer is transferred */ ehci_device_done(xfer, USB_ERR_TIMEOUT); mtx_unlock(&sc->sc_bus.mtx); return; } static void ehci_do_poll(struct usb2_bus *bus) { struct ehci_softc *sc = EHCI_BUS2SC(bus); mtx_lock(&sc->sc_bus.mtx); ehci_interrupt_poll(sc); ehci_root_ctrl_poll(sc); mtx_unlock(&sc->sc_bus.mtx); return; } static void ehci_setup_standard_chain_sub(struct ehci_std_temp *temp) { struct usb2_page_search buf_res; ehci_qtd_t *td; ehci_qtd_t *td_next; ehci_qtd_t *td_alt_next; uint32_t qtd_altnext; uint32_t buf_offset; uint32_t average; uint32_t len_old; uint8_t shortpkt_old; uint8_t precompute; qtd_altnext = htole32(EHCI_LINK_TERMINATE); td_alt_next = NULL; buf_offset = 0; shortpkt_old = temp->shortpkt; len_old = temp->len; precompute = 1; restart: td = temp->td; td_next = temp->td_next; while (1) { if (temp->len == 0) { if (temp->shortpkt) { break; } /* send a Zero Length Packet, ZLP, last */ temp->shortpkt = 1; average = 0; } else { average = temp->average; if (temp->len < average) { if (temp->len % temp->max_frame_size) { temp->shortpkt = 1; } average = temp->len; } } if (td_next == NULL) { panic("%s: out of EHCI transfer descriptors!", __FUNCTION__); } /* get next TD */ td = td_next; td_next = td->obj_next; /* check if we are pre-computing */ if (precompute) { /* update remaining length */ temp->len -= average; continue; } /* fill out current TD */ td->qtd_status = temp->qtd_status | htole32(EHCI_QTD_SET_BYTES(average)); if (average == 0) { if (temp->auto_data_toggle == 0) { /* update data toggle, ZLP case */ temp->qtd_status ^= htole32(EHCI_QTD_TOGGLE_MASK); } td->len = 0; td->qtd_buffer[0] = 0; td->qtd_buffer_hi[0] = 0; td->qtd_buffer[1] = 0; td->qtd_buffer_hi[1] = 0; } else { uint8_t x; if (temp->auto_data_toggle == 0) { /* update data toggle */ if (((average + temp->max_frame_size - 1) / temp->max_frame_size) & 1) { temp->qtd_status ^= htole32(EHCI_QTD_TOGGLE_MASK); } } td->len = average; /* update remaining length */ temp->len -= average; /* fill out buffer pointers */ usb2_get_page(temp->pc, buf_offset, &buf_res); td->qtd_buffer[0] = htole32(buf_res.physaddr); td->qtd_buffer_hi[0] = 0; x = 1; while (average > EHCI_PAGE_SIZE) { average -= EHCI_PAGE_SIZE; buf_offset += EHCI_PAGE_SIZE; usb2_get_page(temp->pc, buf_offset, &buf_res); td->qtd_buffer[x] = htole32(buf_res.physaddr & (~0xFFF)); td->qtd_buffer_hi[x] = 0; x++; } /* * NOTE: The "average" variable is never zero after * exiting the loop above ! * * NOTE: We have to subtract one from the offset to * ensure that we are computing the physical address * of a valid page ! */ buf_offset += average; usb2_get_page(temp->pc, buf_offset - 1, &buf_res); td->qtd_buffer[x] = htole32(buf_res.physaddr & (~0xFFF)); td->qtd_buffer_hi[x] = 0; } if (td_next) { /* link the current TD with the next one */ td->qtd_next = td_next->qtd_self; } td->qtd_altnext = qtd_altnext; td->alt_next = td_alt_next; usb2_pc_cpu_flush(td->page_cache); } if (precompute) { precompute = 0; /* setup alt next pointer, if any */ if (temp->short_frames_ok) { if (temp->setup_alt_next) { td_alt_next = td_next; qtd_altnext = td_next->qtd_self; } } else { /* we use this field internally */ td_alt_next = td_next; } /* restore */ temp->shortpkt = shortpkt_old; temp->len = len_old; goto restart; } temp->td = td; temp->td_next = td_next; return; } static void ehci_setup_standard_chain(struct usb2_xfer *xfer, ehci_qh_t **qh_last) { struct ehci_std_temp temp; struct usb2_pipe_methods *methods; ehci_qh_t *qh; ehci_qtd_t *td; uint32_t qh_endp; uint32_t qh_endphub; uint32_t x; DPRINTFN(9, "addr=%d endpt=%d sumlen=%d speed=%d\n", xfer->address, UE_GET_ADDR(xfer->endpoint), xfer->sumlen, usb2_get_speed(xfer->udev)); temp.average = xfer->max_usb2_frame_size; temp.max_frame_size = xfer->max_frame_size; /* toggle the DMA set we are using */ xfer->flags_int.curr_dma_set ^= 1; /* get next DMA set */ td = xfer->td_start[xfer->flags_int.curr_dma_set]; xfer->td_transfer_first = td; xfer->td_transfer_cache = td; temp.td = NULL; temp.td_next = td; temp.qtd_status = 0; temp.setup_alt_next = xfer->flags_int.short_frames_ok; temp.short_frames_ok = xfer->flags_int.short_frames_ok; if (xfer->flags_int.control_xfr) { if (xfer->pipe->toggle_next) { /* DATA1 is next */ temp.qtd_status |= htole32(EHCI_QTD_SET_TOGGLE(1)); } temp.auto_data_toggle = 0; } else { temp.auto_data_toggle = 1; } if (usb2_get_speed(xfer->udev) != USB_SPEED_HIGH) { /* max 3 retries */ temp.qtd_status |= htole32(EHCI_QTD_SET_CERR(3)); } /* check if we should prepend a setup message */ if (xfer->flags_int.control_xfr) { if (xfer->flags_int.control_hdr) { temp.qtd_status &= htole32(EHCI_QTD_SET_CERR(3)); temp.qtd_status |= htole32 (EHCI_QTD_ACTIVE | EHCI_QTD_SET_PID(EHCI_QTD_PID_SETUP) | EHCI_QTD_SET_TOGGLE(0)); temp.len = xfer->frlengths[0]; temp.pc = xfer->frbuffers + 0; temp.shortpkt = temp.len ? 1 : 0; ehci_setup_standard_chain_sub(&temp); } x = 1; } else { x = 0; } while (x != xfer->nframes) { /* DATA0 / DATA1 message */ temp.len = xfer->frlengths[x]; temp.pc = xfer->frbuffers + x; x++; if (x == xfer->nframes) { temp.setup_alt_next = 0; } /* keep previous data toggle and error count */ temp.qtd_status &= htole32(EHCI_QTD_SET_CERR(3) | EHCI_QTD_SET_TOGGLE(1)); if (temp.len == 0) { /* make sure that we send an USB packet */ temp.shortpkt = 0; } else { /* regular data transfer */ temp.shortpkt = (xfer->flags.force_short_xfer) ? 0 : 1; } /* set endpoint direction */ temp.qtd_status |= (UE_GET_DIR(xfer->endpoint) == UE_DIR_IN) ? htole32(EHCI_QTD_ACTIVE | EHCI_QTD_SET_PID(EHCI_QTD_PID_IN)) : htole32(EHCI_QTD_ACTIVE | EHCI_QTD_SET_PID(EHCI_QTD_PID_OUT)); ehci_setup_standard_chain_sub(&temp); } /* check if we should append a status stage */ if (xfer->flags_int.control_xfr && !xfer->flags_int.control_act) { /* * Send a DATA1 message and invert the current endpoint * direction. */ temp.qtd_status &= htole32(EHCI_QTD_SET_CERR(3) | EHCI_QTD_SET_TOGGLE(1)); temp.qtd_status |= (UE_GET_DIR(xfer->endpoint) == UE_DIR_OUT) ? htole32(EHCI_QTD_ACTIVE | EHCI_QTD_SET_PID(EHCI_QTD_PID_IN) | EHCI_QTD_SET_TOGGLE(1)) : htole32(EHCI_QTD_ACTIVE | EHCI_QTD_SET_PID(EHCI_QTD_PID_OUT) | EHCI_QTD_SET_TOGGLE(1)); temp.len = 0; temp.pc = NULL; temp.shortpkt = 0; ehci_setup_standard_chain_sub(&temp); } td = temp.td; /* the last TD terminates the transfer: */ td->qtd_next = htole32(EHCI_LINK_TERMINATE); td->qtd_altnext = htole32(EHCI_LINK_TERMINATE); td->qtd_status |= htole32(EHCI_QTD_IOC); usb2_pc_cpu_flush(td->page_cache); /* must have at least one frame! */ xfer->td_transfer_last = td; #if USB_DEBUG if (ehcidebug > 8) { DPRINTF("nexttog=%d; data before transfer:\n", xfer->pipe->toggle_next); ehci_dump_sqtds(xfer->td_transfer_first); } #endif methods = xfer->pipe->methods; qh = xfer->qh_start[xfer->flags_int.curr_dma_set]; /* the "qh_link" field is filled when the QH is added */ qh_endp = (EHCI_QH_SET_ADDR(xfer->address) | EHCI_QH_SET_ENDPT(UE_GET_ADDR(xfer->endpoint)) | EHCI_QH_SET_MPL(xfer->max_packet_size)); if (usb2_get_speed(xfer->udev) == USB_SPEED_HIGH) { qh_endp |= (EHCI_QH_SET_EPS(EHCI_QH_SPEED_HIGH) | EHCI_QH_DTC | EHCI_QH_SET_NRL(8)); } else { if (usb2_get_speed(xfer->udev) == USB_SPEED_FULL) { qh_endp |= (EHCI_QH_SET_EPS(EHCI_QH_SPEED_FULL) | EHCI_QH_DTC); } else { qh_endp |= (EHCI_QH_SET_EPS(EHCI_QH_SPEED_LOW) | EHCI_QH_DTC); } if (methods == &ehci_device_ctrl_methods) { qh_endp |= EHCI_QH_CTL; } if (methods != &ehci_device_intr_methods) { /* Only try one time per microframe! */ qh_endp |= EHCI_QH_SET_NRL(1); } } qh->qh_endp = htole32(qh_endp); qh_endphub = (EHCI_QH_SET_MULT(xfer->max_packet_count & 3) | EHCI_QH_SET_CMASK(xfer->usb2_cmask) | EHCI_QH_SET_SMASK(xfer->usb2_smask) | EHCI_QH_SET_HUBA(xfer->udev->hs_hub_addr) | EHCI_QH_SET_PORT(xfer->udev->hs_port_no)); qh->qh_endphub = htole32(qh_endphub); qh->qh_curqtd = htole32(0); /* fill the overlay qTD */ qh->qh_qtd.qtd_status = htole32(0); if (temp.auto_data_toggle) { /* let the hardware compute the data toggle */ qh->qh_endp &= ~htole32(EHCI_QH_DTC); if (xfer->pipe->toggle_next) { /* DATA1 is next */ qh->qh_qtd.qtd_status |= htole32(EHCI_QTD_SET_TOGGLE(1)); } } td = xfer->td_transfer_first; qh->qh_qtd.qtd_next = td->qtd_self; qh->qh_qtd.qtd_altnext = htole32(EHCI_LINK_TERMINATE); usb2_pc_cpu_flush(qh->page_cache); EHCI_APPEND_QH(qh, *qh_last); return; } static void ehci_root_intr_done(struct usb2_xfer *xfer, struct usb2_sw_transfer *std) { struct ehci_softc *sc = xfer->usb2_sc; uint16_t i; uint16_t m; mtx_assert(&sc->sc_bus.mtx, MA_OWNED); if (std->state != USB_SW_TR_PRE_DATA) { if (std->state == USB_SW_TR_PRE_CALLBACK) { /* transfer transferred */ ehci_device_done(xfer, std->err); } goto done; } /* setup buffer */ std->ptr = sc->sc_hub_idata; std->len = sizeof(sc->sc_hub_idata); /* clear any old interrupt data */ bzero(sc->sc_hub_idata, sizeof(sc->sc_hub_idata)); /* set bits */ m = (sc->sc_noport + 1); if (m > (8 * sizeof(sc->sc_hub_idata))) { m = (8 * sizeof(sc->sc_hub_idata)); } for (i = 1; i < m; i++) { /* pick out CHANGE bits from the status register */ if (EOREAD4(sc, EHCI_PORTSC(i)) & EHCI_PS_CLEAR) { sc->sc_hub_idata[i / 8] |= 1 << (i % 8); DPRINTF("port %d changed\n", i); } } done: return; } static void ehci_isoc_fs_done(ehci_softc_t *sc, struct usb2_xfer *xfer) { uint32_t nframes = xfer->nframes; uint32_t status; uint32_t *plen = xfer->frlengths; uint16_t len = 0; ehci_sitd_t *td = xfer->td_transfer_first; ehci_sitd_t **pp_last = &sc->sc_isoc_fs_p_last[xfer->qh_pos]; DPRINTFN(13, "xfer=%p pipe=%p transfer done\n", xfer, xfer->pipe); while (nframes--) { if (td == NULL) { panic("%s:%d: out of TD's\n", __FUNCTION__, __LINE__); } if (pp_last >= &sc->sc_isoc_fs_p_last[EHCI_VIRTUAL_FRAMELIST_COUNT]) { pp_last = &sc->sc_isoc_fs_p_last[0]; } #if USB_DEBUG if (ehcidebug > 15) { DPRINTF("isoc FS-TD\n"); ehci_dump_sitd(td); } #endif usb2_pc_cpu_invalidate(td->page_cache); status = le32toh(td->sitd_status); len = EHCI_SITD_GET_LEN(status); if (*plen >= len) { len = *plen - len; } else { len = 0; } *plen = len; /* remove FS-TD from schedule */ EHCI_REMOVE_FS_TD(td, *pp_last); pp_last++; plen++; td = td->obj_next; } xfer->aframes = xfer->nframes; return; } static void ehci_isoc_hs_done(ehci_softc_t *sc, struct usb2_xfer *xfer) { uint32_t nframes = xfer->nframes; uint32_t status; uint32_t *plen = xfer->frlengths; uint16_t len = 0; uint8_t td_no = 0; ehci_itd_t *td = xfer->td_transfer_first; ehci_itd_t **pp_last = &sc->sc_isoc_hs_p_last[xfer->qh_pos]; DPRINTFN(13, "xfer=%p pipe=%p transfer done\n", xfer, xfer->pipe); while (nframes--) { if (td == NULL) { panic("%s:%d: out of TD's\n", __FUNCTION__, __LINE__); } if (pp_last >= &sc->sc_isoc_hs_p_last[EHCI_VIRTUAL_FRAMELIST_COUNT]) { pp_last = &sc->sc_isoc_hs_p_last[0]; } #if USB_DEBUG if (ehcidebug > 15) { DPRINTF("isoc HS-TD\n"); ehci_dump_itd(td); } #endif usb2_pc_cpu_invalidate(td->page_cache); status = le32toh(td->itd_status[td_no]); len = EHCI_ITD_GET_LEN(status); if (*plen >= len) { /* * The length is valid. NOTE: The complete * length is written back into the status * field, and not the remainder like with * other transfer descriptor types. */ } else { /* Invalid length - truncate */ len = 0; } *plen = len; plen++; td_no++; if ((td_no == 8) || (nframes == 0)) { /* remove HS-TD from schedule */ EHCI_REMOVE_HS_TD(td, *pp_last); pp_last++; td_no = 0; td = td->obj_next; } } xfer->aframes = xfer->nframes; return; } /* NOTE: "done" can be run two times in a row, * from close and from interrupt */ static void ehci_device_done(struct usb2_xfer *xfer, usb2_error_t error) { struct usb2_pipe_methods *methods = xfer->pipe->methods; ehci_softc_t *sc = xfer->usb2_sc; mtx_assert(&sc->sc_bus.mtx, MA_OWNED); DPRINTFN(2, "xfer=%p, pipe=%p, error=%d\n", xfer, xfer->pipe, error); if ((methods == &ehci_device_bulk_methods) || (methods == &ehci_device_ctrl_methods)) { #if USB_DEBUG if (ehcidebug > 8) { DPRINTF("nexttog=%d; data after transfer:\n", xfer->pipe->toggle_next); ehci_dump_sqtds(xfer->td_transfer_first); } #endif EHCI_REMOVE_QH(xfer->qh_start[xfer->flags_int.curr_dma_set], sc->sc_async_p_last); } if (methods == &ehci_device_intr_methods) { EHCI_REMOVE_QH(xfer->qh_start[xfer->flags_int.curr_dma_set], sc->sc_intr_p_last[xfer->qh_pos]); } /* * Only finish isochronous transfers once which will update * "xfer->frlengths". */ if (xfer->td_transfer_first && xfer->td_transfer_last) { if (methods == &ehci_device_isoc_fs_methods) { ehci_isoc_fs_done(sc, xfer); } if (methods == &ehci_device_isoc_hs_methods) { ehci_isoc_hs_done(sc, xfer); } xfer->td_transfer_first = NULL; xfer->td_transfer_last = NULL; } /* dequeue transfer and start next transfer */ usb2_transfer_done(xfer, error); return; } /*------------------------------------------------------------------------* * ehci bulk support *------------------------------------------------------------------------*/ static void ehci_device_bulk_open(struct usb2_xfer *xfer) { return; } static void ehci_device_bulk_close(struct usb2_xfer *xfer) { ehci_device_done(xfer, USB_ERR_CANCELLED); return; } static void ehci_device_bulk_enter(struct usb2_xfer *xfer) { return; } static void ehci_device_bulk_start(struct usb2_xfer *xfer) { ehci_softc_t *sc = xfer->usb2_sc; /* setup TD's and QH */ ehci_setup_standard_chain(xfer, &sc->sc_async_p_last); /* put transfer on interrupt queue */ ehci_transfer_intr_enqueue(xfer); return; } struct usb2_pipe_methods ehci_device_bulk_methods = { .open = ehci_device_bulk_open, .close = ehci_device_bulk_close, .enter = ehci_device_bulk_enter, .start = ehci_device_bulk_start, .enter_is_cancelable = 1, .start_is_cancelable = 1, }; /*------------------------------------------------------------------------* * ehci control support *------------------------------------------------------------------------*/ static void ehci_device_ctrl_open(struct usb2_xfer *xfer) { return; } static void ehci_device_ctrl_close(struct usb2_xfer *xfer) { ehci_device_done(xfer, USB_ERR_CANCELLED); return; } static void ehci_device_ctrl_enter(struct usb2_xfer *xfer) { return; } static void ehci_device_ctrl_start(struct usb2_xfer *xfer) { ehci_softc_t *sc = xfer->usb2_sc; /* setup TD's and QH */ ehci_setup_standard_chain(xfer, &sc->sc_async_p_last); /* put transfer on interrupt queue */ ehci_transfer_intr_enqueue(xfer); return; } struct usb2_pipe_methods ehci_device_ctrl_methods = { .open = ehci_device_ctrl_open, .close = ehci_device_ctrl_close, .enter = ehci_device_ctrl_enter, .start = ehci_device_ctrl_start, .enter_is_cancelable = 1, .start_is_cancelable = 1, }; /*------------------------------------------------------------------------* * ehci interrupt support *------------------------------------------------------------------------*/ static void ehci_device_intr_open(struct usb2_xfer *xfer) { ehci_softc_t *sc = xfer->usb2_sc; uint16_t best; uint16_t bit; uint16_t x; uint8_t slot; /* Allocate a microframe slot first: */ slot = usb2_intr_schedule_adjust (xfer->udev, xfer->max_frame_size, USB_HS_MICRO_FRAMES_MAX); if (usb2_get_speed(xfer->udev) == USB_SPEED_HIGH) { xfer->usb2_uframe = slot; xfer->usb2_smask = (1 << slot) & 0xFF; xfer->usb2_cmask = 0; } else { xfer->usb2_uframe = slot; xfer->usb2_smask = (1 << slot) & 0x3F; xfer->usb2_cmask = (-(4 << slot)) & 0xFE; } /* * Find the best QH position corresponding to the given interval: */ best = 0; bit = EHCI_VIRTUAL_FRAMELIST_COUNT / 2; while (bit) { if (xfer->interval >= bit) { x = bit; best = bit; while (x & bit) { if (sc->sc_intr_stat[x] < sc->sc_intr_stat[best]) { best = x; } x++; } break; } bit >>= 1; } sc->sc_intr_stat[best]++; xfer->qh_pos = best; DPRINTFN(3, "best=%d interval=%d\n", best, xfer->interval); return; } static void ehci_device_intr_close(struct usb2_xfer *xfer) { ehci_softc_t *sc = xfer->usb2_sc; uint8_t slot; slot = usb2_intr_schedule_adjust (xfer->udev, -(xfer->max_frame_size), xfer->usb2_uframe); sc->sc_intr_stat[xfer->qh_pos]--; ehci_device_done(xfer, USB_ERR_CANCELLED); return; } static void ehci_device_intr_enter(struct usb2_xfer *xfer) { return; } static void ehci_device_intr_start(struct usb2_xfer *xfer) { ehci_softc_t *sc = xfer->usb2_sc; /* setup TD's and QH */ ehci_setup_standard_chain(xfer, &sc->sc_intr_p_last[xfer->qh_pos]); /* put transfer on interrupt queue */ ehci_transfer_intr_enqueue(xfer); return; } struct usb2_pipe_methods ehci_device_intr_methods = { .open = ehci_device_intr_open, .close = ehci_device_intr_close, .enter = ehci_device_intr_enter, .start = ehci_device_intr_start, .enter_is_cancelable = 1, .start_is_cancelable = 1, }; /*------------------------------------------------------------------------* * ehci full speed isochronous support *------------------------------------------------------------------------*/ static void ehci_device_isoc_fs_open(struct usb2_xfer *xfer) { ehci_sitd_t *td; uint32_t sitd_portaddr; uint8_t ds; sitd_portaddr = EHCI_SITD_SET_ADDR(xfer->address) | EHCI_SITD_SET_ENDPT(UE_GET_ADDR(xfer->endpoint)) | EHCI_SITD_SET_HUBA(xfer->udev->hs_hub_addr) | EHCI_SITD_SET_PORT(xfer->udev->hs_port_no); if (UE_GET_DIR(xfer->endpoint) == UE_DIR_IN) { sitd_portaddr |= EHCI_SITD_SET_DIR_IN; } sitd_portaddr = htole32(sitd_portaddr); /* initialize all TD's */ for (ds = 0; ds != 2; ds++) { for (td = xfer->td_start[ds]; td; td = td->obj_next) { td->sitd_portaddr = sitd_portaddr; /* * TODO: make some kind of automatic * SMASK/CMASK selection based on micro-frame * usage * * micro-frame usage (8 microframes per 1ms) */ td->sitd_back = htole32(EHCI_LINK_TERMINATE); usb2_pc_cpu_flush(td->page_cache); } } return; } static void ehci_device_isoc_fs_close(struct usb2_xfer *xfer) { ehci_device_done(xfer, USB_ERR_CANCELLED); return; } static void ehci_device_isoc_fs_enter(struct usb2_xfer *xfer) { struct usb2_page_search buf_res; ehci_softc_t *sc = xfer->usb2_sc; struct usb2_fs_isoc_schedule *fss_start; struct usb2_fs_isoc_schedule *fss_end; struct usb2_fs_isoc_schedule *fss; ehci_sitd_t *td; ehci_sitd_t *td_last = NULL; ehci_sitd_t **pp_last; uint32_t *plen; uint32_t buf_offset; uint32_t nframes; uint32_t temp; uint32_t sitd_mask; uint16_t tlen; uint8_t sa; uint8_t sb; uint8_t error; #if USB_DEBUG uint8_t once = 1; #endif DPRINTFN(6, "xfer=%p next=%d nframes=%d\n", xfer, xfer->pipe->isoc_next, xfer->nframes); /* get the current frame index */ nframes = EOREAD4(sc, EHCI_FRINDEX) / 8; /* * check if the frame index is within the window where the frames * will be inserted */ buf_offset = (nframes - xfer->pipe->isoc_next) & (EHCI_VIRTUAL_FRAMELIST_COUNT - 1); if ((xfer->pipe->is_synced == 0) || (buf_offset < xfer->nframes)) { /* * If there is data underflow or the pipe queue is empty we * schedule the transfer a few frames ahead of the current * frame position. Else two isochronous transfers might * overlap. */ xfer->pipe->isoc_next = (nframes + 3) & (EHCI_VIRTUAL_FRAMELIST_COUNT - 1); xfer->pipe->is_synced = 1; DPRINTFN(3, "start next=%d\n", xfer->pipe->isoc_next); } /* * compute how many milliseconds the insertion is ahead of the * current frame position: */ buf_offset = (xfer->pipe->isoc_next - nframes) & (EHCI_VIRTUAL_FRAMELIST_COUNT - 1); /* * pre-compute when the isochronous transfer will be finished: */ xfer->isoc_time_complete = usb2_fs_isoc_schedule_isoc_time_expand (xfer->udev, &fss_start, &fss_end, nframes) + buf_offset + xfer->nframes; /* get the real number of frames */ nframes = xfer->nframes; buf_offset = 0; plen = xfer->frlengths; /* toggle the DMA set we are using */ xfer->flags_int.curr_dma_set ^= 1; /* get next DMA set */ td = xfer->td_start[xfer->flags_int.curr_dma_set]; xfer->td_transfer_first = td; pp_last = &sc->sc_isoc_fs_p_last[xfer->pipe->isoc_next]; /* store starting position */ xfer->qh_pos = xfer->pipe->isoc_next; fss = fss_start + (xfer->qh_pos % USB_ISOC_TIME_MAX); while (nframes--) { if (td == NULL) { panic("%s:%d: out of TD's\n", __FUNCTION__, __LINE__); } if (pp_last >= &sc->sc_isoc_fs_p_last[EHCI_VIRTUAL_FRAMELIST_COUNT]) { pp_last = &sc->sc_isoc_fs_p_last[0]; } if (fss >= fss_end) { fss = fss_start; } /* reuse sitd_portaddr and sitd_back from last transfer */ if (*plen > xfer->max_frame_size) { #if USB_DEBUG if (once) { once = 0; printf("%s: frame length(%d) exceeds %d " "bytes (frame truncated)\n", __FUNCTION__, *plen, xfer->max_frame_size); } #endif *plen = xfer->max_frame_size; } /* * We currently don't care if the ISOCHRONOUS schedule is * full! */ error = usb2_fs_isoc_schedule_alloc(fss, &sa, *plen); if (error) { /* * The FULL speed schedule is FULL! Set length * to zero. */ *plen = 0; } if (*plen) { /* * only call "usb2_get_page()" when we have a * non-zero length */ usb2_get_page(xfer->frbuffers, buf_offset, &buf_res); td->sitd_bp[0] = htole32(buf_res.physaddr); buf_offset += *plen; /* * NOTE: We need to subtract one from the offset so * that we are on a valid page! */ usb2_get_page(xfer->frbuffers, buf_offset - 1, &buf_res); temp = buf_res.physaddr & ~0xFFF; } else { td->sitd_bp[0] = 0; temp = 0; } if (UE_GET_DIR(xfer->endpoint) == UE_DIR_OUT) { tlen = *plen; if (tlen <= 188) { temp |= 1; /* T-count = 1, TP = ALL */ tlen = 1; } else { tlen += 187; tlen /= 188; temp |= tlen; /* T-count = [1..6] */ temp |= 8; /* TP = Begin */ } tlen += sa; if (tlen >= 8) { sb = 0; } else { sb = (1 << tlen); } sa = (1 << sa); sa = (sb - sa) & 0x3F; sb = 0; } else { sb = (-(4 << sa)) & 0xFE; sa = (1 << sa) & 0x3F; } sitd_mask = (EHCI_SITD_SET_SMASK(sa) | EHCI_SITD_SET_CMASK(sb)); td->sitd_bp[1] = htole32(temp); td->sitd_mask = htole32(sitd_mask); if (nframes == 0) { td->sitd_status = htole32 (EHCI_SITD_IOC | EHCI_SITD_ACTIVE | EHCI_SITD_SET_LEN(*plen)); } else { td->sitd_status = htole32 (EHCI_SITD_ACTIVE | EHCI_SITD_SET_LEN(*plen)); } usb2_pc_cpu_flush(td->page_cache); #if USB_DEBUG if (ehcidebug > 15) { DPRINTF("FS-TD %d\n", nframes); ehci_dump_sitd(td); } #endif /* insert TD into schedule */ EHCI_APPEND_FS_TD(td, *pp_last); pp_last++; plen++; fss++; td_last = td; td = td->obj_next; } xfer->td_transfer_last = td_last; /* update isoc_next */ xfer->pipe->isoc_next = (pp_last - &sc->sc_isoc_fs_p_last[0]) & (EHCI_VIRTUAL_FRAMELIST_COUNT - 1); return; } static void ehci_device_isoc_fs_start(struct usb2_xfer *xfer) { /* put transfer on interrupt queue */ ehci_transfer_intr_enqueue(xfer); return; } struct usb2_pipe_methods ehci_device_isoc_fs_methods = { .open = ehci_device_isoc_fs_open, .close = ehci_device_isoc_fs_close, .enter = ehci_device_isoc_fs_enter, .start = ehci_device_isoc_fs_start, .enter_is_cancelable = 1, .start_is_cancelable = 1, }; /*------------------------------------------------------------------------* * ehci high speed isochronous support *------------------------------------------------------------------------*/ static void ehci_device_isoc_hs_open(struct usb2_xfer *xfer) { ehci_itd_t *td; uint32_t temp; uint8_t ds; /* initialize all TD's */ for (ds = 0; ds != 2; ds++) { for (td = xfer->td_start[ds]; td; td = td->obj_next) { /* set TD inactive */ td->itd_status[0] = 0; td->itd_status[1] = 0; td->itd_status[2] = 0; td->itd_status[3] = 0; td->itd_status[4] = 0; td->itd_status[5] = 0; td->itd_status[6] = 0; td->itd_status[7] = 0; /* set endpoint and address */ td->itd_bp[0] = htole32 (EHCI_ITD_SET_ADDR(xfer->address) | EHCI_ITD_SET_ENDPT(UE_GET_ADDR(xfer->endpoint))); temp = EHCI_ITD_SET_MPL(xfer->max_packet_size & 0x7FF); /* set direction */ if (UE_GET_DIR(xfer->endpoint) == UE_DIR_IN) { temp |= EHCI_ITD_SET_DIR_IN; } /* set maximum packet size */ td->itd_bp[1] = htole32(temp); /* set transfer multiplier */ td->itd_bp[2] = htole32(xfer->max_packet_count & 3); usb2_pc_cpu_flush(td->page_cache); } } return; } static void ehci_device_isoc_hs_close(struct usb2_xfer *xfer) { ehci_device_done(xfer, USB_ERR_CANCELLED); return; } static void ehci_device_isoc_hs_enter(struct usb2_xfer *xfer) { struct usb2_page_search buf_res; ehci_softc_t *sc = xfer->usb2_sc; ehci_itd_t *td; ehci_itd_t *td_last = NULL; ehci_itd_t **pp_last; bus_size_t page_addr; uint32_t *plen; uint32_t status; uint32_t buf_offset; uint32_t nframes; uint32_t itd_offset[8 + 1]; uint8_t x; uint8_t td_no; uint8_t page_no; #if USB_DEBUG uint8_t once = 1; #endif DPRINTFN(6, "xfer=%p next=%d nframes=%d\n", xfer, xfer->pipe->isoc_next, xfer->nframes); /* get the current frame index */ nframes = EOREAD4(sc, EHCI_FRINDEX) / 8; /* * check if the frame index is within the window where the frames * will be inserted */ buf_offset = (nframes - xfer->pipe->isoc_next) & (EHCI_VIRTUAL_FRAMELIST_COUNT - 1); if ((xfer->pipe->is_synced == 0) || (buf_offset < ((xfer->nframes + 7) / 8))) { /* * If there is data underflow or the pipe queue is empty we * schedule the transfer a few frames ahead of the current * frame position. Else two isochronous transfers might * overlap. */ xfer->pipe->isoc_next = (nframes + 3) & (EHCI_VIRTUAL_FRAMELIST_COUNT - 1); xfer->pipe->is_synced = 1; DPRINTFN(3, "start next=%d\n", xfer->pipe->isoc_next); } /* * compute how many milliseconds the insertion is ahead of the * current frame position: */ buf_offset = (xfer->pipe->isoc_next - nframes) & (EHCI_VIRTUAL_FRAMELIST_COUNT - 1); /* * pre-compute when the isochronous transfer will be finished: */ xfer->isoc_time_complete = usb2_isoc_time_expand(&sc->sc_bus, nframes) + buf_offset + ((xfer->nframes + 7) / 8); /* get the real number of frames */ nframes = xfer->nframes; buf_offset = 0; td_no = 0; plen = xfer->frlengths; /* toggle the DMA set we are using */ xfer->flags_int.curr_dma_set ^= 1; /* get next DMA set */ td = xfer->td_start[xfer->flags_int.curr_dma_set]; xfer->td_transfer_first = td; pp_last = &sc->sc_isoc_hs_p_last[xfer->pipe->isoc_next]; /* store starting position */ xfer->qh_pos = xfer->pipe->isoc_next; while (nframes--) { if (td == NULL) { panic("%s:%d: out of TD's\n", __FUNCTION__, __LINE__); } if (pp_last >= &sc->sc_isoc_hs_p_last[EHCI_VIRTUAL_FRAMELIST_COUNT]) { pp_last = &sc->sc_isoc_hs_p_last[0]; } /* range check */ if (*plen > xfer->max_frame_size) { #if USB_DEBUG if (once) { once = 0; printf("%s: frame length(%d) exceeds %d bytes " "(frame truncated)\n", __FUNCTION__, *plen, xfer->max_frame_size); } #endif *plen = xfer->max_frame_size; } status = (EHCI_ITD_SET_LEN(*plen) | EHCI_ITD_ACTIVE | EHCI_ITD_SET_PG(0)); td->itd_status[td_no] = htole32(status); itd_offset[td_no] = buf_offset; buf_offset += *plen; plen++; td_no++; if ((td_no == 8) || (nframes == 0)) { /* the rest of the transfers are not active, if any */ for (x = td_no; x != 8; x++) { td->itd_status[x] = 0; /* not active */ } /* check if there is any data to be transferred */ if (itd_offset[0] != buf_offset) { page_no = 0; itd_offset[td_no] = buf_offset; /* get first page offset */ usb2_get_page(xfer->frbuffers, itd_offset[0], &buf_res); /* get page address */ page_addr = buf_res.physaddr & ~0xFFF; /* update page address */ td->itd_bp[0] &= htole32(0xFFF); td->itd_bp[0] |= htole32(page_addr); for (x = 0; x != td_no; x++) { /* set page number and page offset */ status = (EHCI_ITD_SET_PG(page_no) | (buf_res.physaddr & 0xFFF)); td->itd_status[x] |= htole32(status); /* get next page offset */ if (itd_offset[x + 1] == buf_offset) { /* * We subtract one so that * we don't go off the last * page! */ usb2_get_page(xfer->frbuffers, buf_offset - 1, &buf_res); } else { usb2_get_page(xfer->frbuffers, itd_offset[x + 1], &buf_res); } /* check if we need a new page */ if ((buf_res.physaddr ^ page_addr) & ~0xFFF) { /* new page needed */ page_addr = buf_res.physaddr & ~0xFFF; if (page_no == 6) { panic("%s: too many pages\n", __FUNCTION__); } page_no++; /* update page address */ td->itd_bp[page_no] &= htole32(0xFFF); td->itd_bp[page_no] |= htole32(page_addr); } } } /* set IOC bit if we are complete */ if (nframes == 0) { td->itd_status[7] |= htole32(EHCI_ITD_IOC); } usb2_pc_cpu_flush(td->page_cache); #if USB_DEBUG if (ehcidebug > 15) { DPRINTF("HS-TD %d\n", nframes); ehci_dump_itd(td); } #endif /* insert TD into schedule */ EHCI_APPEND_HS_TD(td, *pp_last); pp_last++; td_no = 0; td_last = td; td = td->obj_next; } } xfer->td_transfer_last = td_last; /* update isoc_next */ xfer->pipe->isoc_next = (pp_last - &sc->sc_isoc_hs_p_last[0]) & (EHCI_VIRTUAL_FRAMELIST_COUNT - 1); return; } static void ehci_device_isoc_hs_start(struct usb2_xfer *xfer) { /* put transfer on interrupt queue */ ehci_transfer_intr_enqueue(xfer); return; } struct usb2_pipe_methods ehci_device_isoc_hs_methods = { .open = ehci_device_isoc_hs_open, .close = ehci_device_isoc_hs_close, .enter = ehci_device_isoc_hs_enter, .start = ehci_device_isoc_hs_start, .enter_is_cancelable = 1, .start_is_cancelable = 1, }; /*------------------------------------------------------------------------* * ehci root control support *------------------------------------------------------------------------* * simulate a hardware hub by handling * all the necessary requests *------------------------------------------------------------------------*/ static void ehci_root_ctrl_open(struct usb2_xfer *xfer) { return; } static void ehci_root_ctrl_close(struct usb2_xfer *xfer) { ehci_softc_t *sc = xfer->usb2_sc; if (sc->sc_root_ctrl.xfer == xfer) { sc->sc_root_ctrl.xfer = NULL; } ehci_device_done(xfer, USB_ERR_CANCELLED); return; } /* data structures and routines * to emulate the root hub: */ static const struct usb2_device_descriptor ehci_devd = { sizeof(struct usb2_device_descriptor), UDESC_DEVICE, /* type */ {0x00, 0x02}, /* USB version */ UDCLASS_HUB, /* class */ UDSUBCLASS_HUB, /* subclass */ UDPROTO_HSHUBSTT, /* protocol */ 64, /* max packet */ {0}, {0}, {0x00, 0x01}, /* device id */ 1, 2, 0, /* string indicies */ 1 /* # of configurations */ }; static const struct usb2_device_qualifier ehci_odevd = { sizeof(struct usb2_device_qualifier), UDESC_DEVICE_QUALIFIER, /* type */ {0x00, 0x02}, /* USB version */ UDCLASS_HUB, /* class */ UDSUBCLASS_HUB, /* subclass */ UDPROTO_FSHUB, /* protocol */ 0, /* max packet */ 0, /* # of configurations */ 0 }; static const struct ehci_config_desc ehci_confd = { .confd = { .bLength = sizeof(struct usb2_config_descriptor), .bDescriptorType = UDESC_CONFIG, .wTotalLength[0] = sizeof(ehci_confd), .bNumInterface = 1, .bConfigurationValue = 1, .iConfiguration = 0, .bmAttributes = UC_SELF_POWERED, .bMaxPower = 0 /* max power */ }, .ifcd = { .bLength = sizeof(struct usb2_interface_descriptor), .bDescriptorType = UDESC_INTERFACE, .bNumEndpoints = 1, .bInterfaceClass = UICLASS_HUB, .bInterfaceSubClass = UISUBCLASS_HUB, .bInterfaceProtocol = UIPROTO_HSHUBSTT, 0 }, .endpd = { .bLength = sizeof(struct usb2_endpoint_descriptor), .bDescriptorType = UDESC_ENDPOINT, .bEndpointAddress = UE_DIR_IN | EHCI_INTR_ENDPT, .bmAttributes = UE_INTERRUPT, .wMaxPacketSize[0] = 8, /* max packet (63 ports) */ .bInterval = 255, }, }; static const struct usb2_hub_descriptor ehci_hubd = { 0, /* dynamic length */ UDESC_HUB, 0, {0, 0}, 0, 0, {0}, }; static void ehci_disown(ehci_softc_t *sc, uint16_t index, uint8_t lowspeed) { uint32_t port; uint32_t v; DPRINTF("index=%d lowspeed=%d\n", index, lowspeed); port = EHCI_PORTSC(index); v = EOREAD4(sc, port) & ~EHCI_PS_CLEAR; EOWRITE4(sc, port, v | EHCI_PS_PO); } static void ehci_root_ctrl_enter(struct usb2_xfer *xfer) { return; } static void ehci_root_ctrl_start(struct usb2_xfer *xfer) { ehci_softc_t *sc = xfer->usb2_sc; DPRINTF("\n"); sc->sc_root_ctrl.xfer = xfer; usb2_config_td_queue_command (&sc->sc_config_td, NULL, &ehci_root_ctrl_task, 0, 0); return; } static void ehci_root_ctrl_task(struct ehci_softc *sc, struct usb2_config_td_cc *cc, uint16_t refcount) { ehci_root_ctrl_poll(sc); return; } static void ehci_root_ctrl_done(struct usb2_xfer *xfer, struct usb2_sw_transfer *std) { struct ehci_softc *sc = xfer->usb2_sc; char *ptr; uint32_t port; uint32_t v; uint16_t i; uint16_t value; uint16_t index; uint8_t l; uint8_t use_polling; mtx_assert(&sc->sc_bus.mtx, MA_OWNED); if (std->state != USB_SW_TR_SETUP) { if (std->state == USB_SW_TR_PRE_CALLBACK) { /* transfer transferred */ ehci_device_done(xfer, std->err); } goto done; } /* buffer reset */ std->ptr = sc->sc_hub_desc.temp; std->len = 0; value = UGETW(std->req.wValue); index = UGETW(std->req.wIndex); use_polling = mtx_owned(xfer->priv_mtx) ? 1 : 0; DPRINTFN(3, "type=0x%02x request=0x%02x wLen=0x%04x " "wValue=0x%04x wIndex=0x%04x\n", std->req.bmRequestType, std->req.bRequest, UGETW(std->req.wLength), value, index); #define C(x,y) ((x) | ((y) << 8)) switch (C(std->req.bRequest, std->req.bmRequestType)) { case C(UR_CLEAR_FEATURE, UT_WRITE_DEVICE): case C(UR_CLEAR_FEATURE, UT_WRITE_INTERFACE): case C(UR_CLEAR_FEATURE, UT_WRITE_ENDPOINT): /* * DEVICE_REMOTE_WAKEUP and ENDPOINT_HALT are no-ops * for the integrated root hub. */ break; case C(UR_GET_CONFIG, UT_READ_DEVICE): std->len = 1; sc->sc_hub_desc.temp[0] = sc->sc_conf; break; case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE): switch (value >> 8) { case UDESC_DEVICE: if ((value & 0xff) != 0) { std->err = USB_ERR_IOERROR; goto done; } std->len = sizeof(ehci_devd); sc->sc_hub_desc.devd = ehci_devd; break; /* * We can't really operate at another speed, * but the specification says we need this * descriptor: */ case UDESC_DEVICE_QUALIFIER: if ((value & 0xff) != 0) { std->err = USB_ERR_IOERROR; goto done; } std->len = sizeof(ehci_odevd); sc->sc_hub_desc.odevd = ehci_odevd; break; case UDESC_CONFIG: if ((value & 0xff) != 0) { std->err = USB_ERR_IOERROR; goto done; } std->len = sizeof(ehci_confd); std->ptr = USB_ADD_BYTES(&ehci_confd, 0); break; case UDESC_STRING: switch (value & 0xff) { case 0: /* Language table */ ptr = "\001"; break; case 1: /* Vendor */ ptr = sc->sc_vendor; break; case 2: /* Product */ ptr = "EHCI root HUB"; break; default: ptr = ""; break; } std->len = usb2_make_str_desc (sc->sc_hub_desc.temp, sizeof(sc->sc_hub_desc.temp), ptr); break; default: std->err = USB_ERR_IOERROR; goto done; } break; case C(UR_GET_INTERFACE, UT_READ_INTERFACE): std->len = 1; sc->sc_hub_desc.temp[0] = 0; break; case C(UR_GET_STATUS, UT_READ_DEVICE): std->len = 2; USETW(sc->sc_hub_desc.stat.wStatus, UDS_SELF_POWERED); break; case C(UR_GET_STATUS, UT_READ_INTERFACE): case C(UR_GET_STATUS, UT_READ_ENDPOINT): std->len = 2; USETW(sc->sc_hub_desc.stat.wStatus, 0); break; case C(UR_SET_ADDRESS, UT_WRITE_DEVICE): if (value >= USB_MAX_DEVICES) { std->err = USB_ERR_IOERROR; goto done; } sc->sc_addr = value; break; case C(UR_SET_CONFIG, UT_WRITE_DEVICE): if ((value != 0) && (value != 1)) { std->err = USB_ERR_IOERROR; goto done; } sc->sc_conf = value; break; case C(UR_SET_DESCRIPTOR, UT_WRITE_DEVICE): break; case C(UR_SET_FEATURE, UT_WRITE_DEVICE): case C(UR_SET_FEATURE, UT_WRITE_INTERFACE): case C(UR_SET_FEATURE, UT_WRITE_ENDPOINT): std->err = USB_ERR_IOERROR; goto done; case C(UR_SET_INTERFACE, UT_WRITE_INTERFACE): break; case C(UR_SYNCH_FRAME, UT_WRITE_ENDPOINT): break; /* Hub requests */ case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE): break; case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER): DPRINTFN(9, "UR_CLEAR_PORT_FEATURE\n"); if ((index < 1) || (index > sc->sc_noport)) { std->err = USB_ERR_IOERROR; goto done; } port = EHCI_PORTSC(index); v = EOREAD4(sc, port) & ~EHCI_PS_CLEAR; switch (value) { case UHF_PORT_ENABLE: EOWRITE4(sc, port, v & ~EHCI_PS_PE); break; case UHF_PORT_SUSPEND: EOWRITE4(sc, port, v & ~EHCI_PS_SUSP); break; case UHF_PORT_POWER: EOWRITE4(sc, port, v & ~EHCI_PS_PP); break; case UHF_PORT_TEST: DPRINTFN(3, "clear port test " "%d\n", index); break; case UHF_PORT_INDICATOR: DPRINTFN(3, "clear port ind " "%d\n", index); EOWRITE4(sc, port, v & ~EHCI_PS_PIC); break; case UHF_C_PORT_CONNECTION: EOWRITE4(sc, port, v | EHCI_PS_CSC); break; case UHF_C_PORT_ENABLE: EOWRITE4(sc, port, v | EHCI_PS_PEC); break; case UHF_C_PORT_SUSPEND: EOWRITE4(sc, port, v | EHCI_PS_SUSP); break; case UHF_C_PORT_OVER_CURRENT: EOWRITE4(sc, port, v | EHCI_PS_OCC); break; case UHF_C_PORT_RESET: sc->sc_isreset = 0; break; default: std->err = USB_ERR_IOERROR; goto done; } break; case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE): if ((value & 0xff) != 0) { std->err = USB_ERR_IOERROR; goto done; } v = EOREAD4(sc, EHCI_HCSPARAMS); sc->sc_hub_desc.hubd = ehci_hubd; sc->sc_hub_desc.hubd.bNbrPorts = sc->sc_noport; USETW(sc->sc_hub_desc.hubd.wHubCharacteristics, (EHCI_HCS_PPC(v) ? UHD_PWR_INDIVIDUAL : UHD_PWR_NO_SWITCH) | (EHCI_HCS_P_INDICATOR(EREAD4(sc, EHCI_HCSPARAMS)) ? UHD_PORT_IND : 0)); sc->sc_hub_desc.hubd.bPwrOn2PwrGood = 200; /* XXX can't find out? */ for (l = 0; l < sc->sc_noport; l++) { /* XXX can't find out? */ sc->sc_hub_desc.hubd.DeviceRemovable[l / 8] &= ~(1 << (l % 8)); } sc->sc_hub_desc.hubd.bDescLength = 8 + ((sc->sc_noport + 7) / 8); std->len = sc->sc_hub_desc.hubd.bDescLength; break; case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE): std->len = 16; bzero(sc->sc_hub_desc.temp, 16); break; case C(UR_GET_STATUS, UT_READ_CLASS_OTHER): DPRINTFN(9, "get port status i=%d\n", index); if ((index < 1) || (index > sc->sc_noport)) { std->err = USB_ERR_IOERROR; goto done; } v = EOREAD4(sc, EHCI_PORTSC(index)); DPRINTFN(9, "port status=0x%04x\n", v); i = UPS_HIGH_SPEED; if (v & EHCI_PS_CS) i |= UPS_CURRENT_CONNECT_STATUS; if (v & EHCI_PS_PE) i |= UPS_PORT_ENABLED; if (v & EHCI_PS_SUSP) i |= UPS_SUSPEND; if (v & EHCI_PS_OCA) i |= UPS_OVERCURRENT_INDICATOR; if (v & EHCI_PS_PR) i |= UPS_RESET; if (v & EHCI_PS_PP) i |= UPS_PORT_POWER; USETW(sc->sc_hub_desc.ps.wPortStatus, i); i = 0; if (v & EHCI_PS_CSC) i |= UPS_C_CONNECT_STATUS; if (v & EHCI_PS_PEC) i |= UPS_C_PORT_ENABLED; if (v & EHCI_PS_OCC) i |= UPS_C_OVERCURRENT_INDICATOR; if (sc->sc_isreset) i |= UPS_C_PORT_RESET; USETW(sc->sc_hub_desc.ps.wPortChange, i); std->len = sizeof(sc->sc_hub_desc.ps); break; case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE): std->err = USB_ERR_IOERROR; goto done; case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE): break; case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER): if ((index < 1) || (index > sc->sc_noport)) { std->err = USB_ERR_IOERROR; goto done; } port = EHCI_PORTSC(index); v = EOREAD4(sc, port) & ~EHCI_PS_CLEAR; switch (value) { case UHF_PORT_ENABLE: EOWRITE4(sc, port, v | EHCI_PS_PE); break; case UHF_PORT_SUSPEND: EOWRITE4(sc, port, v | EHCI_PS_SUSP); break; case UHF_PORT_RESET: DPRINTFN(6, "reset port %d\n", index); #if USB_DEBUG if (ehcinohighspeed) { /* * Connect USB device to companion * controller. */ ehci_disown(sc, index, 1); break; } #endif if (EHCI_PS_IS_LOWSPEED(v)) { /* Low speed device, give up ownership. */ ehci_disown(sc, index, 1); break; } /* Start reset sequence. */ v &= ~(EHCI_PS_PE | EHCI_PS_PR); EOWRITE4(sc, port, v | EHCI_PS_PR); if (use_polling) { /* polling */ DELAY(USB_PORT_ROOT_RESET_DELAY * 1000); } else { /* Wait for reset to complete. */ usb2_pause_mtx(&sc->sc_bus.mtx, USB_PORT_ROOT_RESET_DELAY); } /* Terminate reset sequence. */ EOWRITE4(sc, port, v); if (use_polling) { /* polling */ DELAY(EHCI_PORT_RESET_COMPLETE * 1000); } else { /* Wait for HC to complete reset. */ usb2_pause_mtx(&sc->sc_bus.mtx, EHCI_PORT_RESET_COMPLETE); } v = EOREAD4(sc, port); DPRINTF("ehci after reset, status=0x%08x\n", v); if (v & EHCI_PS_PR) { device_printf(sc->sc_bus.bdev, "port reset timeout\n"); std->err = USB_ERR_TIMEOUT; goto done; } if (!(v & EHCI_PS_PE)) { /* * Not a high speed device, give up * ownership. */ ehci_disown(sc, index, 0); break; } sc->sc_isreset = 1; DPRINTF("ehci port %d reset, status = 0x%08x\n", index, v); break; case UHF_PORT_POWER: DPRINTFN(3, "set port power %d\n", index); EOWRITE4(sc, port, v | EHCI_PS_PP); break; case UHF_PORT_TEST: DPRINTFN(3, "set port test %d\n", index); break; case UHF_PORT_INDICATOR: DPRINTFN(3, "set port ind %d\n", index); EOWRITE4(sc, port, v | EHCI_PS_PIC); break; default: std->err = USB_ERR_IOERROR; goto done; } break; case C(UR_CLEAR_TT_BUFFER, UT_WRITE_CLASS_OTHER): case C(UR_RESET_TT, UT_WRITE_CLASS_OTHER): case C(UR_GET_TT_STATE, UT_READ_CLASS_OTHER): case C(UR_STOP_TT, UT_WRITE_CLASS_OTHER): break; default: std->err = USB_ERR_IOERROR; goto done; } done: return; } static void ehci_root_ctrl_poll(struct ehci_softc *sc) { usb2_sw_transfer(&sc->sc_root_ctrl, &ehci_root_ctrl_done); return; } struct usb2_pipe_methods ehci_root_ctrl_methods = { .open = ehci_root_ctrl_open, .close = ehci_root_ctrl_close, .enter = ehci_root_ctrl_enter, .start = ehci_root_ctrl_start, .enter_is_cancelable = 1, .start_is_cancelable = 0, }; /*------------------------------------------------------------------------* * ehci root interrupt support *------------------------------------------------------------------------*/ static void ehci_root_intr_open(struct usb2_xfer *xfer) { return; } static void ehci_root_intr_close(struct usb2_xfer *xfer) { ehci_softc_t *sc = xfer->usb2_sc; if (sc->sc_root_intr.xfer == xfer) { sc->sc_root_intr.xfer = NULL; } ehci_device_done(xfer, USB_ERR_CANCELLED); return; } static void ehci_root_intr_enter(struct usb2_xfer *xfer) { return; } static void ehci_root_intr_start(struct usb2_xfer *xfer) { ehci_softc_t *sc = xfer->usb2_sc; sc->sc_root_intr.xfer = xfer; return; } struct usb2_pipe_methods ehci_root_intr_methods = { .open = ehci_root_intr_open, .close = ehci_root_intr_close, .enter = ehci_root_intr_enter, .start = ehci_root_intr_start, .enter_is_cancelable = 1, .start_is_cancelable = 1, }; static void ehci_xfer_setup(struct usb2_setup_params *parm) { struct usb2_page_search page_info; struct usb2_page_cache *pc; ehci_softc_t *sc; struct usb2_xfer *xfer; void *last_obj; uint32_t nqtd; uint32_t nqh; uint32_t nsitd; uint32_t nitd; uint32_t n; sc = EHCI_BUS2SC(parm->udev->bus); xfer = parm->curr_xfer; nqtd = 0; nqh = 0; nsitd = 0; nitd = 0; /* * setup xfer */ xfer->usb2_sc = sc; /* * compute maximum number of some structures */ if (parm->methods == &ehci_device_ctrl_methods) { /* * The proof for the "nqtd" formula is illustrated like * this: * * +------------------------------------+ * | | * | |remainder -> | * | +-----+---+ | * | | xxx | x | frm 0 | * | +-----+---++ | * | | xxx | xx | frm 1 | * | +-----+----+ | * | ... | * +------------------------------------+ * * "xxx" means a completely full USB transfer descriptor * * "x" and "xx" means a short USB packet * * For the remainder of an USB transfer modulo * "max_data_length" we need two USB transfer descriptors. * One to transfer the remaining data and one to finalise * with a zero length packet in case the "force_short_xfer" * flag is set. We only need two USB transfer descriptors in * the case where the transfer length of the first one is a * factor of "max_frame_size". The rest of the needed USB * transfer descriptors is given by the buffer size divided * by the maximum data payload. */ parm->hc_max_packet_size = 0x400; parm->hc_max_packet_count = 1; parm->hc_max_frame_size = EHCI_QTD_PAYLOAD_MAX; xfer->flags_int.bdma_enable = 1; usb2_transfer_setup_sub(parm); nqh = 1; nqtd = ((2 * xfer->nframes) + 1 /* STATUS */ + (xfer->max_data_length / xfer->max_usb2_frame_size)); } else if (parm->methods == &ehci_device_bulk_methods) { parm->hc_max_packet_size = 0x400; parm->hc_max_packet_count = 1; parm->hc_max_frame_size = EHCI_QTD_PAYLOAD_MAX; xfer->flags_int.bdma_enable = 1; usb2_transfer_setup_sub(parm); nqh = 1; nqtd = ((2 * xfer->nframes) + (xfer->max_data_length / xfer->max_usb2_frame_size)); } else if (parm->methods == &ehci_device_intr_methods) { if (parm->speed == USB_SPEED_HIGH) { parm->hc_max_packet_size = 0x400; parm->hc_max_packet_count = 3; } else if (parm->speed == USB_SPEED_FULL) { parm->hc_max_packet_size = USB_FS_BYTES_PER_HS_UFRAME; parm->hc_max_packet_count = 1; } else { parm->hc_max_packet_size = USB_FS_BYTES_PER_HS_UFRAME / 8; parm->hc_max_packet_count = 1; } parm->hc_max_frame_size = EHCI_QTD_PAYLOAD_MAX; xfer->flags_int.bdma_enable = 1; usb2_transfer_setup_sub(parm); nqh = 1; nqtd = ((2 * xfer->nframes) + (xfer->max_data_length / xfer->max_usb2_frame_size)); } else if (parm->methods == &ehci_device_isoc_fs_methods) { parm->hc_max_packet_size = 0x3FF; parm->hc_max_packet_count = 1; parm->hc_max_frame_size = 0x3FF; xfer->flags_int.bdma_enable = 1; usb2_transfer_setup_sub(parm); nsitd = xfer->nframes; } else if (parm->methods == &ehci_device_isoc_hs_methods) { parm->hc_max_packet_size = 0x400; parm->hc_max_packet_count = 3; parm->hc_max_frame_size = 0xC00; xfer->flags_int.bdma_enable = 1; usb2_transfer_setup_sub(parm); nitd = (xfer->nframes + 7) / 8; } else { parm->hc_max_packet_size = 0x400; parm->hc_max_packet_count = 1; parm->hc_max_frame_size = 0x400; usb2_transfer_setup_sub(parm); } alloc_dma_set: if (parm->err) { return; } /* * Allocate queue heads and transfer descriptors */ last_obj = NULL; if (usb2_transfer_setup_sub_malloc( parm, &pc, sizeof(ehci_itd_t), EHCI_ITD_ALIGN, nitd)) { parm->err = USB_ERR_NOMEM; return; } if (parm->buf) { for (n = 0; n != nitd; n++) { ehci_itd_t *td; usb2_get_page(pc + n, 0, &page_info); td = page_info.buffer; /* init TD */ td->itd_self = htole32(page_info.physaddr | EHCI_LINK_ITD); td->obj_next = last_obj; td->page_cache = pc + n; last_obj = td; usb2_pc_cpu_flush(pc + n); } } if (usb2_transfer_setup_sub_malloc( parm, &pc, sizeof(ehci_sitd_t), EHCI_SITD_ALIGN, nsitd)) { parm->err = USB_ERR_NOMEM; return; } if (parm->buf) { for (n = 0; n != nsitd; n++) { ehci_sitd_t *td; usb2_get_page(pc + n, 0, &page_info); td = page_info.buffer; /* init TD */ td->sitd_self = htole32(page_info.physaddr | EHCI_LINK_SITD); td->obj_next = last_obj; td->page_cache = pc + n; last_obj = td; usb2_pc_cpu_flush(pc + n); } } if (usb2_transfer_setup_sub_malloc( parm, &pc, sizeof(ehci_qtd_t), EHCI_QTD_ALIGN, nqtd)) { parm->err = USB_ERR_NOMEM; return; } if (parm->buf) { for (n = 0; n != nqtd; n++) { ehci_qtd_t *qtd; usb2_get_page(pc + n, 0, &page_info); qtd = page_info.buffer; /* init TD */ qtd->qtd_self = htole32(page_info.physaddr); qtd->obj_next = last_obj; qtd->page_cache = pc + n; last_obj = qtd; usb2_pc_cpu_flush(pc + n); } } xfer->td_start[xfer->flags_int.curr_dma_set] = last_obj; last_obj = NULL; if (usb2_transfer_setup_sub_malloc( parm, &pc, sizeof(ehci_qh_t), EHCI_QH_ALIGN, nqh)) { parm->err = USB_ERR_NOMEM; return; } if (parm->buf) { for (n = 0; n != nqh; n++) { ehci_qh_t *qh; usb2_get_page(pc + n, 0, &page_info); qh = page_info.buffer; /* init QH */ qh->qh_self = htole32(page_info.physaddr | EHCI_LINK_QH); qh->obj_next = last_obj; qh->page_cache = pc + n; last_obj = qh; usb2_pc_cpu_flush(pc + n); } } xfer->qh_start[xfer->flags_int.curr_dma_set] = last_obj; if (!xfer->flags_int.curr_dma_set) { xfer->flags_int.curr_dma_set = 1; goto alloc_dma_set; } return; } static void ehci_xfer_unsetup(struct usb2_xfer *xfer) { return; } static void ehci_pipe_init(struct usb2_device *udev, struct usb2_endpoint_descriptor *edesc, struct usb2_pipe *pipe) { ehci_softc_t *sc = EHCI_BUS2SC(udev->bus); DPRINTFN(2, "pipe=%p, addr=%d, endpt=%d, mode=%d (%d)\n", pipe, udev->address, edesc->bEndpointAddress, udev->flags.usb2_mode, sc->sc_addr); if (udev->flags.usb2_mode != USB_MODE_HOST) { /* not supported */ return; } if (udev->device_index == sc->sc_addr) { switch (edesc->bEndpointAddress) { case USB_CONTROL_ENDPOINT: pipe->methods = &ehci_root_ctrl_methods; break; case UE_DIR_IN | EHCI_INTR_ENDPT: pipe->methods = &ehci_root_intr_methods; break; default: /* do nothing */ break; } } else { if ((udev->speed != USB_SPEED_HIGH) && ((udev->hs_hub_addr == 0) || (udev->hs_port_no == 0) || (udev->bus->devices[udev->hs_hub_addr] == NULL) || (udev->bus->devices[udev->hs_hub_addr]->hub == NULL))) { /* We need a transaction translator */ goto done; } switch (edesc->bmAttributes & UE_XFERTYPE) { case UE_CONTROL: pipe->methods = &ehci_device_ctrl_methods; break; case UE_INTERRUPT: pipe->methods = &ehci_device_intr_methods; break; case UE_ISOCHRONOUS: if (udev->speed == USB_SPEED_HIGH) { pipe->methods = &ehci_device_isoc_hs_methods; } else if (udev->speed == USB_SPEED_FULL) { pipe->methods = &ehci_device_isoc_fs_methods; } break; case UE_BULK: if (udev->speed != USB_SPEED_LOW) { pipe->methods = &ehci_device_bulk_methods; } break; default: /* do nothing */ break; } } done: return; } static void ehci_get_dma_delay(struct usb2_bus *bus, uint32_t *pus) { /* * Wait until the hardware has finished any possible use of * the transfer descriptor(s) and QH */ *pus = (188); /* microseconds */ return; } struct usb2_bus_methods ehci_bus_methods = { .pipe_init = ehci_pipe_init, .xfer_setup = ehci_xfer_setup, .xfer_unsetup = ehci_xfer_unsetup, .do_poll = ehci_do_poll, .get_dma_delay = ehci_get_dma_delay, };