/*-
* Copyright (c) 2014 Ruslan Bukin
* All rights reserved.
*
* This software was developed by SRI International and the University of
* Cambridge Computer Laboratory under DARPA/AFRL contract (FA8750-10-C-0237)
* ("CTSRD"), as part of the DARPA CRASH research programme.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Ethernet media access controller (EMAC)
* Chapter 17, Altera Cyclone V Device Handbook (CV-5V2 2014.07.22)
*
* EMAC is an instance of the Synopsys DesignWare 3504-0
* Universal 10/100/1000 Ethernet MAC (DWC_gmac).
*/
#include
__FBSDID("$FreeBSD$");
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#ifdef EXT_RESOURCES
#include
#include
#endif
#include "if_dwc_if.h"
#include "gpio_if.h"
#include "miibus_if.h"
#define READ4(_sc, _reg) \
bus_read_4((_sc)->res[0], _reg)
#define WRITE4(_sc, _reg, _val) \
bus_write_4((_sc)->res[0], _reg, _val)
#define MAC_RESET_TIMEOUT 100
#define WATCHDOG_TIMEOUT_SECS 5
#define STATS_HARVEST_INTERVAL 2
#define DWC_LOCK(sc) mtx_lock(&(sc)->mtx)
#define DWC_UNLOCK(sc) mtx_unlock(&(sc)->mtx)
#define DWC_ASSERT_LOCKED(sc) mtx_assert(&(sc)->mtx, MA_OWNED)
#define DWC_ASSERT_UNLOCKED(sc) mtx_assert(&(sc)->mtx, MA_NOTOWNED)
#define DDESC_TDES0_OWN (1U << 31)
#define DDESC_TDES0_TXINT (1U << 30)
#define DDESC_TDES0_TXLAST (1U << 29)
#define DDESC_TDES0_TXFIRST (1U << 28)
#define DDESC_TDES0_TXCRCDIS (1U << 27)
#define DDESC_TDES0_TXRINGEND (1U << 21)
#define DDESC_TDES0_TXCHAIN (1U << 20)
#define DDESC_RDES0_OWN (1U << 31)
#define DDESC_RDES0_FL_MASK 0x3fff
#define DDESC_RDES0_FL_SHIFT 16 /* Frame Length */
#define DDESC_RDES1_CHAINED (1U << 14)
/* Alt descriptor bits. */
#define DDESC_CNTL_TXINT (1U << 31)
#define DDESC_CNTL_TXLAST (1U << 30)
#define DDESC_CNTL_TXFIRST (1U << 29)
#define DDESC_CNTL_TXCRCDIS (1U << 26)
#define DDESC_CNTL_TXRINGEND (1U << 25)
#define DDESC_CNTL_TXCHAIN (1U << 24)
#define DDESC_CNTL_CHAINED (1U << 24)
/*
* A hardware buffer descriptor. Rx and Tx buffers have the same descriptor
* layout, but the bits in the fields have different meanings.
*/
struct dwc_hwdesc
{
uint32_t tdes0; /* status for alt layout */
uint32_t tdes1; /* cntl for alt layout */
uint32_t addr; /* pointer to buffer data */
uint32_t addr_next; /* link to next descriptor */
};
/*
* The hardware imposes alignment restrictions on various objects involved in
* DMA transfers. These values are expressed in bytes (not bits).
*/
#define DWC_DESC_RING_ALIGN 2048
static struct resource_spec dwc_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE },
{ -1, 0 }
};
static void dwc_txfinish_locked(struct dwc_softc *sc);
static void dwc_rxfinish_locked(struct dwc_softc *sc);
static void dwc_stop_locked(struct dwc_softc *sc);
static void dwc_setup_rxfilter(struct dwc_softc *sc);
static inline uint32_t
next_rxidx(struct dwc_softc *sc, uint32_t curidx)
{
return ((curidx + 1) % RX_DESC_COUNT);
}
static inline uint32_t
next_txidx(struct dwc_softc *sc, uint32_t curidx)
{
return ((curidx + 1) % TX_DESC_COUNT);
}
static void
dwc_get1paddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
if (error != 0)
return;
*(bus_addr_t *)arg = segs[0].ds_addr;
}
inline static uint32_t
dwc_setup_txdesc(struct dwc_softc *sc, int idx, bus_addr_t paddr,
uint32_t len)
{
uint32_t flags;
uint32_t nidx;
nidx = next_txidx(sc, idx);
/* Addr/len 0 means we're clearing the descriptor after xmit done. */
if (paddr == 0 || len == 0) {
flags = 0;
--sc->txcount;
} else {
if (sc->mactype == DWC_GMAC_ALT_DESC)
flags = DDESC_CNTL_TXCHAIN | DDESC_CNTL_TXFIRST
| DDESC_CNTL_TXLAST | DDESC_CNTL_TXINT;
else
flags = DDESC_TDES0_TXCHAIN | DDESC_TDES0_TXFIRST
| DDESC_TDES0_TXLAST | DDESC_TDES0_TXINT;
++sc->txcount;
}
sc->txdesc_ring[idx].addr = (uint32_t)(paddr);
if (sc->mactype == DWC_GMAC_ALT_DESC) {
sc->txdesc_ring[idx].tdes0 = 0;
sc->txdesc_ring[idx].tdes1 = flags | len;
} else {
sc->txdesc_ring[idx].tdes0 = flags;
sc->txdesc_ring[idx].tdes1 = len;
}
if (paddr && len) {
wmb();
sc->txdesc_ring[idx].tdes0 |= DDESC_TDES0_OWN;
wmb();
}
return (nidx);
}
static int
dwc_setup_txbuf(struct dwc_softc *sc, int idx, struct mbuf **mp)
{
struct bus_dma_segment seg;
int error, nsegs;
struct mbuf * m;
if ((m = m_defrag(*mp, M_NOWAIT)) == NULL)
return (ENOMEM);
*mp = m;
error = bus_dmamap_load_mbuf_sg(sc->txbuf_tag, sc->txbuf_map[idx].map,
m, &seg, &nsegs, 0);
if (error != 0) {
return (ENOMEM);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
bus_dmamap_sync(sc->txbuf_tag, sc->txbuf_map[idx].map,
BUS_DMASYNC_PREWRITE);
sc->txbuf_map[idx].mbuf = m;
dwc_setup_txdesc(sc, idx, seg.ds_addr, seg.ds_len);
return (0);
}
static void
dwc_txstart_locked(struct dwc_softc *sc)
{
struct ifnet *ifp;
struct mbuf *m;
int enqueued;
DWC_ASSERT_LOCKED(sc);
if (!sc->link_is_up)
return;
ifp = sc->ifp;
if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
return;
}
enqueued = 0;
for (;;) {
if (sc->txcount == (TX_DESC_COUNT-1)) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
if (dwc_setup_txbuf(sc, sc->tx_idx_head, &m) != 0) {
IFQ_DRV_PREPEND(&ifp->if_snd, m);
break;
}
BPF_MTAP(ifp, m);
sc->tx_idx_head = next_txidx(sc, sc->tx_idx_head);
++enqueued;
}
if (enqueued != 0) {
WRITE4(sc, TRANSMIT_POLL_DEMAND, 0x1);
sc->tx_watchdog_count = WATCHDOG_TIMEOUT_SECS;
}
}
static void
dwc_txstart(struct ifnet *ifp)
{
struct dwc_softc *sc = ifp->if_softc;
DWC_LOCK(sc);
dwc_txstart_locked(sc);
DWC_UNLOCK(sc);
}
static void
dwc_stop_locked(struct dwc_softc *sc)
{
struct ifnet *ifp;
uint32_t reg;
DWC_ASSERT_LOCKED(sc);
ifp = sc->ifp;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->tx_watchdog_count = 0;
sc->stats_harvest_count = 0;
callout_stop(&sc->dwc_callout);
/* Stop DMA TX */
reg = READ4(sc, OPERATION_MODE);
reg &= ~(MODE_ST);
WRITE4(sc, OPERATION_MODE, reg);
/* Flush TX */
reg = READ4(sc, OPERATION_MODE);
reg |= (MODE_FTF);
WRITE4(sc, OPERATION_MODE, reg);
/* Stop transmitters */
reg = READ4(sc, MAC_CONFIGURATION);
reg &= ~(CONF_TE | CONF_RE);
WRITE4(sc, MAC_CONFIGURATION, reg);
/* Stop DMA RX */
reg = READ4(sc, OPERATION_MODE);
reg &= ~(MODE_SR);
WRITE4(sc, OPERATION_MODE, reg);
}
static void dwc_clear_stats(struct dwc_softc *sc)
{
uint32_t reg;
reg = READ4(sc, MMC_CONTROL);
reg |= (MMC_CONTROL_CNTRST);
WRITE4(sc, MMC_CONTROL, reg);
}
static void
dwc_harvest_stats(struct dwc_softc *sc)
{
struct ifnet *ifp;
/* We don't need to harvest too often. */
if (++sc->stats_harvest_count < STATS_HARVEST_INTERVAL)
return;
sc->stats_harvest_count = 0;
ifp = sc->ifp;
if_inc_counter(ifp, IFCOUNTER_IPACKETS, READ4(sc, RXFRAMECOUNT_GB));
if_inc_counter(ifp, IFCOUNTER_IMCASTS, READ4(sc, RXMULTICASTFRAMES_G));
if_inc_counter(ifp, IFCOUNTER_IERRORS,
READ4(sc, RXOVERSIZE_G) + READ4(sc, RXUNDERSIZE_G) +
READ4(sc, RXCRCERROR) + READ4(sc, RXALIGNMENTERROR) +
READ4(sc, RXRUNTERROR) + READ4(sc, RXJABBERERROR) +
READ4(sc, RXLENGTHERROR));
if_inc_counter(ifp, IFCOUNTER_OPACKETS, READ4(sc, TXFRAMECOUNT_G));
if_inc_counter(ifp, IFCOUNTER_OMCASTS, READ4(sc, TXMULTICASTFRAMES_G));
if_inc_counter(ifp, IFCOUNTER_OERRORS,
READ4(sc, TXOVERSIZE_G) + READ4(sc, TXEXCESSDEF) +
READ4(sc, TXCARRIERERR) + READ4(sc, TXUNDERFLOWERROR));
if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
READ4(sc, TXEXESSCOL) + READ4(sc, TXLATECOL));
dwc_clear_stats(sc);
}
static void
dwc_tick(void *arg)
{
struct dwc_softc *sc;
struct ifnet *ifp;
int link_was_up;
sc = arg;
DWC_ASSERT_LOCKED(sc);
ifp = sc->ifp;
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
return;
/*
* Typical tx watchdog. If this fires it indicates that we enqueued
* packets for output and never got a txdone interrupt for them. Maybe
* it's a missed interrupt somehow, just pretend we got one.
*/
if (sc->tx_watchdog_count > 0) {
if (--sc->tx_watchdog_count == 0) {
dwc_txfinish_locked(sc);
}
}
/* Gather stats from hardware counters. */
dwc_harvest_stats(sc);
/* Check the media status. */
link_was_up = sc->link_is_up;
mii_tick(sc->mii_softc);
if (sc->link_is_up && !link_was_up)
dwc_txstart_locked(sc);
/* Schedule another check one second from now. */
callout_reset(&sc->dwc_callout, hz, dwc_tick, sc);
}
static void
dwc_init_locked(struct dwc_softc *sc)
{
struct ifnet *ifp = sc->ifp;
uint32_t reg;
DWC_ASSERT_LOCKED(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
return;
ifp->if_drv_flags |= IFF_DRV_RUNNING;
dwc_setup_rxfilter(sc);
/* Initializa DMA and enable transmitters */
reg = READ4(sc, OPERATION_MODE);
reg |= (MODE_TSF | MODE_OSF | MODE_FUF);
reg &= ~(MODE_RSF);
reg |= (MODE_RTC_LEV32 << MODE_RTC_SHIFT);
WRITE4(sc, OPERATION_MODE, reg);
WRITE4(sc, INTERRUPT_ENABLE, INT_EN_DEFAULT);
/* Start DMA */
reg = READ4(sc, OPERATION_MODE);
reg |= (MODE_ST | MODE_SR);
WRITE4(sc, OPERATION_MODE, reg);
/* Enable transmitters */
reg = READ4(sc, MAC_CONFIGURATION);
reg |= (CONF_JD | CONF_ACS | CONF_BE);
reg |= (CONF_TE | CONF_RE);
WRITE4(sc, MAC_CONFIGURATION, reg);
/*
* Call mii_mediachg() which will call back into dwc_miibus_statchg()
* to set up the remaining config registers based on current media.
*/
mii_mediachg(sc->mii_softc);
callout_reset(&sc->dwc_callout, hz, dwc_tick, sc);
}
static void
dwc_init(void *if_softc)
{
struct dwc_softc *sc = if_softc;
DWC_LOCK(sc);
dwc_init_locked(sc);
DWC_UNLOCK(sc);
}
inline static uint32_t
dwc_setup_rxdesc(struct dwc_softc *sc, int idx, bus_addr_t paddr)
{
uint32_t nidx;
sc->rxdesc_ring[idx].addr = (uint32_t)paddr;
nidx = next_rxidx(sc, idx);
sc->rxdesc_ring[idx].addr_next = sc->rxdesc_ring_paddr + \
(nidx * sizeof(struct dwc_hwdesc));
if (sc->mactype == DWC_GMAC_ALT_DESC)
sc->rxdesc_ring[idx].tdes1 = DDESC_CNTL_CHAINED | RX_MAX_PACKET;
else
sc->rxdesc_ring[idx].tdes1 = DDESC_RDES1_CHAINED | MCLBYTES;
wmb();
sc->rxdesc_ring[idx].tdes0 = DDESC_RDES0_OWN;
wmb();
return (nidx);
}
static int
dwc_setup_rxbuf(struct dwc_softc *sc, int idx, struct mbuf *m)
{
struct bus_dma_segment seg;
int error, nsegs;
m_adj(m, ETHER_ALIGN);
error = bus_dmamap_load_mbuf_sg(sc->rxbuf_tag, sc->rxbuf_map[idx].map,
m, &seg, &nsegs, 0);
if (error != 0) {
return (error);
}
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
bus_dmamap_sync(sc->rxbuf_tag, sc->rxbuf_map[idx].map,
BUS_DMASYNC_PREREAD);
sc->rxbuf_map[idx].mbuf = m;
dwc_setup_rxdesc(sc, idx, seg.ds_addr);
return (0);
}
static struct mbuf *
dwc_alloc_mbufcl(struct dwc_softc *sc)
{
struct mbuf *m;
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m != NULL)
m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
return (m);
}
static void
dwc_media_status(struct ifnet * ifp, struct ifmediareq *ifmr)
{
struct dwc_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = sc->mii_softc;
DWC_LOCK(sc);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
DWC_UNLOCK(sc);
}
static int
dwc_media_change_locked(struct dwc_softc *sc)
{
return (mii_mediachg(sc->mii_softc));
}
static int
dwc_media_change(struct ifnet * ifp)
{
struct dwc_softc *sc;
int error;
sc = ifp->if_softc;
DWC_LOCK(sc);
error = dwc_media_change_locked(sc);
DWC_UNLOCK(sc);
return (error);
}
static const uint8_t nibbletab[] = {
/* 0x0 0000 -> 0000 */ 0x0,
/* 0x1 0001 -> 1000 */ 0x8,
/* 0x2 0010 -> 0100 */ 0x4,
/* 0x3 0011 -> 1100 */ 0xc,
/* 0x4 0100 -> 0010 */ 0x2,
/* 0x5 0101 -> 1010 */ 0xa,
/* 0x6 0110 -> 0110 */ 0x6,
/* 0x7 0111 -> 1110 */ 0xe,
/* 0x8 1000 -> 0001 */ 0x1,
/* 0x9 1001 -> 1001 */ 0x9,
/* 0xa 1010 -> 0101 */ 0x5,
/* 0xb 1011 -> 1101 */ 0xd,
/* 0xc 1100 -> 0011 */ 0x3,
/* 0xd 1101 -> 1011 */ 0xb,
/* 0xe 1110 -> 0111 */ 0x7,
/* 0xf 1111 -> 1111 */ 0xf, };
static uint8_t
bitreverse(uint8_t x)
{
return (nibbletab[x & 0xf] << 4) | nibbletab[x >> 4];
}
static void
dwc_setup_rxfilter(struct dwc_softc *sc)
{
struct ifmultiaddr *ifma;
struct ifnet *ifp;
uint8_t *eaddr, val;
uint32_t crc, ffval, hashbit, hashreg, hi, lo, hash[8];
int nhash, i;
DWC_ASSERT_LOCKED(sc);
ifp = sc->ifp;
nhash = sc->mactype == DWC_GMAC_ALT_DESC ? 2 : 8;
/*
* Set the multicast (group) filter hash.
*/
if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
ffval = (FRAME_FILTER_PM);
for (i = 0; i < nhash; i++)
hash[i] = ~0;
} else {
ffval = (FRAME_FILTER_HMC);
for (i = 0; i < nhash; i++)
hash[i] = 0;
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &sc->ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN);
/* Take lower 8 bits and reverse it */
val = bitreverse(~crc & 0xff);
if (sc->mactype == DWC_GMAC_ALT_DESC)
val >>= nhash; /* Only need lower 6 bits */
hashreg = (val >> 5);
hashbit = (val & 31);
hash[hashreg] |= (1 << hashbit);
}
if_maddr_runlock(ifp);
}
/*
* Set the individual address filter hash.
*/
if (ifp->if_flags & IFF_PROMISC)
ffval |= (FRAME_FILTER_PR);
/*
* Set the primary address.
*/
eaddr = IF_LLADDR(ifp);
lo = eaddr[0] | (eaddr[1] << 8) | (eaddr[2] << 16) |
(eaddr[3] << 24);
hi = eaddr[4] | (eaddr[5] << 8);
WRITE4(sc, MAC_ADDRESS_LOW(0), lo);
WRITE4(sc, MAC_ADDRESS_HIGH(0), hi);
WRITE4(sc, MAC_FRAME_FILTER, ffval);
if (sc->mactype == DWC_GMAC_ALT_DESC) {
WRITE4(sc, GMAC_MAC_HTLOW, hash[0]);
WRITE4(sc, GMAC_MAC_HTHIGH, hash[1]);
} else {
for (i = 0; i < nhash; i++)
WRITE4(sc, HASH_TABLE_REG(i), hash[i]);
}
}
static int
dwc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct dwc_softc *sc;
struct mii_data *mii;
struct ifreq *ifr;
int mask, error;
sc = ifp->if_softc;
ifr = (struct ifreq *)data;
error = 0;
switch (cmd) {
case SIOCSIFFLAGS:
DWC_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
if ((ifp->if_flags ^ sc->if_flags) &
(IFF_PROMISC | IFF_ALLMULTI))
dwc_setup_rxfilter(sc);
} else {
if (!sc->is_detaching)
dwc_init_locked(sc);
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
dwc_stop_locked(sc);
}
sc->if_flags = ifp->if_flags;
DWC_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
DWC_LOCK(sc);
dwc_setup_rxfilter(sc);
DWC_UNLOCK(sc);
}
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
mii = sc->mii_softc;
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
break;
case SIOCSIFCAP:
mask = ifp->if_capenable ^ ifr->ifr_reqcap;
if (mask & IFCAP_VLAN_MTU) {
/* No work to do except acknowledge the change took */
ifp->if_capenable ^= IFCAP_VLAN_MTU;
}
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
static void
dwc_txfinish_locked(struct dwc_softc *sc)
{
struct dwc_bufmap *bmap;
struct dwc_hwdesc *desc;
struct ifnet *ifp;
DWC_ASSERT_LOCKED(sc);
ifp = sc->ifp;
while (sc->tx_idx_tail != sc->tx_idx_head) {
desc = &sc->txdesc_ring[sc->tx_idx_tail];
if ((desc->tdes0 & DDESC_TDES0_OWN) != 0)
break;
bmap = &sc->txbuf_map[sc->tx_idx_tail];
bus_dmamap_sync(sc->txbuf_tag, bmap->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->txbuf_tag, bmap->map);
m_freem(bmap->mbuf);
bmap->mbuf = NULL;
dwc_setup_txdesc(sc, sc->tx_idx_tail, 0, 0);
sc->tx_idx_tail = next_txidx(sc, sc->tx_idx_tail);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
}
/* If there are no buffers outstanding, muzzle the watchdog. */
if (sc->tx_idx_tail == sc->tx_idx_head) {
sc->tx_watchdog_count = 0;
}
}
static void
dwc_rxfinish_locked(struct dwc_softc *sc)
{
struct ifnet *ifp;
struct mbuf *m0;
struct mbuf *m;
int error, idx, len;
uint32_t rdes0;
ifp = sc->ifp;
for (;;) {
idx = sc->rx_idx;
rdes0 = sc->rxdesc_ring[idx].tdes0;
if ((rdes0 & DDESC_RDES0_OWN) != 0)
break;
bus_dmamap_sync(sc->rxbuf_tag, sc->rxbuf_map[idx].map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->rxbuf_tag, sc->rxbuf_map[idx].map);
len = (rdes0 >> DDESC_RDES0_FL_SHIFT) & DDESC_RDES0_FL_MASK;
if (len != 0) {
m = sc->rxbuf_map[idx].mbuf;
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = len;
m->m_len = len;
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
/* Remove trailing FCS */
m_adj(m, -ETHER_CRC_LEN);
DWC_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
DWC_LOCK(sc);
} else {
/* XXX Zero-length packet ? */
}
if ((m0 = dwc_alloc_mbufcl(sc)) != NULL) {
if ((error = dwc_setup_rxbuf(sc, idx, m0)) != 0) {
/*
* XXX Now what?
* We've got a hole in the rx ring.
*/
}
} else
if_inc_counter(sc->ifp, IFCOUNTER_IQDROPS, 1);
sc->rx_idx = next_rxidx(sc, sc->rx_idx);
}
}
static void
dwc_intr(void *arg)
{
struct dwc_softc *sc;
uint32_t reg;
sc = arg;
DWC_LOCK(sc);
reg = READ4(sc, INTERRUPT_STATUS);
if (reg)
READ4(sc, SGMII_RGMII_SMII_CTRL_STATUS);
reg = READ4(sc, DMA_STATUS);
if (reg & DMA_STATUS_NIS) {
if (reg & DMA_STATUS_RI)
dwc_rxfinish_locked(sc);
if (reg & DMA_STATUS_TI) {
dwc_txfinish_locked(sc);
dwc_txstart_locked(sc);
}
}
if (reg & DMA_STATUS_AIS) {
if (reg & DMA_STATUS_FBI) {
/* Fatal bus error */
device_printf(sc->dev,
"Ethernet DMA error, restarting controller.\n");
dwc_stop_locked(sc);
dwc_init_locked(sc);
}
}
WRITE4(sc, DMA_STATUS, reg & DMA_STATUS_INTR_MASK);
DWC_UNLOCK(sc);
}
static int
setup_dma(struct dwc_softc *sc)
{
struct mbuf *m;
int error;
int nidx;
int idx;
/*
* Set up TX descriptor ring, descriptors, and dma maps.
*/
error = bus_dma_tag_create(
bus_get_dma_tag(sc->dev), /* Parent tag. */
DWC_DESC_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
TX_DESC_SIZE, 1, /* maxsize, nsegments */
TX_DESC_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->txdesc_tag);
if (error != 0) {
device_printf(sc->dev,
"could not create TX ring DMA tag.\n");
goto out;
}
error = bus_dmamem_alloc(sc->txdesc_tag, (void**)&sc->txdesc_ring,
BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO,
&sc->txdesc_map);
if (error != 0) {
device_printf(sc->dev,
"could not allocate TX descriptor ring.\n");
goto out;
}
error = bus_dmamap_load(sc->txdesc_tag, sc->txdesc_map,
sc->txdesc_ring, TX_DESC_SIZE, dwc_get1paddr,
&sc->txdesc_ring_paddr, 0);
if (error != 0) {
device_printf(sc->dev,
"could not load TX descriptor ring map.\n");
goto out;
}
for (idx = 0; idx < TX_DESC_COUNT; idx++) {
nidx = next_txidx(sc, idx);
sc->txdesc_ring[idx].addr_next = sc->txdesc_ring_paddr +
(nidx * sizeof(struct dwc_hwdesc));
}
error = bus_dma_tag_create(
bus_get_dma_tag(sc->dev), /* Parent tag. */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, 1, /* maxsize, nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->txbuf_tag);
if (error != 0) {
device_printf(sc->dev,
"could not create TX ring DMA tag.\n");
goto out;
}
for (idx = 0; idx < TX_DESC_COUNT; idx++) {
error = bus_dmamap_create(sc->txbuf_tag, BUS_DMA_COHERENT,
&sc->txbuf_map[idx].map);
if (error != 0) {
device_printf(sc->dev,
"could not create TX buffer DMA map.\n");
goto out;
}
dwc_setup_txdesc(sc, idx, 0, 0);
}
/*
* Set up RX descriptor ring, descriptors, dma maps, and mbufs.
*/
error = bus_dma_tag_create(
bus_get_dma_tag(sc->dev), /* Parent tag. */
DWC_DESC_RING_ALIGN, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
RX_DESC_SIZE, 1, /* maxsize, nsegments */
RX_DESC_SIZE, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->rxdesc_tag);
if (error != 0) {
device_printf(sc->dev,
"could not create RX ring DMA tag.\n");
goto out;
}
error = bus_dmamem_alloc(sc->rxdesc_tag, (void **)&sc->rxdesc_ring,
BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO,
&sc->rxdesc_map);
if (error != 0) {
device_printf(sc->dev,
"could not allocate RX descriptor ring.\n");
goto out;
}
error = bus_dmamap_load(sc->rxdesc_tag, sc->rxdesc_map,
sc->rxdesc_ring, RX_DESC_SIZE, dwc_get1paddr,
&sc->rxdesc_ring_paddr, 0);
if (error != 0) {
device_printf(sc->dev,
"could not load RX descriptor ring map.\n");
goto out;
}
error = bus_dma_tag_create(
bus_get_dma_tag(sc->dev), /* Parent tag. */
1, 0, /* alignment, boundary */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MCLBYTES, 1, /* maxsize, nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, NULL, /* lockfunc, lockarg */
&sc->rxbuf_tag);
if (error != 0) {
device_printf(sc->dev,
"could not create RX buf DMA tag.\n");
goto out;
}
for (idx = 0; idx < RX_DESC_COUNT; idx++) {
error = bus_dmamap_create(sc->rxbuf_tag, BUS_DMA_COHERENT,
&sc->rxbuf_map[idx].map);
if (error != 0) {
device_printf(sc->dev,
"could not create RX buffer DMA map.\n");
goto out;
}
if ((m = dwc_alloc_mbufcl(sc)) == NULL) {
device_printf(sc->dev, "Could not alloc mbuf\n");
error = ENOMEM;
goto out;
}
if ((error = dwc_setup_rxbuf(sc, idx, m)) != 0) {
device_printf(sc->dev,
"could not create new RX buffer.\n");
goto out;
}
}
out:
if (error != 0)
return (ENXIO);
return (0);
}
static int
dwc_get_hwaddr(struct dwc_softc *sc, uint8_t *hwaddr)
{
uint32_t hi, lo, rnd;
/*
* Try to recover a MAC address from the running hardware. If there's
* something non-zero there, assume the bootloader did the right thing
* and just use it.
*
* Otherwise, set the address to a convenient locally assigned address,
* 'bsd' + random 24 low-order bits. 'b' is 0x62, which has the locally
* assigned bit set, and the broadcast/multicast bit clear.
*/
lo = READ4(sc, MAC_ADDRESS_LOW(0));
hi = READ4(sc, MAC_ADDRESS_HIGH(0)) & 0xffff;
if ((lo != 0xffffffff) || (hi != 0xffff)) {
hwaddr[0] = (lo >> 0) & 0xff;
hwaddr[1] = (lo >> 8) & 0xff;
hwaddr[2] = (lo >> 16) & 0xff;
hwaddr[3] = (lo >> 24) & 0xff;
hwaddr[4] = (hi >> 0) & 0xff;
hwaddr[5] = (hi >> 8) & 0xff;
} else {
rnd = arc4random() & 0x00ffffff;
hwaddr[0] = 'b';
hwaddr[1] = 's';
hwaddr[2] = 'd';
hwaddr[3] = rnd >> 16;
hwaddr[4] = rnd >> 8;
hwaddr[5] = rnd >> 0;
}
return (0);
}
#define GPIO_ACTIVE_LOW 1
static int
dwc_reset(device_t dev)
{
pcell_t gpio_prop[4];
pcell_t delay_prop[3];
phandle_t node, gpio_node;
device_t gpio;
uint32_t pin, flags;
uint32_t pin_value;
node = ofw_bus_get_node(dev);
if (OF_getencprop(node, "snps,reset-gpio",
gpio_prop, sizeof(gpio_prop)) <= 0)
return (0);
if (OF_getencprop(node, "snps,reset-delays-us",
delay_prop, sizeof(delay_prop)) <= 0) {
device_printf(dev,
"Wrong property for snps,reset-delays-us");
return (ENXIO);
}
gpio_node = OF_node_from_xref(gpio_prop[0]);
if ((gpio = OF_device_from_xref(gpio_prop[0])) == NULL) {
device_printf(dev,
"Can't find gpio controller for phy reset\n");
return (ENXIO);
}
if (GPIO_MAP_GPIOS(gpio, node, gpio_node,
nitems(gpio_prop) - 1,
gpio_prop + 1, &pin, &flags) != 0) {
device_printf(dev, "Can't map gpio for phy reset\n");
return (ENXIO);
}
pin_value = GPIO_PIN_LOW;
if (OF_hasprop(node, "snps,reset-active-low"))
pin_value = GPIO_PIN_HIGH;
if (flags & GPIO_ACTIVE_LOW)
pin_value = !pin_value;
GPIO_PIN_SETFLAGS(gpio, pin, GPIO_PIN_OUTPUT);
GPIO_PIN_SET(gpio, pin, pin_value);
DELAY(delay_prop[0]);
GPIO_PIN_SET(gpio, pin, !pin_value);
DELAY(delay_prop[1]);
GPIO_PIN_SET(gpio, pin, pin_value);
DELAY(delay_prop[2]);
return (0);
}
#ifdef EXT_RESOURCES
static int
dwc_clock_init(device_t dev)
{
hwreset_t rst;
clk_t clk;
int error;
/* Enable clock */
if (clk_get_by_ofw_name(dev, 0, "stmmaceth", &clk) == 0) {
error = clk_enable(clk);
if (error != 0) {
device_printf(dev, "could not enable main clock\n");
return (error);
}
}
/* De-assert reset */
if (hwreset_get_by_ofw_name(dev, 0, "stmmaceth", &rst) == 0) {
error = hwreset_deassert(rst);
if (error != 0) {
device_printf(dev, "could not de-assert reset\n");
return (error);
}
}
return (0);
}
#endif
static int
dwc_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (!ofw_bus_is_compatible(dev, "snps,dwmac"))
return (ENXIO);
device_set_desc(dev, "Gigabit Ethernet Controller");
return (BUS_PROBE_DEFAULT);
}
static int
dwc_attach(device_t dev)
{
uint8_t macaddr[ETHER_ADDR_LEN];
struct dwc_softc *sc;
struct ifnet *ifp;
int error, i;
uint32_t reg;
sc = device_get_softc(dev);
sc->dev = dev;
sc->rx_idx = 0;
sc->txcount = TX_DESC_COUNT;
sc->mii_clk = IF_DWC_MII_CLK(dev);
sc->mactype = IF_DWC_MAC_TYPE(dev);
if (IF_DWC_INIT(dev) != 0)
return (ENXIO);
#ifdef EXT_RESOURCES
if (dwc_clock_init(dev) != 0)
return (ENXIO);
#endif
if (bus_alloc_resources(dev, dwc_spec, sc->res)) {
device_printf(dev, "could not allocate resources\n");
return (ENXIO);
}
/* Memory interface */
sc->bst = rman_get_bustag(sc->res[0]);
sc->bsh = rman_get_bushandle(sc->res[0]);
/* Read MAC before reset */
if (dwc_get_hwaddr(sc, macaddr)) {
device_printf(sc->dev, "can't get mac\n");
return (ENXIO);
}
/* Reset the PHY if needed */
if (dwc_reset(dev) != 0) {
device_printf(dev, "Can't reset the PHY\n");
return (ENXIO);
}
/* Reset */
reg = READ4(sc, BUS_MODE);
reg |= (BUS_MODE_SWR);
WRITE4(sc, BUS_MODE, reg);
for (i = 0; i < MAC_RESET_TIMEOUT; i++) {
if ((READ4(sc, BUS_MODE) & BUS_MODE_SWR) == 0)
break;
DELAY(10);
}
if (i >= MAC_RESET_TIMEOUT) {
device_printf(sc->dev, "Can't reset DWC.\n");
return (ENXIO);
}
if (sc->mactype == DWC_GMAC_ALT_DESC) {
reg = BUS_MODE_FIXEDBURST;
reg |= (BUS_MODE_PRIORXTX_41 << BUS_MODE_PRIORXTX_SHIFT);
} else
reg = (BUS_MODE_EIGHTXPBL);
reg |= (BUS_MODE_PBL_BEATS_8 << BUS_MODE_PBL_SHIFT);
WRITE4(sc, BUS_MODE, reg);
/*
* DMA must be stop while changing descriptor list addresses.
*/
reg = READ4(sc, OPERATION_MODE);
reg &= ~(MODE_ST | MODE_SR);
WRITE4(sc, OPERATION_MODE, reg);
if (setup_dma(sc))
return (ENXIO);
/* Setup addresses */
WRITE4(sc, RX_DESCR_LIST_ADDR, sc->rxdesc_ring_paddr);
WRITE4(sc, TX_DESCR_LIST_ADDR, sc->txdesc_ring_paddr);
mtx_init(&sc->mtx, device_get_nameunit(sc->dev),
MTX_NETWORK_LOCK, MTX_DEF);
callout_init_mtx(&sc->dwc_callout, &sc->mtx, 0);
/* Setup interrupt handler. */
error = bus_setup_intr(dev, sc->res[1], INTR_TYPE_NET | INTR_MPSAFE,
NULL, dwc_intr, sc, &sc->intr_cookie);
if (error != 0) {
device_printf(dev, "could not setup interrupt handler.\n");
return (ENXIO);
}
/* Set up the ethernet interface. */
sc->ifp = ifp = if_alloc(IFT_ETHER);
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_capabilities = IFCAP_VLAN_MTU;
ifp->if_capenable = ifp->if_capabilities;
ifp->if_start = dwc_txstart;
ifp->if_ioctl = dwc_ioctl;
ifp->if_init = dwc_init;
IFQ_SET_MAXLEN(&ifp->if_snd, TX_DESC_COUNT - 1);
ifp->if_snd.ifq_drv_maxlen = TX_DESC_COUNT - 1;
IFQ_SET_READY(&ifp->if_snd);
/* Attach the mii driver. */
error = mii_attach(dev, &sc->miibus, ifp, dwc_media_change,
dwc_media_status, BMSR_DEFCAPMASK, MII_PHY_ANY,
MII_OFFSET_ANY, 0);
if (error != 0) {
device_printf(dev, "PHY attach failed\n");
return (ENXIO);
}
sc->mii_softc = device_get_softc(sc->miibus);
/* All ready to run, attach the ethernet interface. */
ether_ifattach(ifp, macaddr);
sc->is_attached = true;
return (0);
}
static int
dwc_miibus_read_reg(device_t dev, int phy, int reg)
{
struct dwc_softc *sc;
uint16_t mii;
size_t cnt;
int rv = 0;
sc = device_get_softc(dev);
mii = ((phy & GMII_ADDRESS_PA_MASK) << GMII_ADDRESS_PA_SHIFT)
| ((reg & GMII_ADDRESS_GR_MASK) << GMII_ADDRESS_GR_SHIFT)
| (sc->mii_clk << GMII_ADDRESS_CR_SHIFT)
| GMII_ADDRESS_GB; /* Busy flag */
WRITE4(sc, GMII_ADDRESS, mii);
for (cnt = 0; cnt < 1000; cnt++) {
if (!(READ4(sc, GMII_ADDRESS) & GMII_ADDRESS_GB)) {
rv = READ4(sc, GMII_DATA);
break;
}
DELAY(10);
}
return rv;
}
static int
dwc_miibus_write_reg(device_t dev, int phy, int reg, int val)
{
struct dwc_softc *sc;
uint16_t mii;
size_t cnt;
sc = device_get_softc(dev);
mii = ((phy & GMII_ADDRESS_PA_MASK) << GMII_ADDRESS_PA_SHIFT)
| ((reg & GMII_ADDRESS_GR_MASK) << GMII_ADDRESS_GR_SHIFT)
| (sc->mii_clk << GMII_ADDRESS_CR_SHIFT)
| GMII_ADDRESS_GB | GMII_ADDRESS_GW;
WRITE4(sc, GMII_DATA, val);
WRITE4(sc, GMII_ADDRESS, mii);
for (cnt = 0; cnt < 1000; cnt++) {
if (!(READ4(sc, GMII_ADDRESS) & GMII_ADDRESS_GB)) {
break;
}
DELAY(10);
}
return (0);
}
static void
dwc_miibus_statchg(device_t dev)
{
struct dwc_softc *sc;
struct mii_data *mii;
uint32_t reg;
/*
* Called by the MII bus driver when the PHY establishes
* link to set the MAC interface registers.
*/
sc = device_get_softc(dev);
DWC_ASSERT_LOCKED(sc);
mii = sc->mii_softc;
if (mii->mii_media_status & IFM_ACTIVE)
sc->link_is_up = true;
else
sc->link_is_up = false;
reg = READ4(sc, MAC_CONFIGURATION);
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_1000_T:
case IFM_1000_SX:
reg &= ~(CONF_FES | CONF_PS);
break;
case IFM_100_TX:
reg |= (CONF_FES | CONF_PS);
break;
case IFM_10_T:
reg &= ~(CONF_FES);
reg |= (CONF_PS);
break;
case IFM_NONE:
sc->link_is_up = false;
return;
default:
sc->link_is_up = false;
device_printf(dev, "Unsupported media %u\n",
IFM_SUBTYPE(mii->mii_media_active));
return;
}
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
reg |= (CONF_DM);
else
reg &= ~(CONF_DM);
WRITE4(sc, MAC_CONFIGURATION, reg);
}
static device_method_t dwc_methods[] = {
DEVMETHOD(device_probe, dwc_probe),
DEVMETHOD(device_attach, dwc_attach),
/* MII Interface */
DEVMETHOD(miibus_readreg, dwc_miibus_read_reg),
DEVMETHOD(miibus_writereg, dwc_miibus_write_reg),
DEVMETHOD(miibus_statchg, dwc_miibus_statchg),
{ 0, 0 }
};
driver_t dwc_driver = {
"dwc",
dwc_methods,
sizeof(struct dwc_softc),
};
static devclass_t dwc_devclass;
DRIVER_MODULE(dwc, simplebus, dwc_driver, dwc_devclass, 0, 0);
DRIVER_MODULE(miibus, dwc, miibus_driver, miibus_devclass, 0, 0);
MODULE_DEPEND(dwc, ether, 1, 1, 1);
MODULE_DEPEND(dwc, miibus, 1, 1, 1);