/*- * Copyright (c) 1993 The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ /* * Functions to provide access to special i386 instructions. */ #ifndef _MACHINE_CPUFUNC_H_ #define _MACHINE_CPUFUNC_H_ #define readb(va) (*(volatile u_int8_t *) (va)) #define readw(va) (*(volatile u_int16_t *) (va)) #define readl(va) (*(volatile u_int32_t *) (va)) #define writeb(va, d) (*(volatile u_int8_t *) (va) = (d)) #define writew(va, d) (*(volatile u_int16_t *) (va) = (d)) #define writel(va, d) (*(volatile u_int32_t *) (va) = (d)) #ifdef __GNUC__ #ifdef SMP #include /* XXX */ #endif #ifdef SWTCH_OPTIM_STATS extern int tlb_flush_count; /* XXX */ #endif static __inline void breakpoint(void) { __asm __volatile("int $3"); } static __inline u_int bsfl(u_int mask) { u_int result; __asm __volatile("bsfl %0,%0" : "=r" (result) : "0" (mask)); return (result); } static __inline u_int bsrl(u_int mask) { u_int result; __asm __volatile("bsrl %0,%0" : "=r" (result) : "0" (mask)); return (result); } static __inline void disable_intr(void) { __asm __volatile("cli" : : : "memory"); #ifdef SMP MPINTR_LOCK(); #endif } static __inline void enable_intr(void) { #ifdef SMP MPINTR_UNLOCK(); #endif __asm __volatile("sti"); } #define HAVE_INLINE_FFS static __inline int ffs(int mask) { /* * Note that gcc-2's builtin ffs would be used if we didn't declare * this inline or turn off the builtin. The builtin is faster but * broken in gcc-2.4.5 and slower but working in gcc-2.5 and later * versions. */ return (mask == 0 ? mask : bsfl((u_int)mask) + 1); } #define HAVE_INLINE_FLS static __inline int fls(int mask) { return (mask == 0 ? mask : bsrl((u_int)mask) + 1); } #if __GNUC__ < 2 #define inb(port) inbv(port) #define outb(port, data) outbv(port, data) #else /* __GNUC >= 2 */ /* * The following complications are to get around gcc not having a * constraint letter for the range 0..255. We still put "d" in the * constraint because "i" isn't a valid constraint when the port * isn't constant. This only matters for -O0 because otherwise * the non-working version gets optimized away. * * Use an expression-statement instead of a conditional expression * because gcc-2.6.0 would promote the operands of the conditional * and produce poor code for "if ((inb(var) & const1) == const2)". * * The unnecessary test `(port) < 0x10000' is to generate a warning if * the `port' has type u_short or smaller. Such types are pessimal. * This actually only works for signed types. The range check is * careful to avoid generating warnings. */ #define inb(port) __extension__ ({ \ u_char _data; \ if (__builtin_constant_p(port) && ((port) & 0xffff) < 0x100 \ && (port) < 0x10000) \ _data = inbc(port); \ else \ _data = inbv(port); \ _data; }) #define outb(port, data) ( \ __builtin_constant_p(port) && ((port) & 0xffff) < 0x100 \ && (port) < 0x10000 \ ? outbc(port, data) : outbv(port, data)) static __inline u_char inbc(u_int port) { u_char data; __asm __volatile("inb %1,%0" : "=a" (data) : "id" ((u_short)(port))); return (data); } static __inline void outbc(u_int port, u_char data) { __asm __volatile("outb %0,%1" : : "a" (data), "id" ((u_short)(port))); } #endif /* __GNUC <= 2 */ static __inline u_char inbv(u_int port) { u_char data; /* * We use %%dx and not %1 here because i/o is done at %dx and not at * %edx, while gcc generates inferior code (movw instead of movl) * if we tell it to load (u_short) port. */ __asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port)); return (data); } static __inline u_int inl(u_int port) { u_int data; __asm __volatile("inl %%dx,%0" : "=a" (data) : "d" (port)); return (data); } static __inline void insb(u_int port, void *addr, size_t cnt) { __asm __volatile("cld; rep; insb" : "=D" (addr), "=c" (cnt) : "0" (addr), "1" (cnt), "d" (port) : "memory"); } static __inline void insw(u_int port, void *addr, size_t cnt) { __asm __volatile("cld; rep; insw" : "=D" (addr), "=c" (cnt) : "0" (addr), "1" (cnt), "d" (port) : "memory"); } static __inline void insl(u_int port, void *addr, size_t cnt) { __asm __volatile("cld; rep; insl" : "=D" (addr), "=c" (cnt) : "0" (addr), "1" (cnt), "d" (port) : "memory"); } static __inline void invd(void) { __asm __volatile("invd"); } #if defined(SMP) && defined(_KERNEL) /* * When using APIC IPI's, invlpg() is not simply the invlpg instruction * (this is a bug) and the inlining cost is prohibitive since the call * executes into the IPI transmission system. */ void invlpg __P((u_int addr)); void invltlb __P((void)); static __inline void cpu_invlpg(void *addr) { __asm __volatile("invlpg %0" : : "m" (*(char *)addr) : "memory"); } static __inline void cpu_invltlb(void) { u_int temp; /* * This should be implemented as load_cr3(rcr3()) when load_cr3() * is inlined. */ __asm __volatile("movl %%cr3, %0; movl %0, %%cr3" : "=r" (temp) : : "memory"); #if defined(SWTCH_OPTIM_STATS) ++tlb_flush_count; #endif } #else /* !(SMP && _KERNEL) */ static __inline void invlpg(u_int addr) { __asm __volatile("invlpg %0" : : "m" (*(char *)addr) : "memory"); } static __inline void invltlb(void) { u_int temp; /* * This should be implemented as load_cr3(rcr3()) when load_cr3() * is inlined. */ __asm __volatile("movl %%cr3, %0; movl %0, %%cr3" : "=r" (temp) : : "memory"); #ifdef SWTCH_OPTIM_STATS ++tlb_flush_count; #endif } #endif /* SMP && _KERNEL */ static __inline u_short inw(u_int port) { u_short data; __asm __volatile("inw %%dx,%0" : "=a" (data) : "d" (port)); return (data); } static __inline u_int loadandclear(volatile u_int *addr) { u_int result; __asm __volatile("xorl %0,%0; xchgl %1,%0" : "=&r" (result) : "m" (*addr)); return (result); } static __inline void outbv(u_int port, u_char data) { u_char al; /* * Use an unnecessary assignment to help gcc's register allocator. * This make a large difference for gcc-1.40 and a tiny difference * for gcc-2.6.0. For gcc-1.40, al had to be ``asm("ax")'' for * best results. gcc-2.6.0 can't handle this. */ al = data; __asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port)); } static __inline void outl(u_int port, u_int data) { /* * outl() and outw() aren't used much so we haven't looked at * possible micro-optimizations such as the unnecessary * assignment for them. */ __asm __volatile("outl %0,%%dx" : : "a" (data), "d" (port)); } static __inline void outsb(u_int port, const void *addr, size_t cnt) { __asm __volatile("cld; rep; outsb" : "=S" (addr), "=c" (cnt) : "0" (addr), "1" (cnt), "d" (port)); } static __inline void outsw(u_int port, const void *addr, size_t cnt) { __asm __volatile("cld; rep; outsw" : "=S" (addr), "=c" (cnt) : "0" (addr), "1" (cnt), "d" (port)); } static __inline void outsl(u_int port, const void *addr, size_t cnt) { __asm __volatile("cld; rep; outsl" : "=S" (addr), "=c" (cnt) : "0" (addr), "1" (cnt), "d" (port)); } static __inline void outw(u_int port, u_short data) { __asm __volatile("outw %0,%%dx" : : "a" (data), "d" (port)); } static __inline u_int rcr2(void) { u_int data; __asm __volatile("movl %%cr2,%0" : "=r" (data)); return (data); } static __inline u_int read_eflags(void) { u_int ef; __asm __volatile("pushfl; popl %0" : "=r" (ef)); return (ef); } static __inline u_int64_t rdmsr(u_int msr) { u_int64_t rv; __asm __volatile(".byte 0x0f, 0x32" : "=A" (rv) : "c" (msr)); return (rv); } static __inline u_int64_t rdpmc(u_int pmc) { u_int64_t rv; __asm __volatile(".byte 0x0f, 0x33" : "=A" (rv) : "c" (pmc)); return (rv); } static __inline u_int64_t rdtsc(void) { u_int64_t rv; __asm __volatile(".byte 0x0f, 0x31" : "=A" (rv)); return (rv); } static __inline void wbinvd(void) { __asm __volatile("wbinvd"); } static __inline void write_eflags(u_int ef) { __asm __volatile("pushl %0; popfl" : : "r" (ef)); } static __inline void wrmsr(u_int msr, u_int64_t newval) { __asm __volatile(".byte 0x0f, 0x30" : : "A" (newval), "c" (msr)); } static __inline u_int rfs(void) { u_int sel; __asm __volatile("movl %%fs,%0" : "=rm" (sel)); return (sel); } static __inline u_int rgs(void) { u_int sel; __asm __volatile("movl %%gs,%0" : "=rm" (sel)); return (sel); } static __inline void load_fs(u_int sel) { __asm __volatile("movl %0,%%fs" : : "rm" (sel)); } static __inline void load_gs(u_int sel) { __asm __volatile("movl %0,%%gs" : : "rm" (sel)); } static __inline u_int rdr0(void) { u_int data; __asm __volatile("movl %%dr0,%0" : "=r" (data)); return (data); } static __inline u_int rdr1(void) { u_int data; __asm __volatile("movl %%dr1,%0" : "=r" (data)); return (data); } static __inline u_int rdr2(void) { u_int data; __asm __volatile("movl %%dr2,%0" : "=r" (data)); return (data); } static __inline u_int rdr3(void) { u_int data; __asm __volatile("movl %%dr3,%0" : "=r" (data)); return (data); } static __inline u_int rdr6(void) { u_int data; __asm __volatile("movl %%dr6,%0" : "=r" (data)); return (data); } static __inline u_int rdr7(void) { u_int data; __asm __volatile("movl %%dr7,%0" : "=r" (data)); return (data); } #else /* !__GNUC__ */ int breakpoint __P((void)); u_int bsfl __P((u_int mask)); u_int bsrl __P((u_int mask)); void disable_intr __P((void)); void enable_intr __P((void)); u_char inb __P((u_int port)); u_int inl __P((u_int port)); void insb __P((u_int port, void *addr, size_t cnt)); void insl __P((u_int port, void *addr, size_t cnt)); void insw __P((u_int port, void *addr, size_t cnt)); void invd __P((void)); void invlpg __P((u_int addr)); void invltlb __P((void)); u_short inw __P((u_int port)); u_int loadandclear __P((u_int *addr)); void outb __P((u_int port, u_char data)); void outl __P((u_int port, u_int data)); void outsb __P((u_int port, void *addr, size_t cnt)); void outsl __P((u_int port, void *addr, size_t cnt)); void outsw __P((u_int port, void *addr, size_t cnt)); void outw __P((u_int port, u_short data)); u_int rcr2 __P((void)); u_int64_t rdmsr __P((u_int msr)); u_int64_t rdpmc __P((u_int pmc)); u_int64_t rdtsc __P((void)); u_int read_eflags __P((void)); void wbinvd __P((void)); void write_eflags __P((u_int ef)); void wrmsr __P((u_int msr, u_int64_t newval)); u_int rfs __P((void)); u_int rgs __P((void)); void load_fs __P((u_int sel)); void load_gs __P((u_int sel)); #endif /* __GNUC__ */ void load_cr0 __P((u_int cr0)); void load_cr3 __P((u_int cr3)); void load_cr4 __P((u_int cr4)); void ltr __P((u_short sel)); u_int rcr0 __P((void)); u_int rcr3 __P((void)); u_int rcr4 __P((void)); void load_dr6 __P((u_int dr6)); void reset_dbregs __P((void)); #endif /* !_MACHINE_CPUFUNC_H_ */