//===- LinkerScript.cpp ---------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the parser/evaluator of the linker script. // //===----------------------------------------------------------------------===// #include "LinkerScript.h" #include "Config.h" #include "InputSection.h" #include "Memory.h" #include "OutputSections.h" #include "Strings.h" #include "SymbolTable.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Writer.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ELF.h" #include "llvm/Support/Endian.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Path.h" #include #include #include #include #include #include #include #include using namespace llvm; using namespace llvm::ELF; using namespace llvm::object; using namespace llvm::support::endian; using namespace lld; using namespace lld::elf; LinkerScript *elf::Script; uint64_t ExprValue::getValue() const { if (Sec) { if (Sec->getOutputSection()) return Sec->getOffset(Val) + Sec->getOutputSection()->Addr; error("unable to evaluate expression: input section " + Sec->Name + " has no output section assigned"); } return Val; } uint64_t ExprValue::getSecAddr() const { if (Sec) return Sec->getOffset(0) + Sec->getOutputSection()->Addr; return 0; } template static SymbolBody *addRegular(SymbolAssignment *Cmd) { Symbol *Sym; uint8_t Visibility = Cmd->Hidden ? STV_HIDDEN : STV_DEFAULT; std::tie(Sym, std::ignore) = Symtab::X->insert( Cmd->Name, /*Type*/ 0, Visibility, /*CanOmitFromDynSym*/ false, /*File*/ nullptr); Sym->Binding = STB_GLOBAL; ExprValue Value = Cmd->Expression(); SectionBase *Sec = Value.isAbsolute() ? nullptr : Value.Sec; // We want to set symbol values early if we can. This allows us to use symbols // as variables in linker scripts. Doing so allows us to write expressions // like this: `alignment = 16; . = ALIGN(., alignment)` uint64_t SymValue = Value.isAbsolute() ? Value.getValue() : 0; replaceBody(Sym, Cmd->Name, /*IsLocal=*/false, Visibility, STT_NOTYPE, SymValue, 0, Sec, nullptr); return Sym->body(); } OutputSection *LinkerScript::getOutputSection(const Twine &Loc, StringRef Name) { for (OutputSection *Sec : *OutputSections) if (Sec->Name == Name) return Sec; static OutputSection Dummy("", 0, 0); if (ErrorOnMissingSection) error(Loc + ": undefined section " + Name); return &Dummy; } // This function is essentially the same as getOutputSection(Name)->Size, // but it won't print out an error message if a given section is not found. // // Linker script does not create an output section if its content is empty. // We want to allow SIZEOF(.foo) where .foo is a section which happened to // be empty. That is why this function is different from getOutputSection(). uint64_t LinkerScript::getOutputSectionSize(StringRef Name) { for (OutputSection *Sec : *OutputSections) if (Sec->Name == Name) return Sec->Size; return 0; } void LinkerScript::setDot(Expr E, const Twine &Loc, bool InSec) { uint64_t Val = E().getValue(); if (Val < Dot) { if (InSec) error(Loc + ": unable to move location counter backward for: " + CurOutSec->Name); else error(Loc + ": unable to move location counter backward"); } Dot = Val; // Update to location counter means update to section size. if (InSec) CurOutSec->Size = Dot - CurOutSec->Addr; } // Sets value of a symbol. Two kinds of symbols are processed: synthetic // symbols, whose value is an offset from beginning of section and regular // symbols whose value is absolute. void LinkerScript::assignSymbol(SymbolAssignment *Cmd, bool InSec) { if (Cmd->Name == ".") { setDot(Cmd->Expression, Cmd->Location, InSec); return; } if (!Cmd->Sym) return; auto *Sym = cast(Cmd->Sym); ExprValue V = Cmd->Expression(); if (V.isAbsolute()) { Sym->Value = V.getValue(); } else { Sym->Section = V.Sec; if (Sym->Section->Flags & SHF_ALLOC) Sym->Value = V.Val; else Sym->Value = V.getValue(); } } static SymbolBody *findSymbol(StringRef S) { switch (Config->EKind) { case ELF32LEKind: return Symtab::X->find(S); case ELF32BEKind: return Symtab::X->find(S); case ELF64LEKind: return Symtab::X->find(S); case ELF64BEKind: return Symtab::X->find(S); default: llvm_unreachable("unknown Config->EKind"); } } static SymbolBody *addRegularSymbol(SymbolAssignment *Cmd) { switch (Config->EKind) { case ELF32LEKind: return addRegular(Cmd); case ELF32BEKind: return addRegular(Cmd); case ELF64LEKind: return addRegular(Cmd); case ELF64BEKind: return addRegular(Cmd); default: llvm_unreachable("unknown Config->EKind"); } } void LinkerScript::addSymbol(SymbolAssignment *Cmd) { if (Cmd->Name == ".") return; // If a symbol was in PROVIDE(), we need to define it only when // it is a referenced undefined symbol. SymbolBody *B = findSymbol(Cmd->Name); if (Cmd->Provide && (!B || B->isDefined())) return; Cmd->Sym = addRegularSymbol(Cmd); } bool SymbolAssignment::classof(const BaseCommand *C) { return C->Kind == AssignmentKind; } bool OutputSectionCommand::classof(const BaseCommand *C) { return C->Kind == OutputSectionKind; } bool InputSectionDescription::classof(const BaseCommand *C) { return C->Kind == InputSectionKind; } bool AssertCommand::classof(const BaseCommand *C) { return C->Kind == AssertKind; } bool BytesDataCommand::classof(const BaseCommand *C) { return C->Kind == BytesDataKind; } static StringRef basename(InputSectionBase *S) { if (S->File) return sys::path::filename(S->File->getName()); return ""; } bool LinkerScript::shouldKeep(InputSectionBase *S) { for (InputSectionDescription *ID : Opt.KeptSections) if (ID->FilePat.match(basename(S))) for (SectionPattern &P : ID->SectionPatterns) if (P.SectionPat.match(S->Name)) return true; return false; } // A helper function for the SORT() command. static std::function getComparator(SortSectionPolicy K) { switch (K) { case SortSectionPolicy::Alignment: return [](InputSectionBase *A, InputSectionBase *B) { // ">" is not a mistake. Sections with larger alignments are placed // before sections with smaller alignments in order to reduce the // amount of padding necessary. This is compatible with GNU. return A->Alignment > B->Alignment; }; case SortSectionPolicy::Name: return [](InputSectionBase *A, InputSectionBase *B) { return A->Name < B->Name; }; case SortSectionPolicy::Priority: return [](InputSectionBase *A, InputSectionBase *B) { return getPriority(A->Name) < getPriority(B->Name); }; default: llvm_unreachable("unknown sort policy"); } } // A helper function for the SORT() command. static bool matchConstraints(ArrayRef Sections, ConstraintKind Kind) { if (Kind == ConstraintKind::NoConstraint) return true; bool IsRW = llvm::any_of(Sections, [](InputSectionBase *Sec) { return static_cast(Sec)->Flags & SHF_WRITE; }); return (IsRW && Kind == ConstraintKind::ReadWrite) || (!IsRW && Kind == ConstraintKind::ReadOnly); } static void sortSections(InputSectionBase **Begin, InputSectionBase **End, SortSectionPolicy K) { if (K != SortSectionPolicy::Default && K != SortSectionPolicy::None) std::stable_sort(Begin, End, getComparator(K)); } // Compute and remember which sections the InputSectionDescription matches. std::vector LinkerScript::computeInputSections(const InputSectionDescription *Cmd) { std::vector Ret; // Collects all sections that satisfy constraints of Cmd. for (const SectionPattern &Pat : Cmd->SectionPatterns) { size_t SizeBefore = Ret.size(); for (InputSectionBase *Sec : InputSections) { if (Sec->Assigned) continue; // For -emit-relocs we have to ignore entries like // .rela.dyn : { *(.rela.data) } // which are common because they are in the default bfd script. if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA) continue; StringRef Filename = basename(Sec); if (!Cmd->FilePat.match(Filename) || Pat.ExcludedFilePat.match(Filename) || !Pat.SectionPat.match(Sec->Name)) continue; Ret.push_back(Sec); Sec->Assigned = true; } // Sort sections as instructed by SORT-family commands and --sort-section // option. Because SORT-family commands can be nested at most two depth // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command // line option is respected even if a SORT command is given, the exact // behavior we have here is a bit complicated. Here are the rules. // // 1. If two SORT commands are given, --sort-section is ignored. // 2. If one SORT command is given, and if it is not SORT_NONE, // --sort-section is handled as an inner SORT command. // 3. If one SORT command is given, and if it is SORT_NONE, don't sort. // 4. If no SORT command is given, sort according to --sort-section. InputSectionBase **Begin = Ret.data() + SizeBefore; InputSectionBase **End = Ret.data() + Ret.size(); if (Pat.SortOuter != SortSectionPolicy::None) { if (Pat.SortInner == SortSectionPolicy::Default) sortSections(Begin, End, Config->SortSection); else sortSections(Begin, End, Pat.SortInner); sortSections(Begin, End, Pat.SortOuter); } } return Ret; } void LinkerScript::discard(ArrayRef V) { for (InputSectionBase *S : V) { S->Live = false; if (S == InX::ShStrTab) error("discarding .shstrtab section is not allowed"); discard(S->DependentSections); } } std::vector LinkerScript::createInputSectionList(OutputSectionCommand &OutCmd) { std::vector Ret; for (BaseCommand *Base : OutCmd.Commands) { auto *Cmd = dyn_cast(Base); if (!Cmd) continue; Cmd->Sections = computeInputSections(Cmd); Ret.insert(Ret.end(), Cmd->Sections.begin(), Cmd->Sections.end()); } return Ret; } void LinkerScript::processCommands(OutputSectionFactory &Factory) { // A symbol can be assigned before any section is mentioned in the linker // script. In an DSO, the symbol values are addresses, so the only important // section values are: // * SHN_UNDEF // * SHN_ABS // * Any value meaning a regular section. // To handle that, create a dummy aether section that fills the void before // the linker scripts switches to another section. It has an index of one // which will map to whatever the first actual section is. Aether = make("", 0, SHF_ALLOC); Aether->SectionIndex = 1; CurOutSec = Aether; Dot = 0; for (size_t I = 0; I < Opt.Commands.size(); ++I) { // Handle symbol assignments outside of any output section. if (auto *Cmd = dyn_cast(Opt.Commands[I])) { addSymbol(Cmd); continue; } if (auto *Cmd = dyn_cast(Opt.Commands[I])) { std::vector V = createInputSectionList(*Cmd); // The output section name `/DISCARD/' is special. // Any input section assigned to it is discarded. if (Cmd->Name == "/DISCARD/") { discard(V); continue; } // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input // sections satisfy a given constraint. If not, a directive is handled // as if it wasn't present from the beginning. // // Because we'll iterate over Commands many more times, the easiest // way to "make it as if it wasn't present" is to just remove it. if (!matchConstraints(V, Cmd->Constraint)) { for (InputSectionBase *S : V) S->Assigned = false; Opt.Commands.erase(Opt.Commands.begin() + I); --I; continue; } // A directive may contain symbol definitions like this: // ".foo : { ...; bar = .; }". Handle them. for (BaseCommand *Base : Cmd->Commands) if (auto *OutCmd = dyn_cast(Base)) addSymbol(OutCmd); // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign // is given, input sections are aligned to that value, whether the // given value is larger or smaller than the original section alignment. if (Cmd->SubalignExpr) { uint32_t Subalign = Cmd->SubalignExpr().getValue(); for (InputSectionBase *S : V) S->Alignment = Subalign; } // Add input sections to an output section. for (InputSectionBase *S : V) Factory.addInputSec(S, Cmd->Name, Cmd->Sec); if (OutputSection *Sec = Cmd->Sec) { assert(Sec->SectionIndex == INT_MAX); Sec->SectionIndex = I; SecToCommand[Sec] = Cmd; } } } CurOutSec = nullptr; } void LinkerScript::fabricateDefaultCommands() { std::vector Commands; // Define start address uint64_t StartAddr = Config->ImageBase + elf::getHeaderSize(); // The Sections with -T
have been sorted in order of ascending // address. We must lower StartAddr if the lowest -T
as // calls to setDot() must be monotonically increasing. for (auto& KV : Config->SectionStartMap) StartAddr = std::min(StartAddr, KV.second); Commands.push_back( make(".", [=] { return StartAddr; }, "")); // For each OutputSection that needs a VA fabricate an OutputSectionCommand // with an InputSectionDescription describing the InputSections for (OutputSection *Sec : *OutputSections) { auto *OSCmd = make(Sec->Name); OSCmd->Sec = Sec; SecToCommand[Sec] = OSCmd; // Prefer user supplied address over additional alignment constraint auto I = Config->SectionStartMap.find(Sec->Name); if (I != Config->SectionStartMap.end()) Commands.push_back( make(".", [=] { return I->second; }, "")); else if (Sec->PageAlign) OSCmd->AddrExpr = [=] { return alignTo(Script->getDot(), Config->MaxPageSize); }; Commands.push_back(OSCmd); if (Sec->Sections.size()) { auto *ISD = make(""); OSCmd->Commands.push_back(ISD); for (InputSection *ISec : Sec->Sections) { ISD->Sections.push_back(ISec); ISec->Assigned = true; } } } // SECTIONS commands run before other non SECTIONS commands Commands.insert(Commands.end(), Opt.Commands.begin(), Opt.Commands.end()); Opt.Commands = std::move(Commands); } // Add sections that didn't match any sections command. void LinkerScript::addOrphanSections(OutputSectionFactory &Factory) { for (InputSectionBase *S : InputSections) { if (!S->Live || S->OutSec) continue; StringRef Name = getOutputSectionName(S->Name); auto I = std::find_if( Opt.Commands.begin(), Opt.Commands.end(), [&](BaseCommand *Base) { if (auto *Cmd = dyn_cast(Base)) return Cmd->Name == Name; return false; }); if (I == Opt.Commands.end()) { Factory.addInputSec(S, Name); } else { auto *Cmd = cast(*I); Factory.addInputSec(S, Name, Cmd->Sec); if (OutputSection *Sec = Cmd->Sec) { SecToCommand[Sec] = Cmd; unsigned Index = std::distance(Opt.Commands.begin(), I); assert(Sec->SectionIndex == INT_MAX || Sec->SectionIndex == Index); Sec->SectionIndex = Index; } auto *ISD = make(""); ISD->Sections.push_back(S); Cmd->Commands.push_back(ISD); } } } uint64_t LinkerScript::advance(uint64_t Size, unsigned Align) { bool IsTbss = (CurOutSec->Flags & SHF_TLS) && CurOutSec->Type == SHT_NOBITS; uint64_t Start = IsTbss ? Dot + ThreadBssOffset : Dot; Start = alignTo(Start, Align); uint64_t End = Start + Size; if (IsTbss) ThreadBssOffset = End - Dot; else Dot = End; return End; } void LinkerScript::output(InputSection *S) { uint64_t Pos = advance(S->getSize(), S->Alignment); S->OutSecOff = Pos - S->getSize() - CurOutSec->Addr; // Update output section size after adding each section. This is so that // SIZEOF works correctly in the case below: // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } CurOutSec->Size = Pos - CurOutSec->Addr; // If there is a memory region associated with this input section, then // place the section in that region and update the region index. if (CurMemRegion) { CurMemRegion->Offset += CurOutSec->Size; uint64_t CurSize = CurMemRegion->Offset - CurMemRegion->Origin; if (CurSize > CurMemRegion->Length) { uint64_t OverflowAmt = CurSize - CurMemRegion->Length; error("section '" + CurOutSec->Name + "' will not fit in region '" + CurMemRegion->Name + "': overflowed by " + Twine(OverflowAmt) + " bytes"); } } } void LinkerScript::switchTo(OutputSection *Sec) { if (CurOutSec == Sec) return; CurOutSec = Sec; CurOutSec->Addr = advance(0, CurOutSec->Alignment); // If neither AT nor AT> is specified for an allocatable section, the linker // will set the LMA such that the difference between VMA and LMA for the // section is the same as the preceding output section in the same region // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html if (LMAOffset) CurOutSec->LMAOffset = LMAOffset(); } void LinkerScript::process(BaseCommand &Base) { // This handles the assignments to symbol or to the dot. if (auto *Cmd = dyn_cast(&Base)) { assignSymbol(Cmd, true); return; } // Handle BYTE(), SHORT(), LONG(), or QUAD(). if (auto *Cmd = dyn_cast(&Base)) { Cmd->Offset = Dot - CurOutSec->Addr; Dot += Cmd->Size; CurOutSec->Size = Dot - CurOutSec->Addr; return; } // Handle ASSERT(). if (auto *Cmd = dyn_cast(&Base)) { Cmd->Expression(); return; } // Handle a single input section description command. // It calculates and assigns the offsets for each section and also // updates the output section size. auto &Cmd = cast(Base); for (InputSectionBase *Sec : Cmd.Sections) { // We tentatively added all synthetic sections at the beginning and removed // empty ones afterwards (because there is no way to know whether they were // going be empty or not other than actually running linker scripts.) // We need to ignore remains of empty sections. if (auto *S = dyn_cast(Sec)) if (S->empty()) continue; if (!Sec->Live) continue; assert(CurOutSec == Sec->OutSec); output(cast(Sec)); } } // This function searches for a memory region to place the given output // section in. If found, a pointer to the appropriate memory region is // returned. Otherwise, a nullptr is returned. MemoryRegion *LinkerScript::findMemoryRegion(OutputSectionCommand *Cmd) { // If a memory region name was specified in the output section command, // then try to find that region first. if (!Cmd->MemoryRegionName.empty()) { auto It = Opt.MemoryRegions.find(Cmd->MemoryRegionName); if (It != Opt.MemoryRegions.end()) return &It->second; error("memory region '" + Cmd->MemoryRegionName + "' not declared"); return nullptr; } // If at least one memory region is defined, all sections must // belong to some memory region. Otherwise, we don't need to do // anything for memory regions. if (Opt.MemoryRegions.empty()) return nullptr; OutputSection *Sec = Cmd->Sec; // See if a region can be found by matching section flags. for (auto &Pair : Opt.MemoryRegions) { MemoryRegion &M = Pair.second; if ((M.Flags & Sec->Flags) && (M.NegFlags & Sec->Flags) == 0) return &M; } // Otherwise, no suitable region was found. if (Sec->Flags & SHF_ALLOC) error("no memory region specified for section '" + Sec->Name + "'"); return nullptr; } // This function assigns offsets to input sections and an output section // for a single sections command (e.g. ".text { *(.text); }"). void LinkerScript::assignOffsets(OutputSectionCommand *Cmd) { OutputSection *Sec = Cmd->Sec; if (!Sec) return; if (Cmd->AddrExpr && (Sec->Flags & SHF_ALLOC)) setDot(Cmd->AddrExpr, Cmd->Location, false); if (Cmd->LMAExpr) { uint64_t D = Dot; LMAOffset = [=] { return Cmd->LMAExpr().getValue() - D; }; } CurMemRegion = Cmd->MemRegion; if (CurMemRegion) Dot = CurMemRegion->Offset; switchTo(Sec); // We do not support custom layout for compressed debug sectons. // At this point we already know their size and have compressed content. if (CurOutSec->Flags & SHF_COMPRESSED) return; for (BaseCommand *C : Cmd->Commands) process(*C); } void LinkerScript::removeEmptyCommands() { // It is common practice to use very generic linker scripts. So for any // given run some of the output sections in the script will be empty. // We could create corresponding empty output sections, but that would // clutter the output. // We instead remove trivially empty sections. The bfd linker seems even // more aggressive at removing them. auto Pos = std::remove_if( Opt.Commands.begin(), Opt.Commands.end(), [&](BaseCommand *Base) { if (auto *Cmd = dyn_cast(Base)) return std::find(OutputSections->begin(), OutputSections->end(), Cmd->Sec) == OutputSections->end(); return false; }); Opt.Commands.erase(Pos, Opt.Commands.end()); } static bool isAllSectionDescription(const OutputSectionCommand &Cmd) { for (BaseCommand *Base : Cmd.Commands) if (!isa(*Base)) return false; return true; } void LinkerScript::adjustSectionsBeforeSorting() { // If the output section contains only symbol assignments, create a // corresponding output section. The bfd linker seems to only create them if // '.' is assigned to, but creating these section should not have any bad // consequeces and gives us a section to put the symbol in. uint64_t Flags = SHF_ALLOC; uint32_t Type = SHT_PROGBITS; for (int I = 0, E = Opt.Commands.size(); I != E; ++I) { auto *Cmd = dyn_cast(Opt.Commands[I]); if (!Cmd) continue; if (OutputSection *Sec = Cmd->Sec) { Flags = Sec->Flags; Type = Sec->Type; continue; } if (isAllSectionDescription(*Cmd)) continue; auto *OutSec = make(Cmd->Name, Type, Flags); OutSec->SectionIndex = I; OutputSections->push_back(OutSec); Cmd->Sec = OutSec; SecToCommand[OutSec] = Cmd; } } void LinkerScript::adjustSectionsAfterSorting() { placeOrphanSections(); // Try and find an appropriate memory region to assign offsets in. for (BaseCommand *Base : Opt.Commands) { if (auto *Cmd = dyn_cast(Base)) { Cmd->MemRegion = findMemoryRegion(Cmd); // Handle align (e.g. ".foo : ALIGN(16) { ... }"). if (Cmd->AlignExpr) Cmd->Sec->updateAlignment(Cmd->AlignExpr().getValue()); } } // If output section command doesn't specify any segments, // and we haven't previously assigned any section to segment, // then we simply assign section to the very first load segment. // Below is an example of such linker script: // PHDRS { seg PT_LOAD; } // SECTIONS { .aaa : { *(.aaa) } } std::vector DefPhdrs; auto FirstPtLoad = std::find_if(Opt.PhdrsCommands.begin(), Opt.PhdrsCommands.end(), [](const PhdrsCommand &Cmd) { return Cmd.Type == PT_LOAD; }); if (FirstPtLoad != Opt.PhdrsCommands.end()) DefPhdrs.push_back(FirstPtLoad->Name); // Walk the commands and propagate the program headers to commands that don't // explicitly specify them. for (BaseCommand *Base : Opt.Commands) { auto *Cmd = dyn_cast(Base); if (!Cmd) continue; if (Cmd->Phdrs.empty()) Cmd->Phdrs = DefPhdrs; else DefPhdrs = Cmd->Phdrs; } removeEmptyCommands(); } // When placing orphan sections, we want to place them after symbol assignments // so that an orphan after // begin_foo = .; // foo : { *(foo) } // end_foo = .; // doesn't break the intended meaning of the begin/end symbols. // We don't want to go over sections since Writer::sortSections is the // one in charge of deciding the order of the sections. // We don't want to go over alignments, since doing so in // rx_sec : { *(rx_sec) } // . = ALIGN(0x1000); // /* The RW PT_LOAD starts here*/ // rw_sec : { *(rw_sec) } // would mean that the RW PT_LOAD would become unaligned. static bool shouldSkip(BaseCommand *Cmd) { if (isa(Cmd)) return false; if (auto *Assign = dyn_cast(Cmd)) return Assign->Name != "."; return true; } // Orphan sections are sections present in the input files which are // not explicitly placed into the output file by the linker script. // // When the control reaches this function, Opt.Commands contains // output section commands for non-orphan sections only. This function // adds new elements for orphan sections so that all sections are // explicitly handled by Opt.Commands. // // Writer::sortSections has already sorted output sections. // What we need to do is to scan OutputSections vector and // Opt.Commands in parallel to find orphan sections. If there is an // output section that doesn't have a corresponding entry in // Opt.Commands, we will insert a new entry to Opt.Commands. // // There is some ambiguity as to where exactly a new entry should be // inserted, because Opt.Commands contains not only output section // commands but also other types of commands such as symbol assignment // expressions. There's no correct answer here due to the lack of the // formal specification of the linker script. We use heuristics to // determine whether a new output command should be added before or // after another commands. For the details, look at shouldSkip // function. void LinkerScript::placeOrphanSections() { // The OutputSections are already in the correct order. // This loops creates or moves commands as needed so that they are in the // correct order. int CmdIndex = 0; // As a horrible special case, skip the first . assignment if it is before any // section. We do this because it is common to set a load address by starting // the script with ". = 0xabcd" and the expectation is that every section is // after that. auto FirstSectionOrDotAssignment = std::find_if(Opt.Commands.begin(), Opt.Commands.end(), [](BaseCommand *Cmd) { return !shouldSkip(Cmd); }); if (FirstSectionOrDotAssignment != Opt.Commands.end()) { CmdIndex = FirstSectionOrDotAssignment - Opt.Commands.begin(); if (isa(**FirstSectionOrDotAssignment)) ++CmdIndex; } for (OutputSection *Sec : *OutputSections) { StringRef Name = Sec->Name; // Find the last spot where we can insert a command and still get the // correct result. auto CmdIter = Opt.Commands.begin() + CmdIndex; auto E = Opt.Commands.end(); while (CmdIter != E && shouldSkip(*CmdIter)) { ++CmdIter; ++CmdIndex; } // If there is no command corresponding to this output section, // create one and put a InputSectionDescription in it so that both // representations agree on which input sections to use. OutputSectionCommand *Cmd = getCmd(Sec); if (!Cmd) { Cmd = make(Name); Opt.Commands.insert(CmdIter, Cmd); ++CmdIndex; Cmd->Sec = Sec; SecToCommand[Sec] = Cmd; auto *ISD = make(""); for (InputSection *IS : Sec->Sections) ISD->Sections.push_back(IS); Cmd->Commands.push_back(ISD); continue; } // Continue from where we found it. while (*CmdIter != Cmd) { ++CmdIter; ++CmdIndex; } ++CmdIndex; } } void LinkerScript::processNonSectionCommands() { for (BaseCommand *Base : Opt.Commands) { if (auto *Cmd = dyn_cast(Base)) assignSymbol(Cmd, false); else if (auto *Cmd = dyn_cast(Base)) Cmd->Expression(); } } // Do a last effort at synchronizing the linker script "AST" and the section // list. This is needed to account for last minute changes, like adding a // .ARM.exidx terminator and sorting SHF_LINK_ORDER sections. // // FIXME: We should instead create the "AST" earlier and the above changes would // be done directly in the "AST". // // This can only handle new sections being added and sections being reordered. void LinkerScript::synchronize() { for (BaseCommand *Base : Opt.Commands) { auto *Cmd = dyn_cast(Base); if (!Cmd) continue; ArrayRef Sections = Cmd->Sec->Sections; std::vector ScriptSections; DenseSet ScriptSectionsSet; for (BaseCommand *Base : Cmd->Commands) { auto *ISD = dyn_cast(Base); if (!ISD) continue; for (InputSectionBase *&IS : ISD->Sections) { if (IS->Live) { ScriptSections.push_back(&IS); ScriptSectionsSet.insert(IS); } } } std::vector Missing; for (InputSection *IS : Sections) if (!ScriptSectionsSet.count(IS)) Missing.push_back(IS); if (!Missing.empty()) { auto ISD = make(""); ISD->Sections = Missing; Cmd->Commands.push_back(ISD); for (InputSectionBase *&IS : ISD->Sections) if (IS->Live) ScriptSections.push_back(&IS); } assert(ScriptSections.size() == Sections.size()); for (int I = 0, N = Sections.size(); I < N; ++I) *ScriptSections[I] = Sections[I]; } } static bool allocateHeaders(std::vector &Phdrs, ArrayRef OutputSections, uint64_t Min) { auto FirstPTLoad = std::find_if(Phdrs.begin(), Phdrs.end(), [](const PhdrEntry &E) { return E.p_type == PT_LOAD; }); if (FirstPTLoad == Phdrs.end()) return false; uint64_t HeaderSize = getHeaderSize(); if (HeaderSize <= Min || Script->hasPhdrsCommands()) { Min = alignDown(Min - HeaderSize, Config->MaxPageSize); Out::ElfHeader->Addr = Min; Out::ProgramHeaders->Addr = Min + Out::ElfHeader->Size; return true; } assert(FirstPTLoad->First == Out::ElfHeader); OutputSection *ActualFirst = nullptr; for (OutputSection *Sec : OutputSections) { if (Sec->FirstInPtLoad == Out::ElfHeader) { ActualFirst = Sec; break; } } if (ActualFirst) { for (OutputSection *Sec : OutputSections) if (Sec->FirstInPtLoad == Out::ElfHeader) Sec->FirstInPtLoad = ActualFirst; FirstPTLoad->First = ActualFirst; } else { Phdrs.erase(FirstPTLoad); } auto PhdrI = std::find_if(Phdrs.begin(), Phdrs.end(), [](const PhdrEntry &E) { return E.p_type == PT_PHDR; }); if (PhdrI != Phdrs.end()) Phdrs.erase(PhdrI); return false; } void LinkerScript::assignAddresses(std::vector &Phdrs) { // Assign addresses as instructed by linker script SECTIONS sub-commands. Dot = 0; ErrorOnMissingSection = true; switchTo(Aether); for (BaseCommand *Base : Opt.Commands) { if (auto *Cmd = dyn_cast(Base)) { assignSymbol(Cmd, false); continue; } if (auto *Cmd = dyn_cast(Base)) { Cmd->Expression(); continue; } auto *Cmd = cast(Base); assignOffsets(Cmd); } uint64_t MinVA = std::numeric_limits::max(); for (OutputSection *Sec : *OutputSections) { if (Sec->Flags & SHF_ALLOC) MinVA = std::min(MinVA, Sec->Addr); else Sec->Addr = 0; } allocateHeaders(Phdrs, *OutputSections, MinVA); } // Creates program headers as instructed by PHDRS linker script command. std::vector LinkerScript::createPhdrs() { std::vector Ret; // Process PHDRS and FILEHDR keywords because they are not // real output sections and cannot be added in the following loop. for (const PhdrsCommand &Cmd : Opt.PhdrsCommands) { Ret.emplace_back(Cmd.Type, Cmd.Flags == UINT_MAX ? PF_R : Cmd.Flags); PhdrEntry &Phdr = Ret.back(); if (Cmd.HasFilehdr) Phdr.add(Out::ElfHeader); if (Cmd.HasPhdrs) Phdr.add(Out::ProgramHeaders); if (Cmd.LMAExpr) { Phdr.p_paddr = Cmd.LMAExpr().getValue(); Phdr.HasLMA = true; } } // Add output sections to program headers. for (OutputSection *Sec : *OutputSections) { if (!(Sec->Flags & SHF_ALLOC)) break; // Assign headers specified by linker script for (size_t Id : getPhdrIndices(Sec)) { Ret[Id].add(Sec); if (Opt.PhdrsCommands[Id].Flags == UINT_MAX) Ret[Id].p_flags |= Sec->getPhdrFlags(); } } return Ret; } bool LinkerScript::ignoreInterpSection() { // Ignore .interp section in case we have PHDRS specification // and PT_INTERP isn't listed. if (Opt.PhdrsCommands.empty()) return false; for (PhdrsCommand &Cmd : Opt.PhdrsCommands) if (Cmd.Type == PT_INTERP) return false; return true; } OutputSectionCommand *LinkerScript::getCmd(OutputSection *Sec) const { auto I = SecToCommand.find(Sec); if (I == SecToCommand.end()) return nullptr; return I->second; } Optional LinkerScript::getFiller(OutputSection *Sec) { if (OutputSectionCommand *Cmd = getCmd(Sec)) return Cmd->Filler; return None; } static void writeInt(uint8_t *Buf, uint64_t Data, uint64_t Size) { if (Size == 1) *Buf = Data; else if (Size == 2) write16(Buf, Data, Config->Endianness); else if (Size == 4) write32(Buf, Data, Config->Endianness); else if (Size == 8) write64(Buf, Data, Config->Endianness); else llvm_unreachable("unsupported Size argument"); } void LinkerScript::writeDataBytes(OutputSection *Sec, uint8_t *Buf) { if (OutputSectionCommand *Cmd = getCmd(Sec)) for (BaseCommand *Base : Cmd->Commands) if (auto *Data = dyn_cast(Base)) writeInt(Buf + Data->Offset, Data->Expression().getValue(), Data->Size); } bool LinkerScript::hasLMA(OutputSection *Sec) { if (OutputSectionCommand *Cmd = getCmd(Sec)) if (Cmd->LMAExpr) return true; return false; } ExprValue LinkerScript::getSymbolValue(const Twine &Loc, StringRef S) { if (S == ".") return {CurOutSec, Dot - CurOutSec->Addr}; if (SymbolBody *B = findSymbol(S)) { if (auto *D = dyn_cast(B)) return {D->Section, D->Value}; if (auto *C = dyn_cast(B)) return {InX::Common, C->Offset}; } error(Loc + ": symbol not found: " + S); return 0; } bool LinkerScript::isDefined(StringRef S) { return findSymbol(S) != nullptr; } // Returns indices of ELF headers containing specific section. Each index is a // zero based number of ELF header listed within PHDRS {} script block. std::vector LinkerScript::getPhdrIndices(OutputSection *Sec) { if (OutputSectionCommand *Cmd = getCmd(Sec)) { std::vector Ret; for (StringRef PhdrName : Cmd->Phdrs) Ret.push_back(getPhdrIndex(Cmd->Location, PhdrName)); return Ret; } return {}; } size_t LinkerScript::getPhdrIndex(const Twine &Loc, StringRef PhdrName) { size_t I = 0; for (PhdrsCommand &Cmd : Opt.PhdrsCommands) { if (Cmd.Name == PhdrName) return I; ++I; } error(Loc + ": section header '" + PhdrName + "' is not listed in PHDRS"); return 0; }