/* $NetBSD: osf1_signal.c,v 1.4 1998/05/20 16:35:01 chs Exp $ */ /* * Copyright (c) 1998-1999 Andrew Gallatin * * Taken from NetBSD's sys/compat/osf1/osf1_signal.c, which at the * time *had no copyright*! * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software withough specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DPRINTF uprintf int osf1_sigdbg = 0; static void bsd_to_osf1_sigaction __P((const struct sigaction *bsa, struct osf1_sigaction *osa)); static void osf1_to_bsd_sigaction __P((const struct osf1_sigaction *osa, struct sigaction *bsa)); #define sigemptyset(s) SIGEMPTYSET(*(s)) #define sigismember(s, n) SIGISMEMBER(*(s), n) #define sigaddset(s, n) SIGADDSET(*(s), n) #define osf1_sigmask(n) (1 << ((n) - 1)) #define osf1_sigemptyset(s) memset((s), 0, sizeof(*(s))) #define osf1_sigfillset(s) memset((s), 0xffffffff, sizeof(*(s))) #define osf1_sigismember(s, n) (*(s) & sigmask(n)) #define osf1_sigaddset(s, n) (*(s) |= sigmask(n)) void osf1_to_bsd_sigset(oss, bss) const osf1_sigset_t *oss; sigset_t *bss; { const u_int32_t *obits; SIGEMPTYSET(*bss); obits = (const u_int32_t *)oss; bss->__bits[0] = obits[0]; bss->__bits[1] = obits[1]; } void bsd_to_osf1_sigset(bss, oss) const sigset_t *bss; osf1_sigset_t *oss; { u_int32_t *obits; osf1_sigemptyset(oss); obits = (u_int32_t *)oss; obits[0] = bss->__bits[0]; obits[1] = bss->__bits[1]; } /* * XXX: Only a subset of the flags is currently implemented. */ void osf1_to_bsd_sigaction(osa, bsa) const struct osf1_sigaction *osa; struct sigaction *bsa; { bsa->sa_handler = osa->osa_handler; if (osf1_sigdbg) uprintf("%s(%d): handler @0x%lx \n", __FILE__, __LINE__, (unsigned long)osa->osa_handler); osf1_to_bsd_sigset(&osa->osa_mask, &bsa->sa_mask); bsa->sa_flags = 0; if ((osa->osa_flags & OSF1_SA_ONSTACK) != 0) bsa->sa_flags |= SA_ONSTACK; if ((osa->osa_flags & OSF1_SA_RESTART) != 0) bsa->sa_flags |= SA_RESTART; if ((osa->osa_flags & OSF1_SA_RESETHAND) != 0) bsa->sa_flags |= SA_RESETHAND; if ((osa->osa_flags & OSF1_SA_NOCLDSTOP) != 0) bsa->sa_flags |= SA_NOCLDSTOP; if ((osa->osa_flags & OSF1_SA_NODEFER) != 0) bsa->sa_flags |= SA_NODEFER; } void bsd_to_osf1_sigaction(bsa, osa) const struct sigaction *bsa; struct osf1_sigaction *osa; { osa->osa_handler = bsa->sa_handler; bsd_to_osf1_sigset(&bsa->sa_mask, &osa->osa_mask); osa->osa_flags = 0; if ((bsa->sa_flags & SA_ONSTACK) != 0) osa->osa_flags |= SA_ONSTACK; if ((bsa->sa_flags & SA_RESTART) != 0) osa->osa_flags |= SA_RESTART; if ((bsa->sa_flags & SA_NOCLDSTOP) != 0) osa->osa_flags |= SA_NOCLDSTOP; if ((bsa->sa_flags & SA_NODEFER) != 0) osa->osa_flags |= SA_NODEFER; if ((bsa->sa_flags & SA_RESETHAND) != 0) osa->osa_flags |= SA_RESETHAND; } void osf1_to_bsd_sigaltstack(oss, bss) const struct osf1_sigaltstack *oss; struct sigaltstack *bss; { bss->ss_sp = oss->ss_sp; bss->ss_size = oss->ss_size; bss->ss_flags = 0; if ((oss->ss_flags & OSF1_SS_DISABLE) != 0) bss->ss_flags |= SS_DISABLE; if ((oss->ss_flags & OSF1_SS_ONSTACK) != 0) bss->ss_flags |= SS_ONSTACK; } void bsd_to_osf1_sigaltstack(bss, oss) const struct sigaltstack *bss; struct osf1_sigaltstack *oss; { oss->ss_sp = bss->ss_sp; oss->ss_size = bss->ss_size; oss->ss_flags = 0; if ((bss->ss_flags & SS_DISABLE) != 0) oss->ss_flags |= OSF1_SS_DISABLE; if ((bss->ss_flags & SS_ONSTACK) != 0) oss->ss_flags |= OSF1_SS_ONSTACK; } int osf1_sigaction(p, uap) struct proc *p; struct osf1_sigaction_args *uap; { int error; caddr_t sg; struct osf1_sigaction *nosa, *oosa, tmposa; struct sigaction *nbsa, *obsa, tmpbsa; struct sigaction_args sa; sg = stackgap_init(); nosa = SCARG(uap, nsa); oosa = SCARG(uap, osa); if (osf1_sigdbg && uap->sigtramp) uprintf("osf1_sigaction: trampoline handler at %p\n", uap->sigtramp); p->p_md.osf_sigtramp = uap->sigtramp; if (oosa != NULL) obsa = stackgap_alloc(&sg, sizeof(struct sigaction)); else obsa = NULL; if (nosa != NULL) { nbsa = stackgap_alloc(&sg, sizeof(struct sigaction)); if ((error = copyin(nosa, &tmposa, sizeof(tmposa))) != 0) return error; osf1_to_bsd_sigaction(&tmposa, &tmpbsa); if ((error = copyout(&tmpbsa, nbsa, sizeof(tmpbsa))) != 0) return error; } else nbsa = NULL; SCARG(&sa, sig) = SCARG(uap, signum); SCARG(&sa, act) = nbsa; SCARG(&sa, oact) = obsa; if ((error = sigaction(p, &sa)) != 0) return error; if (oosa != NULL) { if ((error = copyin(obsa, &tmpbsa, sizeof(tmpbsa))) != 0) return error; bsd_to_osf1_sigaction(&tmpbsa, &tmposa); if ((error = copyout(&tmposa, oosa, sizeof(tmposa))) != 0) return error; } return 0; } int osf1_sigaltstack(p, uap) register struct proc *p; struct osf1_sigaltstack_args *uap; { int error; caddr_t sg; struct osf1_sigaltstack *noss, *ooss, tmposs; struct sigaltstack *nbss, *obss, tmpbss; struct sigaltstack_args sa; sg = stackgap_init(); noss = SCARG(uap, nss); ooss = SCARG(uap, oss); if (ooss != NULL) obss = stackgap_alloc(&sg, sizeof(struct sigaltstack)); else obss = NULL; if (noss != NULL) { nbss = stackgap_alloc(&sg, sizeof(struct sigaltstack)); if ((error = copyin(noss, &tmposs, sizeof(tmposs))) != 0) return error; osf1_to_bsd_sigaltstack(&tmposs, &tmpbss); if ((error = copyout(&tmpbss, nbss, sizeof(tmpbss))) != 0) return error; } else nbss = NULL; SCARG(&sa, ss) = nbss; SCARG(&sa, oss) = obss; if ((error = sigaltstack(p, &sa)) != 0) return error; if (obss != NULL) { if ((error = copyin(obss, &tmpbss, sizeof(tmpbss))) != 0) return error; bsd_to_osf1_sigaltstack(&tmpbss, &tmposs); if ((error = copyout(&tmposs, ooss, sizeof(tmposs))) != 0) return error; } return 0; } int osf1_signal(p, uap) register struct proc *p; struct osf1_signal_args *uap; { int error, signum; caddr_t sg; sg = stackgap_init(); signum = OSF1_SIGNO(SCARG(uap, signum)); if (signum <= 0 || signum > OSF1_NSIG) { if (OSF1_SIGCALL(SCARG(uap, signum)) == OSF1_SIGNAL_MASK || OSF1_SIGCALL(SCARG(uap, signum)) == OSF1_SIGDEFER_MASK) p->p_retval[0] = -1; return EINVAL; } switch (OSF1_SIGCALL(SCARG(uap, signum))) { case OSF1_SIGDEFER_MASK: /* * sigset is identical to signal() except * that SIG_HOLD is allowed as * an action. */ if ((u_long)SCARG(uap, handler) == OSF1_SIG_HOLD) { sigset_t mask; sigset_t *bmask; struct sigprocmask_args sa; bmask = stackgap_alloc(&sg, sizeof(sigset_t)); SIGEMPTYSET(mask); SIGADDSET(mask, signum); SCARG(&sa, how) = SIG_BLOCK; SCARG(&sa, set) = bmask; SCARG(&sa, oset) = NULL; if ((error = copyout(&mask, bmask, sizeof(mask))) != 0) return (error); return sigprocmask(p, &sa); } /* FALLTHROUGH */ case OSF1_SIGNAL_MASK: { struct sigaction_args sa_args; struct sigaction *nbsa, *obsa, sa; nbsa = stackgap_alloc(&sg, sizeof(struct sigaction)); obsa = stackgap_alloc(&sg, sizeof(struct sigaction)); SCARG(&sa_args, sig) = signum; SCARG(&sa_args, act) = nbsa; SCARG(&sa_args, oact) = obsa; sa.sa_handler = SCARG(uap, handler); SIGEMPTYSET(sa.sa_mask); sa.sa_flags = 0; #if 0 if (signum != SIGALRM) sa.sa_flags = SA_RESTART; #endif if ((error = copyout(&sa, nbsa, sizeof(sa))) != 0) return error; if ((error = sigaction(p, &sa_args)) != 0) { DPRINTF("signal: sigaction failed: %d\n", error); p->p_retval[0] = -1; return error; } if ((error = copyin(obsa, &sa, sizeof(sa))) != 0) return error; p->p_retval[0] = (long)sa.sa_handler; return 0; } case OSF1_SIGHOLD_MASK: { struct sigprocmask_args sa; sigset_t set; sigset_t *bset; bset = stackgap_alloc(&sg, sizeof(sigset_t)); SIGEMPTYSET(set); SIGADDSET(set, signum); SCARG(&sa, how) = SIG_BLOCK; SCARG(&sa, set) = bset; SCARG(&sa, oset) = NULL; if ((error = copyout(&set, bset, sizeof(set))) != 0) return (error); return sigprocmask(p, &sa); } case OSF1_SIGRELSE_MASK: { struct sigprocmask_args sa; sigset_t set; sigset_t *bset; bset = stackgap_alloc(&sg, sizeof(sigset_t)); SIGEMPTYSET(set); SIGADDSET(set, signum); SCARG(&sa, how) = SIG_UNBLOCK; SCARG(&sa, set) = bset; SCARG(&sa, oset) = NULL; if ((error = copyout(&set, bset, sizeof(set))) != 0) return (error); return sigprocmask(p, &sa); } case OSF1_SIGIGNORE_MASK: { struct sigaction_args sa_args; struct sigaction *bsa, sa; bsa = stackgap_alloc(&sg, sizeof(struct sigaction)); SCARG(&sa_args, sig) = signum; SCARG(&sa_args, act) = bsa; SCARG(&sa_args, oact) = NULL; sa.sa_handler = SIG_IGN; SIGEMPTYSET(sa.sa_mask); sa.sa_flags = 0; if ((error = copyout(&sa, bsa, sizeof(sa))) != 0) return error; if ((error = sigaction(p, &sa_args)) != 0) { DPRINTF(("sigignore: sigaction failed\n")); return error; } return 0; } case OSF1_SIGPAUSE_MASK: { struct sigsuspend_args sa; sigset_t set; sigset_t *bmask; bmask = stackgap_alloc(&sg, sizeof(sigset_t)); PROC_LOCK(p); set = p->p_sigmask; PROC_UNLOCK(p); SIGDELSET(set, signum); SCARG(&sa, sigmask) = bmask; if ((error = copyout(&set, bmask, sizeof(set))) != 0) return (error); return sigsuspend(p, &sa); } default: return ENOSYS; } } int osf1_sigprocmask(p, uap) register struct proc *p; struct osf1_sigprocmask_args /* { syscallarg(int) how; syscallarg(osf1_sigset_t *) set; } */ *uap; { int error; osf1_sigset_t oss; sigset_t bss; error = 0; /* Fix the return value first if needed */ bsd_to_osf1_sigset(&p->p_sigmask, &oss); p->p_retval[0] = oss; osf1_to_bsd_sigset(&uap->mask, &bss); PROC_LOCK(p); switch (SCARG(uap, how)) { case OSF1_SIG_BLOCK: SIGSETOR(p->p_sigmask, bss); SIG_CANTMASK(p->p_sigmask); break; case OSF1_SIG_UNBLOCK: SIGSETNAND(p->p_sigmask, bss); break; case OSF1_SIG_SETMASK: p->p_sigmask = bss; SIG_CANTMASK(p->p_sigmask); break; default: error = EINVAL; break; } PROC_UNLOCK(p); return error; } int osf1_sigpending(p, uap) register struct proc *p; struct osf1_sigpending_args /* { syscallarg(osf1_sigset_t *) mask; } */ *uap; { osf1_sigset_t oss; sigset_t bss; PROC_LOCK(p); bss = p->p_siglist; SIGSETAND(bss, p->p_sigmask); PROC_UNLOCK(p); bsd_to_osf1_sigset(&bss, &oss); return copyout(&oss, SCARG(uap, mask), sizeof(oss)); } int osf1_sigsuspend(p, uap) register struct proc *p; struct osf1_sigsuspend_args /* { syscallarg(osf1_sigset_t *) ss; } */ *uap; { int error; caddr_t sg; osf1_sigset_t oss; sigset_t bss; sigset_t *bmask; struct sigsuspend_args sa; sg = stackgap_init(); bmask = stackgap_alloc(&sg, sizeof(sigset_t)); oss = SCARG(uap, ss); osf1_to_bsd_sigset(&oss, &bss); SCARG(&sa, sigmask) = bmask; if ((error = copyout(&bss, bmask, sizeof(bss))) != 0){ return (error); } return sigsuspend(p, &sa); } int osf1_kill(p, uap) register struct proc *p; struct osf1_kill_args /* { syscallarg(int) pid; syscallarg(int) signum; } */ *uap; { struct kill_args ka; SCARG(&ka, pid) = SCARG(uap, pid); SCARG(&ka, signum) = SCARG(uap, signum); return kill(p, &ka); } /* * Send an interrupt to process. * * Stack is set up to allow sigcode stored at top to call routine, * followed by kcall to sigreturn routine below. After sigreturn resets * the signal mask, the stack, and the frame pointer, it returns to the * user specified pc, psl. */ void osf1_sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code) { int fsize, oonstack, rndfsize; struct proc *p; osiginfo_t *sip, ksi; struct trapframe *frame; struct sigacts *psp; p = curproc; PROC_LOCK(p); psp = p->p_sigacts; frame = p->p_frame; oonstack = sigonstack(alpha_pal_rdusp()); fsize = sizeof ksi; rndfsize = ((fsize + 15) / 16) * 16; /* * Allocate and validate space for the signal handler context. * Note that if the stack is in P0 space, the call to grow() is a nop, * and the useracc() check will fail if the process has not already * allocated the space with a `brk'. */ if ((p->p_flag & P_ALTSTACK) && !oonstack && SIGISMEMBER(psp->ps_sigonstack, sig)) { sip = (osiginfo_t *)((caddr_t)p->p_sigstk.ss_sp + p->p_sigstk.ss_size - rndfsize); p->p_sigstk.ss_flags |= SS_ONSTACK; } else sip = (osiginfo_t *)(alpha_pal_rdusp() - rndfsize); PROC_UNLOCK(p); (void)grow_stack(p, (u_long)sip); if (useracc((caddr_t)sip, fsize, VM_PROT_WRITE) == 0) { /* * Process has trashed its stack; give it an illegal * instruction to halt it in its tracks. */ PROC_LOCK(p); SIGACTION(p, SIGILL) = SIG_DFL; SIGDELSET(p->p_sigignore, SIGILL); SIGDELSET(p->p_sigcatch, SIGILL); SIGDELSET(p->p_sigmask, SIGILL); psignal(p, SIGILL); PROC_UNLOCK(p); return; } /* * Build the signal context to be used by sigreturn. */ ksi.si_sc.sc_onstack = (oonstack) ? 1 : 0; bsd_to_osf1_sigset(mask, &ksi.si_sc.sc_mask); ksi.si_sc.sc_pc = frame->tf_regs[FRAME_PC]; ksi.si_sc.sc_ps = frame->tf_regs[FRAME_PS]; /* copy the registers. */ fill_regs(p, (struct reg *)ksi.si_sc.sc_regs); ksi.si_sc.sc_regs[R_ZERO] = 0xACEDBADE; /* magic number */ ksi.si_sc.sc_regs[R_SP] = alpha_pal_rdusp(); /* save the floating-point state, if necessary, then copy it. */ alpha_fpstate_save(p, 1); /* XXX maybe write=0 */ ksi.si_sc.sc_ownedfp = p->p_md.md_flags & MDP_FPUSED; bcopy(&p->p_addr->u_pcb.pcb_fp, (struct fpreg *)ksi.si_sc.sc_fpregs, sizeof(struct fpreg)); ksi.si_sc.sc_fp_control = p->p_addr->u_pcb.pcb_fp_control; bzero(ksi.si_sc.sc_reserved, sizeof ksi.si_sc.sc_reserved); /* XXX */ ksi.si_sc.sc_xxx1[0] = 0; /* XXX */ ksi.si_sc.sc_xxx1[1] = 0; /* XXX */ ksi.si_sc.sc_traparg_a0 = frame->tf_regs[FRAME_TRAPARG_A0]; ksi.si_sc.sc_traparg_a1 = frame->tf_regs[FRAME_TRAPARG_A1]; ksi.si_sc.sc_traparg_a2 = frame->tf_regs[FRAME_TRAPARG_A2]; ksi.si_sc.sc_xxx2[0] = 0; /* XXX */ ksi.si_sc.sc_xxx2[1] = 0; /* XXX */ ksi.si_sc.sc_xxx2[2] = 0; /* XXX */ /* Fill in POSIX parts */ ksi.si_signo = sig; ksi.si_code = code; ksi.si_value.sigval_ptr = NULL; /* XXX */ /* * copy the frame out to userland. */ (void) copyout((caddr_t)&ksi, (caddr_t)sip, fsize); /* * Set up the registers to return to sigcode. */ if (osf1_sigdbg) uprintf("attempting to call osf1 sigtramp\n"); frame->tf_regs[FRAME_PC] = (u_int64_t)p->p_md.osf_sigtramp; frame->tf_regs[FRAME_A0] = sig; frame->tf_regs[FRAME_A1] = code; frame->tf_regs[FRAME_A2] = (u_int64_t)sip; frame->tf_regs[FRAME_A3] = (u_int64_t)catcher; /* a3 is pv */ frame->tf_regs[FRAME_FLAGS] = 0; /* full restore */ alpha_pal_wrusp((unsigned long)sip); } /* * System call to cleanup state after a signal has been taken. Reset signal * mask and stack state from context left by sendsig (above). Return to * previous pc and psl as specified by context left by sendsig. Check * carefully to make sure that the user has not modified the state to gain * improper privileges. */ int osf1_sigreturn(struct proc *p, struct osf1_sigreturn_args /* { struct osigcontext *sigcntxp; } */ *uap) { struct osigcontext ksc, *scp; scp = uap->sigcntxp; if (useracc((caddr_t)scp, sizeof (*scp), VM_PROT_READ) == 0 ) { uprintf("uac fails\n"); uprintf("scp: %p\n", scp); } /* * Test and fetch the context structure. * We grab it all at once for speed. */ if (useracc((caddr_t)scp, sizeof (*scp), VM_PROT_READ) == 0 || copyin((caddr_t)scp, (caddr_t)&ksc, sizeof ksc)) return (EFAULT); /* * Restore the user-supplied information. */ PROC_LOCK(p); if (ksc.sc_onstack) p->p_sigstk.ss_flags |= SS_ONSTACK; else p->p_sigstk.ss_flags &= ~SS_ONSTACK; /* * longjmp is still implemented by calling osigreturn. The new * sigmask is stored in sc_reserved, sc_mask is only used for * backward compatibility. */ osf1_to_bsd_sigset(&ksc.sc_mask, &p->p_sigmask); SIG_CANTMASK(p->p_sigmask); PROC_UNLOCK(p); set_regs(p, (struct reg *)ksc.sc_regs); p->p_frame->tf_regs[FRAME_PC] = ksc.sc_pc; p->p_frame->tf_regs[FRAME_PS] = (ksc.sc_ps | ALPHA_PSL_USERSET) & ~ALPHA_PSL_USERCLR; p->p_frame->tf_regs[FRAME_FLAGS] = 0; /* full restore */ alpha_pal_wrusp(ksc.sc_regs[R_SP]); /* XXX ksc.sc_ownedfp ? */ alpha_fpstate_drop(p); bcopy((struct fpreg *)ksc.sc_fpregs, &p->p_addr->u_pcb.pcb_fp, sizeof(struct fpreg)); p->p_addr->u_pcb.pcb_fp_control = ksc.sc_fp_control; return (EJUSTRETURN); } extern int osigstack(struct proc *p, struct osf1_osigstack_args *uap); int osf1_osigstack(p, uap) register struct proc *p; struct osf1_osigstack_args /* { struct sigstack *nss; struct sigstack *oss; } */ *uap; { /* uprintf("osf1_osigstack: oss = %p, nss = %p",uap->oss, uap->nss); uprintf(" stack ptr = %p\n",p->p_sigacts->ps_sigstk.ss_sp);*/ return(osigstack(p, uap)); }