/* * Copyright (c) 1987, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 * $FreeBSD$ */ #include "opt_vm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(INVARIANTS) && defined(__i386__) #include #endif MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); static void kmeminit __P((void *)); SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_FIRST, kmeminit, NULL) static MALLOC_DEFINE(M_FREE, "free", "should be on free list"); static struct malloc_type *kmemstatistics; static struct kmembuckets bucket[MINBUCKET + 16]; static struct kmemusage *kmemusage; static char *kmembase; static char *kmemlimit; u_int vm_kmem_size; #ifdef INVARIANTS /* * This structure provides a set of masks to catch unaligned frees. */ static long addrmask[] = { 0, 0x00000001, 0x00000003, 0x00000007, 0x0000000f, 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff, 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff, 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff, }; /* * The WEIRD_ADDR is used as known text to copy into free objects so * that modifications after frees can be detected. */ #define WEIRD_ADDR 0xdeadc0de #define MAX_COPY 64 /* * Normally the first word of the structure is used to hold the list * pointer for free objects. However, when running with diagnostics, * we use the third and fourth fields, so as to catch modifications * in the most commonly trashed first two words. */ struct freelist { long spare0; struct malloc_type *type; long spare1; caddr_t next; }; #else /* !INVARIANTS */ struct freelist { caddr_t next; }; #endif /* INVARIANTS */ /* * malloc: * * Allocate a block of memory. * * If M_NOWAIT is set, this routine will not block and return NULL if * the allocation fails. * * If M_ASLEEP is set (M_NOWAIT must also be set), this routine * will have the side effect of calling asleep() if it returns NULL, * allowing the parent to await() at some future time. */ void * malloc(size, type, flags) unsigned long size; struct malloc_type *type; int flags; { register struct kmembuckets *kbp; register struct kmemusage *kup; register struct freelist *freep; long indx, npg, allocsize; int s; caddr_t va, cp, savedlist; #ifdef INVARIANTS long *end, *lp; int copysize; const char *savedtype; #endif register struct malloc_type *ksp = type; #if defined(INVARIANTS) && defined(__i386__) if (flags == M_WAITOK) KASSERT(intr_nesting_level == 0, ("malloc(M_WAITOK) in interrupt context")); #endif indx = BUCKETINDX(size); kbp = &bucket[indx]; s = splmem(); while (ksp->ks_memuse >= ksp->ks_limit) { if (flags & M_ASLEEP) { if (ksp->ks_limblocks < 65535) ksp->ks_limblocks++; asleep((caddr_t)ksp, PSWP+2, type->ks_shortdesc, 0); } if (flags & M_NOWAIT) { splx(s); return ((void *) NULL); } if (ksp->ks_limblocks < 65535) ksp->ks_limblocks++; tsleep((caddr_t)ksp, PSWP+2, type->ks_shortdesc, 0); } ksp->ks_size |= 1 << indx; #ifdef INVARIANTS copysize = 1 << indx < MAX_COPY ? 1 << indx : MAX_COPY; #endif if (kbp->kb_next == NULL) { kbp->kb_last = NULL; if (size > MAXALLOCSAVE) allocsize = roundup(size, PAGE_SIZE); else allocsize = 1 << indx; npg = btoc(allocsize); va = (caddr_t) kmem_malloc(kmem_map, (vm_size_t)ctob(npg), flags); if (va == NULL) { splx(s); return ((void *) NULL); } kbp->kb_total += kbp->kb_elmpercl; kup = btokup(va); kup->ku_indx = indx; if (allocsize > MAXALLOCSAVE) { if (npg > 65535) panic("malloc: allocation too large"); kup->ku_pagecnt = npg; ksp->ks_memuse += allocsize; goto out; } kup->ku_freecnt = kbp->kb_elmpercl; kbp->kb_totalfree += kbp->kb_elmpercl; /* * Just in case we blocked while allocating memory, * and someone else also allocated memory for this * bucket, don't assume the list is still empty. */ savedlist = kbp->kb_next; kbp->kb_next = cp = va + (npg * PAGE_SIZE) - allocsize; for (;;) { freep = (struct freelist *)cp; #ifdef INVARIANTS /* * Copy in known text to detect modification * after freeing. */ end = (long *)&cp[copysize]; for (lp = (long *)cp; lp < end; lp++) *lp = WEIRD_ADDR; freep->type = M_FREE; #endif /* INVARIANTS */ if (cp <= va) break; cp -= allocsize; freep->next = cp; } freep->next = savedlist; if (kbp->kb_last == NULL) kbp->kb_last = (caddr_t)freep; } va = kbp->kb_next; kbp->kb_next = ((struct freelist *)va)->next; #ifdef INVARIANTS freep = (struct freelist *)va; savedtype = (const char *) freep->type->ks_shortdesc; #if BYTE_ORDER == BIG_ENDIAN freep->type = (struct malloc_type *)WEIRD_ADDR >> 16; #endif #if BYTE_ORDER == LITTLE_ENDIAN freep->type = (struct malloc_type *)WEIRD_ADDR; #endif if ((intptr_t)(void *)&freep->next & 0x2) freep->next = (caddr_t)((WEIRD_ADDR >> 16)|(WEIRD_ADDR << 16)); else freep->next = (caddr_t)WEIRD_ADDR; end = (long *)&va[copysize]; for (lp = (long *)va; lp < end; lp++) { if (*lp == WEIRD_ADDR) continue; printf("%s %ld of object %p size %lu %s %s (0x%lx != 0x%lx)\n", "Data modified on freelist: word", (long)(lp - (long *)va), (void *)va, size, "previous type", savedtype, *lp, (u_long)WEIRD_ADDR); break; } freep->spare0 = 0; #endif /* INVARIANTS */ kup = btokup(va); if (kup->ku_indx != indx) panic("malloc: wrong bucket"); if (kup->ku_freecnt == 0) panic("malloc: lost data"); kup->ku_freecnt--; kbp->kb_totalfree--; ksp->ks_memuse += 1 << indx; out: kbp->kb_calls++; ksp->ks_inuse++; ksp->ks_calls++; if (ksp->ks_memuse > ksp->ks_maxused) ksp->ks_maxused = ksp->ks_memuse; splx(s); return ((void *) va); } /* * free: * * Free a block of memory allocated by malloc. * * This routine may not block. */ void free(addr, type) void *addr; struct malloc_type *type; { register struct kmembuckets *kbp; register struct kmemusage *kup; register struct freelist *freep; long size; int s; #ifdef INVARIANTS struct freelist *fp; long *end, *lp, alloc, copysize; #endif register struct malloc_type *ksp = type; KASSERT(kmembase <= (char *)addr && (char *)addr < kmemlimit, ("free: address %p out of range", (void *)addr)); kup = btokup(addr); size = 1 << kup->ku_indx; kbp = &bucket[kup->ku_indx]; s = splmem(); #ifdef INVARIANTS /* * Check for returns of data that do not point to the * beginning of the allocation. */ if (size > PAGE_SIZE) alloc = addrmask[BUCKETINDX(PAGE_SIZE)]; else alloc = addrmask[kup->ku_indx]; if (((uintptr_t)(void *)addr & alloc) != 0) panic("free: unaligned addr %p, size %ld, type %s, mask %ld", (void *)addr, size, type->ks_shortdesc, alloc); #endif /* INVARIANTS */ if (size > MAXALLOCSAVE) { kmem_free(kmem_map, (vm_offset_t)addr, ctob(kup->ku_pagecnt)); size = kup->ku_pagecnt << PAGE_SHIFT; ksp->ks_memuse -= size; kup->ku_indx = 0; kup->ku_pagecnt = 0; if (ksp->ks_memuse + size >= ksp->ks_limit && ksp->ks_memuse < ksp->ks_limit) wakeup((caddr_t)ksp); ksp->ks_inuse--; kbp->kb_total -= 1; splx(s); return; } freep = (struct freelist *)addr; #ifdef INVARIANTS /* * Check for multiple frees. Use a quick check to see if * it looks free before laboriously searching the freelist. */ if (freep->spare0 == WEIRD_ADDR) { fp = (struct freelist *)kbp->kb_next; while (fp) { if (fp->spare0 != WEIRD_ADDR) panic("free: free item %p modified", fp); else if (addr == (caddr_t)fp) panic("free: multiple freed item %p", addr); fp = (struct freelist *)fp->next; } } /* * Copy in known text to detect modification after freeing * and to make it look free. Also, save the type being freed * so we can list likely culprit if modification is detected * when the object is reallocated. */ copysize = size < MAX_COPY ? size : MAX_COPY; end = (long *)&((caddr_t)addr)[copysize]; for (lp = (long *)addr; lp < end; lp++) *lp = WEIRD_ADDR; freep->type = type; #endif /* INVARIANTS */ kup->ku_freecnt++; if (kup->ku_freecnt >= kbp->kb_elmpercl) { if (kup->ku_freecnt > kbp->kb_elmpercl) panic("free: multiple frees"); else if (kbp->kb_totalfree > kbp->kb_highwat) kbp->kb_couldfree++; } kbp->kb_totalfree++; ksp->ks_memuse -= size; if (ksp->ks_memuse + size >= ksp->ks_limit && ksp->ks_memuse < ksp->ks_limit) wakeup((caddr_t)ksp); ksp->ks_inuse--; #ifdef OLD_MALLOC_MEMORY_POLICY if (kbp->kb_next == NULL) kbp->kb_next = addr; else ((struct freelist *)kbp->kb_last)->next = addr; freep->next = NULL; kbp->kb_last = addr; #else /* * Return memory to the head of the queue for quick reuse. This * can improve performance by improving the probability of the * item being in the cache when it is reused. */ if (kbp->kb_next == NULL) { kbp->kb_next = addr; kbp->kb_last = addr; freep->next = NULL; } else { freep->next = kbp->kb_next; kbp->kb_next = addr; } #endif splx(s); } /* * Initialize the kernel memory allocator */ /* ARGSUSED*/ static void kmeminit(dummy) void *dummy; { register long indx; u_long npg; u_long mem_size; u_long xvm_kmem_size; #if ((MAXALLOCSAVE & (MAXALLOCSAVE - 1)) != 0) #error "kmeminit: MAXALLOCSAVE not power of 2" #endif #if (MAXALLOCSAVE > MINALLOCSIZE * 32768) #error "kmeminit: MAXALLOCSAVE too big" #endif #if (MAXALLOCSAVE < PAGE_SIZE) #error "kmeminit: MAXALLOCSAVE too small" #endif /* * Try to auto-tune the kernel memory size, so that it is * more applicable for a wider range of machine sizes. * On an X86, a VM_KMEM_SIZE_SCALE value of 4 is good, while * a VM_KMEM_SIZE of 12MB is a fair compromise. The * VM_KMEM_SIZE_MAX is dependent on the maximum KVA space * available, and on an X86 with a total KVA space of 256MB, * try to keep VM_KMEM_SIZE_MAX at 80MB or below. * * Note that the kmem_map is also used by the zone allocator, * so make sure that there is enough space. */ xvm_kmem_size = VM_KMEM_SIZE; mem_size = cnt.v_page_count * PAGE_SIZE; #if defined(VM_KMEM_SIZE_SCALE) if ((mem_size / VM_KMEM_SIZE_SCALE) > xvm_kmem_size) xvm_kmem_size = mem_size / VM_KMEM_SIZE_SCALE; #endif #if defined(VM_KMEM_SIZE_MAX) if (xvm_kmem_size >= VM_KMEM_SIZE_MAX) xvm_kmem_size = VM_KMEM_SIZE_MAX; #endif /* Allow final override from the kernel environment */ TUNABLE_INT_FETCH("kern.vm.kmem.size", xvm_kmem_size, vm_kmem_size); /* * Limit kmem virtual size to twice the physical memory. * This allows for kmem map sparseness, but limits the size * to something sane. Be careful to not overflow the 32bit * ints while doing the check. */ if ((vm_kmem_size / 2) > (cnt.v_page_count * PAGE_SIZE)) vm_kmem_size = 2 * cnt.v_page_count * PAGE_SIZE; npg = (nmbufs * MSIZE + nmbclusters * MCLBYTES + vm_kmem_size) / PAGE_SIZE; kmemusage = (struct kmemusage *) kmem_alloc(kernel_map, (vm_size_t)(npg * sizeof(struct kmemusage))); kmem_map = kmem_suballoc(kernel_map, (vm_offset_t *)&kmembase, (vm_offset_t *)&kmemlimit, (vm_size_t)(npg * PAGE_SIZE)); kmem_map->system_map = 1; for (indx = 0; indx < MINBUCKET + 16; indx++) { if (1 << indx >= PAGE_SIZE) bucket[indx].kb_elmpercl = 1; else bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx); bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl; } } void malloc_init(data) void *data; { struct malloc_type *type = (struct malloc_type *)data; if (type->ks_magic != M_MAGIC) panic("malloc type lacks magic"); if (type->ks_limit != 0) return; if (cnt.v_page_count == 0) panic("malloc_init not allowed before vm init"); /* * The default limits for each malloc region is 1/2 of the * malloc portion of the kmem map size. */ type->ks_limit = vm_kmem_size / 2; type->ks_next = kmemstatistics; kmemstatistics = type; } void malloc_uninit(data) void *data; { struct malloc_type *type = (struct malloc_type *)data; struct malloc_type *t; if (type->ks_magic != M_MAGIC) panic("malloc type lacks magic"); if (cnt.v_page_count == 0) panic("malloc_uninit not allowed before vm init"); if (type->ks_limit == 0) panic("malloc_uninit on uninitialized type"); if (type == kmemstatistics) kmemstatistics = type->ks_next; else { for (t = kmemstatistics; t->ks_next != NULL; t = t->ks_next) { if (t->ks_next == type) { t->ks_next = type->ks_next; break; } } } type->ks_next = NULL; type->ks_limit = 0; }