/* $FreeBSD$ */ /* * Implementation of SVID semaphores * * Author: Daniel Boulet * * This software is provided ``AS IS'' without any warranties of any kind. */ #include "opt_sysvipc.h" #include #include #include #include #include #include #include #include #include #include #include #include #include static MALLOC_DEFINE(M_SEM, "sem", "SVID compatible semaphores"); static void seminit __P((void)); static int sysvsem_modload __P((struct module *, int, void *)); static int semunload __P((void)); static void semexit_myhook __P((struct proc *p)); static int sysctl_sema __P((SYSCTL_HANDLER_ARGS)); #ifndef _SYS_SYSPROTO_H_ struct __semctl_args; int __semctl __P((struct thread *td, struct __semctl_args *uap)); struct semget_args; int semget __P((struct thread *td, struct semget_args *uap)); struct semop_args; int semop __P((struct thread *td, struct semop_args *uap)); #endif static struct sem_undo *semu_alloc __P((struct thread *td)); static int semundo_adjust __P((struct thread *td, struct sem_undo **supptr, int semid, int semnum, int adjval)); static void semundo_clear __P((int semid, int semnum)); /* XXX casting to (sy_call_t *) is bogus, as usual. */ static sy_call_t *semcalls[] = { (sy_call_t *)__semctl, (sy_call_t *)semget, (sy_call_t *)semop }; static int semtot = 0; static struct semid_ds *sema; /* semaphore id pool */ static struct sem *sem; /* semaphore pool */ static struct sem_undo *semu_list; /* list of active undo structures */ static int *semu; /* undo structure pool */ struct sem { u_short semval; /* semaphore value */ pid_t sempid; /* pid of last operation */ u_short semncnt; /* # awaiting semval > cval */ u_short semzcnt; /* # awaiting semval = 0 */ }; /* * Undo structure (one per process) */ struct sem_undo { struct sem_undo *un_next; /* ptr to next active undo structure */ struct proc *un_proc; /* owner of this structure */ short un_cnt; /* # of active entries */ struct undo { short un_adjval; /* adjust on exit values */ short un_num; /* semaphore # */ int un_id; /* semid */ } un_ent[1]; /* undo entries */ }; /* * Configuration parameters */ #ifndef SEMMNI #define SEMMNI 10 /* # of semaphore identifiers */ #endif #ifndef SEMMNS #define SEMMNS 60 /* # of semaphores in system */ #endif #ifndef SEMUME #define SEMUME 10 /* max # of undo entries per process */ #endif #ifndef SEMMNU #define SEMMNU 30 /* # of undo structures in system */ #endif /* shouldn't need tuning */ #ifndef SEMMAP #define SEMMAP 30 /* # of entries in semaphore map */ #endif #ifndef SEMMSL #define SEMMSL SEMMNS /* max # of semaphores per id */ #endif #ifndef SEMOPM #define SEMOPM 100 /* max # of operations per semop call */ #endif #define SEMVMX 32767 /* semaphore maximum value */ #define SEMAEM 16384 /* adjust on exit max value */ /* * Due to the way semaphore memory is allocated, we have to ensure that * SEMUSZ is properly aligned. */ #define SEM_ALIGN(bytes) (((bytes) + (sizeof(long) - 1)) & ~(sizeof(long) - 1)) /* actual size of an undo structure */ #define SEMUSZ SEM_ALIGN(offsetof(struct sem_undo, un_ent[SEMUME])) /* * Macro to find a particular sem_undo vector */ #define SEMU(ix) ((struct sem_undo *)(((intptr_t)semu)+ix * seminfo.semusz)) /* * semaphore info struct */ struct seminfo seminfo = { SEMMAP, /* # of entries in semaphore map */ SEMMNI, /* # of semaphore identifiers */ SEMMNS, /* # of semaphores in system */ SEMMNU, /* # of undo structures in system */ SEMMSL, /* max # of semaphores per id */ SEMOPM, /* max # of operations per semop call */ SEMUME, /* max # of undo entries per process */ SEMUSZ, /* size in bytes of undo structure */ SEMVMX, /* semaphore maximum value */ SEMAEM /* adjust on exit max value */ }; SYSCTL_DECL(_kern_ipc); SYSCTL_INT(_kern_ipc, OID_AUTO, semmap, CTLFLAG_RW, &seminfo.semmap, 0, ""); SYSCTL_INT(_kern_ipc, OID_AUTO, semmni, CTLFLAG_RD, &seminfo.semmni, 0, ""); SYSCTL_INT(_kern_ipc, OID_AUTO, semmns, CTLFLAG_RD, &seminfo.semmns, 0, ""); SYSCTL_INT(_kern_ipc, OID_AUTO, semmnu, CTLFLAG_RD, &seminfo.semmnu, 0, ""); SYSCTL_INT(_kern_ipc, OID_AUTO, semmsl, CTLFLAG_RW, &seminfo.semmsl, 0, ""); SYSCTL_INT(_kern_ipc, OID_AUTO, semopm, CTLFLAG_RD, &seminfo.semopm, 0, ""); SYSCTL_INT(_kern_ipc, OID_AUTO, semume, CTLFLAG_RD, &seminfo.semume, 0, ""); SYSCTL_INT(_kern_ipc, OID_AUTO, semusz, CTLFLAG_RD, &seminfo.semusz, 0, ""); SYSCTL_INT(_kern_ipc, OID_AUTO, semvmx, CTLFLAG_RW, &seminfo.semvmx, 0, ""); SYSCTL_INT(_kern_ipc, OID_AUTO, semaem, CTLFLAG_RW, &seminfo.semaem, 0, ""); SYSCTL_PROC(_kern_ipc, OID_AUTO, sema, CTLFLAG_RD, NULL, 0, sysctl_sema, "", ""); /*- * RW seminfo.semmap: SEMMAP unused * RO seminfo.semmni * RO seminfo.semmns * RO seminfo.semmnu: undo entries per system * RW seminfo.semmsl * RO seminfo.semopm: SEMOPM unused * RO seminfo.semume * RO seminfo.semusz: param - derived from SEMUME for per-proc sizeof * RW seminfo.semvmx: SEMVMX unused - user param * RW seminfo.semaem: SEMAEM unused - user param */ static void seminit(void) { register int i; TUNABLE_INT_FETCH("kern.ipc.semmap", &seminfo.semmap); TUNABLE_INT_FETCH("kern.ipc.semmni", &seminfo.semmni); TUNABLE_INT_FETCH("kern.ipc.semmns", &seminfo.semmns); TUNABLE_INT_FETCH("kern.ipc.semmnu", &seminfo.semmnu); TUNABLE_INT_FETCH("kern.ipc.semmsl", &seminfo.semmsl); TUNABLE_INT_FETCH("kern.ipc.semopm", &seminfo.semopm); TUNABLE_INT_FETCH("kern.ipc.semume", &seminfo.semume); TUNABLE_INT_FETCH("kern.ipc.semusz", &seminfo.semusz); TUNABLE_INT_FETCH("kern.ipc.semvmx", &seminfo.semvmx); TUNABLE_INT_FETCH("kern.ipc.semaem", &seminfo.semaem); sem = malloc(sizeof(struct sem) * seminfo.semmns, M_SEM, M_WAITOK); if (sem == NULL) panic("sem is NULL"); sema = malloc(sizeof(struct semid_ds) * seminfo.semmni, M_SEM, M_WAITOK); if (sema == NULL) panic("sema is NULL"); semu = malloc(seminfo.semmnu * seminfo.semusz, M_SEM, M_WAITOK); if (semu == NULL) panic("semu is NULL"); for (i = 0; i < seminfo.semmni; i++) { sema[i].sem_base = 0; sema[i].sem_perm.mode = 0; } for (i = 0; i < seminfo.semmnu; i++) { register struct sem_undo *suptr = SEMU(i); suptr->un_proc = NULL; } semu_list = NULL; at_exit(semexit_myhook); } static int semunload(void) { if (semtot != 0) return (EBUSY); free(sem, M_SEM); free(sema, M_SEM); free(semu, M_SEM); rm_at_exit(semexit_myhook); return (0); } static int sysvsem_modload(struct module *module, int cmd, void *arg) { int error = 0; switch (cmd) { case MOD_LOAD: seminit(); break; case MOD_UNLOAD: error = semunload(); break; case MOD_SHUTDOWN: break; default: error = EINVAL; break; } return (error); } static moduledata_t sysvsem_mod = { "sysvsem", &sysvsem_modload, NULL }; SYSCALL_MODULE_HELPER(semsys); SYSCALL_MODULE_HELPER(__semctl); SYSCALL_MODULE_HELPER(semget); SYSCALL_MODULE_HELPER(semop); DECLARE_MODULE(sysvsem, sysvsem_mod, SI_SUB_SYSV_SEM, SI_ORDER_FIRST); MODULE_VERSION(sysvsem, 1); /* * Entry point for all SEM calls * * MPSAFE */ int semsys(td, uap) struct thread *td; /* XXX actually varargs. */ struct semsys_args /* { u_int which; int a2; int a3; int a4; int a5; } */ *uap; { int error; mtx_lock(&Giant); if (!jail_sysvipc_allowed && jailed(td->td_proc->p_ucred)) { error = ENOSYS; goto done2; } if (uap->which >= sizeof(semcalls)/sizeof(semcalls[0])) { error = EINVAL; goto done2; } error = (*semcalls[uap->which])(td, &uap->a2); done2: mtx_unlock(&Giant); return (error); } /* * Allocate a new sem_undo structure for a process * (returns ptr to structure or NULL if no more room) */ static struct sem_undo * semu_alloc(td) struct thread *td; { register int i; register struct sem_undo *suptr; register struct sem_undo **supptr; int attempt; /* * Try twice to allocate something. * (we'll purge any empty structures after the first pass so * two passes are always enough) */ for (attempt = 0; attempt < 2; attempt++) { /* * Look for a free structure. * Fill it in and return it if we find one. */ for (i = 0; i < seminfo.semmnu; i++) { suptr = SEMU(i); if (suptr->un_proc == NULL) { suptr->un_next = semu_list; semu_list = suptr; suptr->un_cnt = 0; suptr->un_proc = td->td_proc; return(suptr); } } /* * We didn't find a free one, if this is the first attempt * then try to free some structures. */ if (attempt == 0) { /* All the structures are in use - try to free some */ int did_something = 0; supptr = &semu_list; while ((suptr = *supptr) != NULL) { if (suptr->un_cnt == 0) { suptr->un_proc = NULL; *supptr = suptr->un_next; did_something = 1; } else supptr = &(suptr->un_next); } /* If we didn't free anything then just give-up */ if (!did_something) return(NULL); } else { /* * The second pass failed even though we freed * something after the first pass! * This is IMPOSSIBLE! */ panic("semu_alloc - second attempt failed"); } } return (NULL); } /* * Adjust a particular entry for a particular proc */ static int semundo_adjust(td, supptr, semid, semnum, adjval) register struct thread *td; struct sem_undo **supptr; int semid, semnum; int adjval; { struct proc *p = td->td_proc; register struct sem_undo *suptr; register struct undo *sunptr; int i; /* Look for and remember the sem_undo if the caller doesn't provide it */ suptr = *supptr; if (suptr == NULL) { for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) { if (suptr->un_proc == p) { *supptr = suptr; break; } } if (suptr == NULL) { if (adjval == 0) return(0); suptr = semu_alloc(td); if (suptr == NULL) return(ENOSPC); *supptr = suptr; } } /* * Look for the requested entry and adjust it (delete if adjval becomes * 0). */ sunptr = &suptr->un_ent[0]; for (i = 0; i < suptr->un_cnt; i++, sunptr++) { if (sunptr->un_id != semid || sunptr->un_num != semnum) continue; if (adjval != 0) { adjval += sunptr->un_adjval; if (adjval > seminfo.semaem || adjval < -seminfo.semaem) return (ERANGE); } sunptr->un_adjval = adjval; if (sunptr->un_adjval == 0) { suptr->un_cnt--; if (i < suptr->un_cnt) suptr->un_ent[i] = suptr->un_ent[suptr->un_cnt]; } return(0); } /* Didn't find the right entry - create it */ if (adjval == 0) return(0); if (adjval > seminfo.semaem || adjval < -seminfo.semaem) return (ERANGE); if (suptr->un_cnt != seminfo.semume) { sunptr = &suptr->un_ent[suptr->un_cnt]; suptr->un_cnt++; sunptr->un_adjval = adjval; sunptr->un_id = semid; sunptr->un_num = semnum; } else return(EINVAL); return(0); } static void semundo_clear(semid, semnum) int semid, semnum; { register struct sem_undo *suptr; for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) { register struct undo *sunptr = &suptr->un_ent[0]; register int i = 0; while (i < suptr->un_cnt) { if (sunptr->un_id == semid) { if (semnum == -1 || sunptr->un_num == semnum) { suptr->un_cnt--; if (i < suptr->un_cnt) { suptr->un_ent[i] = suptr->un_ent[suptr->un_cnt]; continue; } } if (semnum != -1) break; } i++, sunptr++; } } } /* * Note that the user-mode half of this passes a union, not a pointer */ #ifndef _SYS_SYSPROTO_H_ struct __semctl_args { int semid; int semnum; int cmd; union semun *arg; }; #endif /* * MPSAFE */ int __semctl(td, uap) struct thread *td; register struct __semctl_args *uap; { int semid = uap->semid; int semnum = uap->semnum; int cmd = uap->cmd; union semun *arg = uap->arg; union semun real_arg; struct ucred *cred = td->td_proc->p_ucred; int i, rval, error; struct semid_ds sbuf; register struct semid_ds *semaptr; u_short usval; #ifdef SEM_DEBUG printf("call to semctl(%d, %d, %d, 0x%x)\n", semid, semnum, cmd, arg); #endif mtx_lock(&Giant); if (!jail_sysvipc_allowed && jailed(td->td_proc->p_ucred)) { error = ENOSYS; goto done2; } switch(cmd) { case SEM_STAT: if (semid < 0 || semid >= seminfo.semmsl) return(EINVAL); semaptr = &sema[semid]; if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ) return(EINVAL); if ((error = ipcperm(td, &semaptr->sem_perm, IPC_R))) return(error); if ((error = copyin(arg, &real_arg, sizeof(real_arg))) != 0) return(error); error = copyout((caddr_t)semaptr, real_arg.buf, sizeof(struct semid_ds)); rval = IXSEQ_TO_IPCID(semid,semaptr->sem_perm); if (error == 0) td->td_retval[0] = rval; goto done2; } semid = IPCID_TO_IX(semid); if (semid < 0 || semid >= seminfo.semmsl) { error = EINVAL; goto done2; } semaptr = &sema[semid]; if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 || semaptr->sem_perm.seq != IPCID_TO_SEQ(uap->semid)) { error = EINVAL; goto done2; } error = 0; rval = 0; switch (cmd) { case IPC_RMID: if ((error = ipcperm(td, &semaptr->sem_perm, IPC_M))) goto done2; semaptr->sem_perm.cuid = cred->cr_uid; semaptr->sem_perm.uid = cred->cr_uid; semtot -= semaptr->sem_nsems; for (i = semaptr->sem_base - sem; i < semtot; i++) sem[i] = sem[i + semaptr->sem_nsems]; for (i = 0; i < seminfo.semmni; i++) { if ((sema[i].sem_perm.mode & SEM_ALLOC) && sema[i].sem_base > semaptr->sem_base) sema[i].sem_base -= semaptr->sem_nsems; } semaptr->sem_perm.mode = 0; semundo_clear(semid, -1); wakeup((caddr_t)semaptr); break; case IPC_SET: if ((error = ipcperm(td, &semaptr->sem_perm, IPC_M))) goto done2; if ((error = copyin(arg, &real_arg, sizeof(real_arg))) != 0) goto done2; if ((error = copyin(real_arg.buf, (caddr_t)&sbuf, sizeof(sbuf))) != 0) { goto done2; } semaptr->sem_perm.uid = sbuf.sem_perm.uid; semaptr->sem_perm.gid = sbuf.sem_perm.gid; semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) | (sbuf.sem_perm.mode & 0777); semaptr->sem_ctime = time_second; break; case IPC_STAT: if ((error = ipcperm(td, &semaptr->sem_perm, IPC_R))) goto done2; if ((error = copyin(arg, &real_arg, sizeof(real_arg))) != 0) goto done2; error = copyout((caddr_t)semaptr, real_arg.buf, sizeof(struct semid_ds)); break; case GETNCNT: if ((error = ipcperm(td, &semaptr->sem_perm, IPC_R))) goto done2; if (semnum < 0 || semnum >= semaptr->sem_nsems) { error = EINVAL; goto done2; } rval = semaptr->sem_base[semnum].semncnt; break; case GETPID: if ((error = ipcperm(td, &semaptr->sem_perm, IPC_R))) goto done2; if (semnum < 0 || semnum >= semaptr->sem_nsems) { error = EINVAL; goto done2; } rval = semaptr->sem_base[semnum].sempid; break; case GETVAL: if ((error = ipcperm(td, &semaptr->sem_perm, IPC_R))) goto done2; if (semnum < 0 || semnum >= semaptr->sem_nsems) { error = EINVAL; goto done2; } rval = semaptr->sem_base[semnum].semval; break; case GETALL: if ((error = ipcperm(td, &semaptr->sem_perm, IPC_R))) goto done2; if ((error = copyin(arg, &real_arg, sizeof(real_arg))) != 0) goto done2; for (i = 0; i < semaptr->sem_nsems; i++) { error = copyout((caddr_t)&semaptr->sem_base[i].semval, &real_arg.array[i], sizeof(real_arg.array[0])); if (error != 0) break; } break; case GETZCNT: if ((error = ipcperm(td, &semaptr->sem_perm, IPC_R))) goto done2; if (semnum < 0 || semnum >= semaptr->sem_nsems) { error = EINVAL; goto done2; } rval = semaptr->sem_base[semnum].semzcnt; break; case SETVAL: if ((error = ipcperm(td, &semaptr->sem_perm, IPC_W))) goto done2; if (semnum < 0 || semnum >= semaptr->sem_nsems) { error = EINVAL; goto done2; } if ((error = copyin(arg, &real_arg, sizeof(real_arg))) != 0) goto done2; if (real_arg.val < 0 || real_arg.val > seminfo.semvmx) { error = ERANGE; goto done2; } semaptr->sem_base[semnum].semval = real_arg.val; semundo_clear(semid, semnum); wakeup((caddr_t)semaptr); break; case SETALL: if ((error = ipcperm(td, &semaptr->sem_perm, IPC_W))) goto done2; if ((error = copyin(arg, &real_arg, sizeof(real_arg))) != 0) goto done2; for (i = 0; i < semaptr->sem_nsems; i++) { error = copyin(&real_arg.array[i], (caddr_t)&usval, sizeof(real_arg.array[0])); if (error != 0) break; if (usval > seminfo.semvmx) { error = ERANGE; break; } semaptr->sem_base[i].semval = usval; } semundo_clear(semid, -1); wakeup((caddr_t)semaptr); break; default: error = EINVAL; break; } if (error == 0) td->td_retval[0] = rval; done2: mtx_unlock(&Giant); return(error); } #ifndef _SYS_SYSPROTO_H_ struct semget_args { key_t key; int nsems; int semflg; }; #endif /* * MPSAFE */ int semget(td, uap) struct thread *td; register struct semget_args *uap; { int semid, error = 0; int key = uap->key; int nsems = uap->nsems; int semflg = uap->semflg; struct ucred *cred = td->td_proc->p_ucred; #ifdef SEM_DEBUG printf("semget(0x%x, %d, 0%o)\n", key, nsems, semflg); #endif mtx_lock(&Giant); if (!jail_sysvipc_allowed && jailed(td->td_proc->p_ucred)) { error = ENOSYS; goto done2; } if (key != IPC_PRIVATE) { for (semid = 0; semid < seminfo.semmni; semid++) { if ((sema[semid].sem_perm.mode & SEM_ALLOC) && sema[semid].sem_perm.key == key) break; } if (semid < seminfo.semmni) { #ifdef SEM_DEBUG printf("found public key\n"); #endif if ((error = ipcperm(td, &sema[semid].sem_perm, semflg & 0700))) { goto done2; } if (nsems > 0 && sema[semid].sem_nsems < nsems) { #ifdef SEM_DEBUG printf("too small\n"); #endif error = EINVAL; goto done2; } if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) { #ifdef SEM_DEBUG printf("not exclusive\n"); #endif error = EEXIST; goto done2; } goto found; } } #ifdef SEM_DEBUG printf("need to allocate the semid_ds\n"); #endif if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) { if (nsems <= 0 || nsems > seminfo.semmsl) { #ifdef SEM_DEBUG printf("nsems out of range (0<%d<=%d)\n", nsems, seminfo.semmsl); #endif error = EINVAL; goto done2; } if (nsems > seminfo.semmns - semtot) { #ifdef SEM_DEBUG printf("not enough semaphores left (need %d, got %d)\n", nsems, seminfo.semmns - semtot); #endif error = ENOSPC; goto done2; } for (semid = 0; semid < seminfo.semmni; semid++) { if ((sema[semid].sem_perm.mode & SEM_ALLOC) == 0) break; } if (semid == seminfo.semmni) { #ifdef SEM_DEBUG printf("no more semid_ds's available\n"); #endif error = ENOSPC; goto done2; } #ifdef SEM_DEBUG printf("semid %d is available\n", semid); #endif sema[semid].sem_perm.key = key; sema[semid].sem_perm.cuid = cred->cr_uid; sema[semid].sem_perm.uid = cred->cr_uid; sema[semid].sem_perm.cgid = cred->cr_gid; sema[semid].sem_perm.gid = cred->cr_gid; sema[semid].sem_perm.mode = (semflg & 0777) | SEM_ALLOC; sema[semid].sem_perm.seq = (sema[semid].sem_perm.seq + 1) & 0x7fff; sema[semid].sem_nsems = nsems; sema[semid].sem_otime = 0; sema[semid].sem_ctime = time_second; sema[semid].sem_base = &sem[semtot]; semtot += nsems; bzero(sema[semid].sem_base, sizeof(sema[semid].sem_base[0])*nsems); #ifdef SEM_DEBUG printf("sembase = 0x%x, next = 0x%x\n", sema[semid].sem_base, &sem[semtot]); #endif } else { #ifdef SEM_DEBUG printf("didn't find it and wasn't asked to create it\n"); #endif error = ENOENT; goto done2; } found: td->td_retval[0] = IXSEQ_TO_IPCID(semid, sema[semid].sem_perm); done2: mtx_unlock(&Giant); return (error); } #ifndef _SYS_SYSPROTO_H_ struct semop_args { int semid; struct sembuf *sops; u_int nsops; }; #endif /* * MPSAFE */ int semop(td, uap) struct thread *td; register struct semop_args *uap; { int semid = uap->semid; u_int nsops = uap->nsops; struct sembuf *sops = NULL; register struct semid_ds *semaptr; register struct sembuf *sopptr; register struct sem *semptr; struct sem_undo *suptr; int i, j, error; int do_wakeup, do_undos; #ifdef SEM_DEBUG printf("call to semop(%d, 0x%x, %u)\n", semid, sops, nsops); #endif mtx_lock(&Giant); if (!jail_sysvipc_allowed && jailed(td->td_proc->p_ucred)) { error = ENOSYS; goto done2; } semid = IPCID_TO_IX(semid); /* Convert back to zero origin */ if (semid < 0 || semid >= seminfo.semmsl) { error = EINVAL; goto done2; } semaptr = &sema[semid]; if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0) { error = EINVAL; goto done2; } if (semaptr->sem_perm.seq != IPCID_TO_SEQ(uap->semid)) { error = EINVAL; goto done2; } if (nsops > seminfo.semopm) { #ifdef SEM_DEBUG printf("too many sops (max=%d, nsops=%d)\n", seminfo.semopm, nsops); #endif error = E2BIG; goto done2; } /* Allocate memory for sem_ops */ sops = malloc(nsops * sizeof(sops[0]), M_SEM, M_WAITOK); if (!sops) panic("Failed to allocate %d sem_ops", nsops); if ((error = copyin(uap->sops, sops, nsops * sizeof(sops[0]))) != 0) { #ifdef SEM_DEBUG printf("error = %d from copyin(%08x, %08x, %d)\n", error, uap->sops, sops, nsops * sizeof(sops[0])); #endif goto done2; } /* * Initial pass thru sops to see what permissions are needed. * Also perform any checks that don't need repeating on each * attempt to satisfy the request vector. */ j = 0; /* permission needed */ do_undos = 0; for (i = 0; i < nsops; i++) { sopptr = &sops[i]; if (sopptr->sem_num >= semaptr->sem_nsems) { error = EFBIG; goto done2; } if (sopptr->sem_flg & SEM_UNDO && sopptr->sem_op != 0) do_undos = 1; j |= (sopptr->sem_op == 0) ? SEM_R : SEM_A; } if ((error = ipcperm(td, &semaptr->sem_perm, j))) { #ifdef SEM_DEBUG printf("error = %d from ipaccess\n", error); #endif goto done2; } /* * Loop trying to satisfy the vector of requests. * If we reach a point where we must wait, any requests already * performed are rolled back and we go to sleep until some other * process wakes us up. At this point, we start all over again. * * This ensures that from the perspective of other tasks, a set * of requests is atomic (never partially satisfied). */ for (;;) { do_wakeup = 0; error = 0; /* error return if necessary */ for (i = 0; i < nsops; i++) { sopptr = &sops[i]; semptr = &semaptr->sem_base[sopptr->sem_num]; #ifdef SEM_DEBUG printf("semop: semaptr=%x, sem_base=%x, semptr=%x, sem[%d]=%d : op=%d, flag=%s\n", semaptr, semaptr->sem_base, semptr, sopptr->sem_num, semptr->semval, sopptr->sem_op, (sopptr->sem_flg & IPC_NOWAIT) ? "nowait" : "wait"); #endif if (sopptr->sem_op < 0) { if (semptr->semval + sopptr->sem_op < 0) { #ifdef SEM_DEBUG printf("semop: can't do it now\n"); #endif break; } else { semptr->semval += sopptr->sem_op; if (semptr->semval == 0 && semptr->semzcnt > 0) do_wakeup = 1; } } else if (sopptr->sem_op == 0) { if (semptr->semval != 0) { #ifdef SEM_DEBUG printf("semop: not zero now\n"); #endif break; } } else if (semptr->semval + sopptr->sem_op > seminfo.semvmx) { error = ERANGE; break; } else { if (semptr->semncnt > 0) do_wakeup = 1; semptr->semval += sopptr->sem_op; } } /* * Did we get through the entire vector? */ if (i >= nsops) goto done; /* * No ... rollback anything that we've already done */ #ifdef SEM_DEBUG printf("semop: rollback 0 through %d\n", i-1); #endif for (j = 0; j < i; j++) semaptr->sem_base[sops[j].sem_num].semval -= sops[j].sem_op; /* If we detected an error, return it */ if (error != 0) goto done2; /* * If the request that we couldn't satisfy has the * NOWAIT flag set then return with EAGAIN. */ if (sopptr->sem_flg & IPC_NOWAIT) { error = EAGAIN; goto done2; } if (sopptr->sem_op == 0) semptr->semzcnt++; else semptr->semncnt++; #ifdef SEM_DEBUG printf("semop: good night!\n"); #endif error = tsleep((caddr_t)semaptr, (PZERO - 4) | PCATCH, "semwait", 0); #ifdef SEM_DEBUG printf("semop: good morning (error=%d)!\n", error); #endif if (error != 0) { error = EINTR; goto done2; } #ifdef SEM_DEBUG printf("semop: good morning!\n"); #endif /* * Make sure that the semaphore still exists */ if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 || semaptr->sem_perm.seq != IPCID_TO_SEQ(uap->semid)) { error = EIDRM; goto done2; } /* * The semaphore is still alive. Readjust the count of * waiting processes. */ if (sopptr->sem_op == 0) semptr->semzcnt--; else semptr->semncnt--; } done: /* * Process any SEM_UNDO requests. */ if (do_undos) { suptr = NULL; for (i = 0; i < nsops; i++) { /* * We only need to deal with SEM_UNDO's for non-zero * op's. */ int adjval; if ((sops[i].sem_flg & SEM_UNDO) == 0) continue; adjval = sops[i].sem_op; if (adjval == 0) continue; error = semundo_adjust(td, &suptr, semid, sops[i].sem_num, -adjval); if (error == 0) continue; /* * Oh-Oh! We ran out of either sem_undo's or undo's. * Rollback the adjustments to this point and then * rollback the semaphore ups and down so we can return * with an error with all structures restored. We * rollback the undo's in the exact reverse order that * we applied them. This guarantees that we won't run * out of space as we roll things back out. */ for (j = i - 1; j >= 0; j--) { if ((sops[j].sem_flg & SEM_UNDO) == 0) continue; adjval = sops[j].sem_op; if (adjval == 0) continue; if (semundo_adjust(td, &suptr, semid, sops[j].sem_num, adjval) != 0) panic("semop - can't undo undos"); } for (j = 0; j < nsops; j++) semaptr->sem_base[sops[j].sem_num].semval -= sops[j].sem_op; #ifdef SEM_DEBUG printf("error = %d from semundo_adjust\n", error); #endif goto done2; } /* loop through the sops */ } /* if (do_undos) */ /* We're definitely done - set the sempid's and time */ for (i = 0; i < nsops; i++) { sopptr = &sops[i]; semptr = &semaptr->sem_base[sopptr->sem_num]; semptr->sempid = td->td_proc->p_pid; } semaptr->sem_otime = time_second; /* * Do a wakeup if any semaphore was up'd whilst something was * sleeping on it. */ if (do_wakeup) { #ifdef SEM_DEBUG printf("semop: doing wakeup\n"); #endif wakeup((caddr_t)semaptr); #ifdef SEM_DEBUG printf("semop: back from wakeup\n"); #endif } #ifdef SEM_DEBUG printf("semop: done\n"); #endif td->td_retval[0] = 0; done2: if (sops) free(sops, M_SEM); mtx_unlock(&Giant); return (error); } /* * Go through the undo structures for this process and apply the adjustments to * semaphores. */ static void semexit_myhook(p) struct proc *p; { register struct sem_undo *suptr; register struct sem_undo **supptr; /* * Go through the chain of undo vectors looking for one * associated with this process. */ for (supptr = &semu_list; (suptr = *supptr) != NULL; supptr = &suptr->un_next) { if (suptr->un_proc == p) break; } if (suptr == NULL) return; #ifdef SEM_DEBUG printf("proc @%08x has undo structure with %d entries\n", p, suptr->un_cnt); #endif /* * If there are any active undo elements then process them. */ if (suptr->un_cnt > 0) { int ix; for (ix = 0; ix < suptr->un_cnt; ix++) { int semid = suptr->un_ent[ix].un_id; int semnum = suptr->un_ent[ix].un_num; int adjval = suptr->un_ent[ix].un_adjval; struct semid_ds *semaptr; semaptr = &sema[semid]; if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0) panic("semexit - semid not allocated"); if (semnum >= semaptr->sem_nsems) panic("semexit - semnum out of range"); #ifdef SEM_DEBUG printf("semexit: %08x id=%d num=%d(adj=%d) ; sem=%d\n", suptr->un_proc, suptr->un_ent[ix].un_id, suptr->un_ent[ix].un_num, suptr->un_ent[ix].un_adjval, semaptr->sem_base[semnum].semval); #endif if (adjval < 0) { if (semaptr->sem_base[semnum].semval < -adjval) semaptr->sem_base[semnum].semval = 0; else semaptr->sem_base[semnum].semval += adjval; } else semaptr->sem_base[semnum].semval += adjval; wakeup((caddr_t)semaptr); #ifdef SEM_DEBUG printf("semexit: back from wakeup\n"); #endif } } /* * Deallocate the undo vector. */ #ifdef SEM_DEBUG printf("removing vector\n"); #endif suptr->un_proc = NULL; *supptr = suptr->un_next; } static int sysctl_sema(SYSCTL_HANDLER_ARGS) { return (SYSCTL_OUT(req, sema, sizeof(struct semid_ds) * seminfo.semmni)); }