/*- * Copyright (c) 1993 The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $Id: cpufunc.h,v 1.74 1998/01/15 07:32:55 gibbs Exp $ */ /* * Functions to provide access to special i386 instructions. */ #ifndef _MACHINE_CPUFUNC_H_ #define _MACHINE_CPUFUNC_H_ #include #include #include #if defined(SWTCH_OPTIM_STATS) extern int tlb_flush_count; #endif #ifdef __GNUC__ static __inline void breakpoint(void) { __asm __volatile("int $3"); } static __inline void cpuid(u_int *eax, u_int *ebx, u_int *ecx, u_int *edx) { __asm __volatile(".byte 0x0f, 0xa2" : "=a" (*eax), "=b" (*ebx), "=c" (*ecx), "=d" (*edx) : "a" (*eax)); } static __inline void disable_intr(void) { __asm __volatile("cli" : : : "memory"); MPINTR_LOCK(); } static __inline void enable_intr(void) { MPINTR_UNLOCK(); __asm __volatile("sti"); } #define HAVE_INLINE_FFS static __inline int ffs(int mask) { int result; /* * bsfl turns out to be not all that slow on 486's. It can beaten * using a binary search to reduce to 4 bits and then a table lookup, * but only if the code is inlined and in the cache, and the code * is quite large so inlining it probably busts the cache. * * Note that gcc-2's builtin ffs would be used if we didn't declare * this inline or turn off the builtin. The builtin is faster but * broken in gcc-2.4.5 and slower but working in gcc-2.5 and 2.6. */ __asm __volatile("testl %0,%0; je 1f; bsfl %0,%0; incl %0; 1:" : "=r" (result) : "0" (mask)); return (result); } #define HAVE_INLINE_FLS static __inline int fls(int mask) { int result; __asm __volatile("testl %0,%0; je 1f; bsrl %0,%0; incl %0; 1:" : "=r" (result) : "0" (mask)); return (result); } #if __GNUC__ < 2 #define inb(port) inbv(port) #define outb(port, data) outbv(port, data) #else /* __GNUC >= 2 */ /* * The following complications are to get around gcc not having a * constraint letter for the range 0..255. We still put "d" in the * constraint because "i" isn't a valid constraint when the port * isn't constant. This only matters for -O0 because otherwise * the non-working version gets optimized away. * * Use an expression-statement instead of a conditional expression * because gcc-2.6.0 would promote the operands of the conditional * and produce poor code for "if ((inb(var) & const1) == const2)". * * The unnecessary test `(port) < 0x10000' is to generate a warning if * the `port' has type u_short or smaller. Such types are pessimal. * This actually only works for signed types. The range check is * careful to avoid generating warnings. */ #define inb(port) __extension__ ({ \ u_char _data; \ if (__builtin_constant_p(port) && ((port) & 0xffff) < 0x100 \ && (port) < 0x10000) \ _data = inbc(port); \ else \ _data = inbv(port); \ _data; }) #define outb(port, data) ( \ __builtin_constant_p(port) && ((port) & 0xffff) < 0x100 \ && (port) < 0x10000 \ ? outbc(port, data) : outbv(port, data)) static __inline u_char inbc(u_int port) { u_char data; __asm __volatile("inb %1,%0" : "=a" (data) : "id" ((u_short)(port))); return (data); } static __inline void outbc(u_int port, u_char data) { __asm __volatile("outb %0,%1" : : "a" (data), "id" ((u_short)(port))); } #endif /* __GNUC <= 2 */ static __inline u_char inbv(u_int port) { u_char data; /* * We use %%dx and not %1 here because i/o is done at %dx and not at * %edx, while gcc generates inferior code (movw instead of movl) * if we tell it to load (u_short) port. */ __asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port)); return (data); } static __inline u_long inl(u_int port) { u_long data; __asm __volatile("inl %%dx,%0" : "=a" (data) : "d" (port)); return (data); } static __inline void insb(u_int port, void *addr, size_t cnt) { __asm __volatile("cld; rep; insb" : : "d" (port), "D" (addr), "c" (cnt) : "di", "cx", "memory"); } static __inline void insw(u_int port, void *addr, size_t cnt) { __asm __volatile("cld; rep; insw" : : "d" (port), "D" (addr), "c" (cnt) : "di", "cx", "memory"); } static __inline void insl(u_int port, void *addr, size_t cnt) { __asm __volatile("cld; rep; insl" : : "d" (port), "D" (addr), "c" (cnt) : "di", "cx", "memory"); } static __inline void invd(void) { __asm __volatile("invd"); } #ifdef KERNEL #ifdef SMP /* * When using APIC IPI's, the inlining cost is prohibitive since the call * executes into the IPI transmission system. */ void invlpg __P((u_int addr)); void invltlb __P((void)); #else /* !SMP */ static __inline void invlpg(u_int addr) { __asm __volatile("invlpg (%0)" : : "r" (addr) : "memory"); } static __inline void invltlb(void) { u_long temp; /* * This should be implemented as load_cr3(rcr3()) when load_cr3() * is inlined. */ __asm __volatile("movl %%cr3, %0; movl %0, %%cr3" : "=r" (temp) : : "memory"); #if defined(SWTCH_OPTIM_STATS) ++tlb_flush_count; #endif } #endif /* SMP */ #endif /* KERNEL */ static __inline u_short inw(u_int port) { u_short data; __asm __volatile("inw %%dx,%0" : "=a" (data) : "d" (port)); return (data); } static __inline u_int loadandclear(u_int *addr) { u_int result; __asm __volatile("xorl %0,%0; xchgl %1,%0" : "=&r" (result) : "m" (*addr)); return (result); } static __inline void outbv(u_int port, u_char data) { u_char al; /* * Use an unnecessary assignment to help gcc's register allocator. * This make a large difference for gcc-1.40 and a tiny difference * for gcc-2.6.0. For gcc-1.40, al had to be ``asm("ax")'' for * best results. gcc-2.6.0 can't handle this. */ al = data; __asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port)); } static __inline void outl(u_int port, u_long data) { /* * outl() and outw() aren't used much so we haven't looked at * possible micro-optimizations such as the unnecessary * assignment for them. */ __asm __volatile("outl %0,%%dx" : : "a" (data), "d" (port)); } static __inline void outsb(u_int port, const void *addr, size_t cnt) { __asm __volatile("cld; rep; outsb" : : "d" (port), "S" (addr), "c" (cnt) : "si", "cx"); } static __inline void outsw(u_int port, const void *addr, size_t cnt) { __asm __volatile("cld; rep; outsw" : : "d" (port), "S" (addr), "c" (cnt) : "si", "cx"); } static __inline void outsl(u_int port, const void *addr, size_t cnt) { __asm __volatile("cld; rep; outsl" : : "d" (port), "S" (addr), "c" (cnt) : "si", "cx"); } static __inline void outw(u_int port, u_short data) { __asm __volatile("outw %0,%%dx" : : "a" (data), "d" (port)); } static __inline u_long rcr2(void) { u_long data; __asm __volatile("movl %%cr2,%0" : "=r" (data)); return (data); } static __inline u_long read_eflags(void) { u_long ef; __asm __volatile("pushfl; popl %0" : "=r" (ef)); return (ef); } static __inline quad_t rdmsr(u_int msr) { quad_t rv; __asm __volatile(".byte 0x0f, 0x32" : "=A" (rv) : "c" (msr)); return (rv); } static __inline quad_t rdpmc(u_int pmc) { quad_t rv; __asm __volatile(".byte 0x0f, 0x33" : "=A" (rv) : "c" (pmc)); return (rv); } static __inline quad_t rdtsc(void) { quad_t rv; __asm __volatile(".byte 0x0f, 0x31" : "=A" (rv)); return (rv); } static __inline void setbits(volatile unsigned *addr, u_int bits) { __asm __volatile( #ifdef SMP "lock; " #endif "orl %1,%0" : "=m" (*addr) : "ir" (bits)); } static __inline void wbinvd(void) { __asm __volatile("wbinvd"); } static __inline void write_eflags(u_long ef) { __asm __volatile("pushl %0; popfl" : : "r" (ef)); } static __inline void wrmsr(u_int msr, quad_t newval) { __asm __volatile(".byte 0x0f, 0x30" : : "A" (newval), "c" (msr)); } #else /* !__GNUC__ */ int breakpoint __P((void)); void cpuid __P((u_int *eax, u_int *ebx, u_int *ecx, u_int *edx)); void disable_intr __P((void)); void enable_intr __P((void)); u_char inb __P((u_int port)); u_long inl __P((u_int port)); void insb __P((u_int port, void *addr, size_t cnt)); void insl __P((u_int port, void *addr, size_t cnt)); void insw __P((u_int port, void *addr, size_t cnt)); void invd __P((void)); void invlpg __P((u_int addr)); void invltlb __P((void)); u_short inw __P((u_int port)); u_int loadandclear __P((u_int *addr)); void outb __P((u_int port, u_char data)); void outl __P((u_int port, u_long data)); void outsb __P((u_int port, void *addr, size_t cnt)); void outsl __P((u_int port, void *addr, size_t cnt)); void outsw __P((u_int port, void *addr, size_t cnt)); void outw __P((u_int port, u_short data)); u_long rcr2 __P((void)); quad_t rdmsr __P((u_int msr)); quad_t rdpmc __P((u_int pmc)); quad_t rdtsc __P((void)); u_long read_eflags __P((void)); void setbits __P((volatile unsigned *addr, u_int bits)); void wbinvd __P((void)); void write_eflags __P((u_long ef)); void wrmsr __P((u_int msr, quad_t newval)); #endif /* __GNUC__ */ void load_cr0 __P((u_long cr0)); void load_cr3 __P((u_long cr3)); void load_cr4 __P((u_long cr4)); void ltr __P((u_short sel)); u_int rcr0 __P((void)); u_long rcr3 __P((void)); u_long rcr4 __P((void)); #endif /* !_MACHINE_CPUFUNC_H_ */