/* $Id: isp.c,v 1.21 1999/07/02 23:06:38 mjacob Exp $ */ /* release_6_5_99 */ /* * Machine and OS Independent (well, as best as possible) * code for the Qlogic ISP SCSI adapters. * * Copyright (c) 1997, 1998, 1999 by Matthew Jacob * NASA/Ames Research Center * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice immediately at the beginning of the file, without modification, * this list of conditions, and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Inspiration and ideas about this driver are from Erik Moe's Linux driver * (qlogicisp.c) and Dave Miller's SBus version of same (qlogicisp.c). Some * ideas dredged from the Solaris driver. */ /* * Include header file appropriate for platform we're building on. */ #ifdef __NetBSD__ #include #endif #ifdef __FreeBSD__ #include #endif #ifdef __OpenBSD__ #include #endif #ifdef __linux__ #include "isp_linux.h" #endif /* * General defines */ #define MBOX_DELAY_COUNT 1000000 / 100 /* * Local static data */ #ifdef ISP_TARGET_MODE static const char tgtiqd[36] = { 0x03, 0x00, 0x02, 0x02, 0x00, 0x00, 0x00, 0x00, 0x51, 0x4C, 0x4F, 0x47, 0x49, 0x43, 0x20, 0x20, #ifdef __NetBSD__ 0x4E, 0x45, 0x54, 0x42, 0x53, 0x44, 0x20, 0x20, #else # ifdef __FreeBSD__ 0x46, 0x52, 0x45, 0x45, 0x42, 0x52, 0x44, 0x20, # else # ifdef __OpenBSD__ 0x4F, 0x50, 0x45, 0x4E, 0x42, 0x52, 0x44, 0x20, # else # ifdef linux 0x4C, 0x49, 0x4E, 0x55, 0x58, 0x20, 0x20, 0x20, # else # endif # endif # endif #endif 0x54, 0x41, 0x52, 0x47, 0x45, 0x54, 0x20, 0x20, 0x20, 0x20, 0x20, 0x31 }; #endif /* * Local function prototypes. */ static int isp_parse_async __P((struct ispsoftc *, int)); static int isp_handle_other_response __P((struct ispsoftc *, ispstatusreq_t *, u_int8_t *)); #ifdef ISP_TARGET_MODE static int isp_modify_lun __P((struct ispsoftc *, int, int, int)); static void isp_notify_ack __P((struct ispsoftc *, void *)); static void isp_handle_atio __P((struct ispsoftc *, void *)); static void isp_handle_atio2 __P((struct ispsoftc *, void *)); static void isp_handle_ctio __P((struct ispsoftc *, void *)); static void isp_handle_ctio2 __P((struct ispsoftc *, void *)); #endif static void isp_parse_status __P((struct ispsoftc *, ispstatusreq_t *, ISP_SCSI_XFER_T *)); static void isp_fastpost_complete __P((struct ispsoftc *, int)); static void isp_scsi_init __P((struct ispsoftc *)); static void isp_scsi_channel_init __P((struct ispsoftc *, int)); static void isp_fibre_init __P((struct ispsoftc *)); static void isp_mark_getpdb_all __P((struct ispsoftc *)); static int isp_getpdb __P((struct ispsoftc *, int, isp_pdb_t *)); static u_int64_t isp_get_portname __P((struct ispsoftc *, int, int)); static int isp_fclink_test __P((struct ispsoftc *, int)); static int isp_same_lportdb __P((struct lportdb *, struct lportdb *)); static int isp_pdb_sync __P((struct ispsoftc *, int)); #ifdef ISP2100_FABRIC static int isp_scan_fabric __P((struct ispsoftc *)); #endif static void isp_fw_state __P((struct ispsoftc *)); static void isp_dumpregs __P((struct ispsoftc *, const char *)); static void isp_dumpxflist __P((struct ispsoftc *)); static void isp_mboxcmd __P((struct ispsoftc *, mbreg_t *)); static void isp_update __P((struct ispsoftc *)); static void isp_update_bus __P((struct ispsoftc *, int)); static void isp_setdfltparm __P((struct ispsoftc *, int)); static int isp_read_nvram __P((struct ispsoftc *)); static void isp_rdnvram_word __P((struct ispsoftc *, int, u_int16_t *)); /* * Reset Hardware. * * Hit the chip over the head, download new f/w and set it running. * * Locking done elsewhere. */ void isp_reset(isp) struct ispsoftc *isp; { mbreg_t mbs; int loops, i, dodnld = 1; char *revname; isp->isp_state = ISP_NILSTATE; /* * Basic types (SCSI, FibreChannel and PCI or SBus) * have been set in the MD code. We figure out more * here. */ isp->isp_dblev = DFLT_DBLEVEL; /* * After we've fired this chip up, zero out the conf1 register * for SCSI adapters and other settings for the 2100. */ /* * Get the current running firmware revision out of the * chip before we hit it over the head (if this is our * first time through). Note that we store this as the * 'ROM' firmware revision- which it may not be. In any * case, we don't really use this yet, but we may in * the future. */ if (isp->isp_used == 0) { /* * Just in case it was paused... */ ISP_WRITE(isp, HCCR, HCCR_CMD_RELEASE); mbs.param[0] = MBOX_ABOUT_FIRMWARE; isp_mboxcmd(isp, &mbs); /* * If this fails, it probably means we're running * an old prom, if anything at all... */ if (mbs.param[0] == MBOX_COMMAND_COMPLETE) { isp->isp_romfw_rev[0] = mbs.param[1]; isp->isp_romfw_rev[1] = mbs.param[2]; isp->isp_romfw_rev[2] = mbs.param[3]; } isp->isp_used = 1; } DISABLE_INTS(isp); /* * Put the board into PAUSE mode. */ ISP_WRITE(isp, HCCR, HCCR_CMD_PAUSE); if (IS_FC(isp)) { revname = "2X00"; switch (isp->isp_type) { case ISP_HA_FC_2100: revname[1] = '1'; break; case ISP_HA_FC_2200: revname[1] = '2'; /* * Resident firmware for the 2200 appears to have * SCCLUN enabled. */ #ifndef ISP2100_SCCLUN if (isp->isp_mdvec->dv_fwlen == 0) { PRINTF("%s: WARNING- using resident f/w without" " SCCLUN support defined\n", isp->isp_name); } #endif break; default: break; } } else if (IS_12X0(isp)) { revname = "12X0"; isp->isp_clock = 60; } else if (IS_1080(isp)) { u_int16_t l; sdparam *sdp = isp->isp_param; revname = "1080"; isp->isp_clock = 100; l = ISP_READ(isp, SXP_PINS_DIFF) & ISP1080_MODE_MASK; switch (l) { case ISP1080_LVD_MODE: sdp->isp_lvdmode = 1; PRINTF("%s: LVD Mode\n", isp->isp_name); break; case ISP1080_HVD_MODE: sdp->isp_diffmode = 1; PRINTF("%s: Differential Mode\n", isp->isp_name); break; case ISP1080_SE_MODE: sdp->isp_ultramode = 1; PRINTF("%s: Single-Ended Mode\n", isp->isp_name); break; default: /* * Hmm. Up in a wierd mode. This means all SCSI I/O * buffer lines are tristated, so we're in a lot of * trouble if we don't set things up right. */ PRINTF("%s: Illegal Mode 0x%x\n", isp->isp_name, l); break; } } else { sdparam *sdp = isp->isp_param; i = ISP_READ(isp, BIU_CONF0) & BIU_CONF0_HW_MASK; switch (i) { default: PRINTF("%s: unknown chip rev. 0x%x- assuming a 1020\n", isp->isp_name, i); /* FALLTHROUGH */ case 1: revname = "1020"; isp->isp_type = ISP_HA_SCSI_1020; isp->isp_clock = 40; break; case 2: /* * Some 1020A chips are Ultra Capable, but don't * run the clock rate up for that unless told to * do so by the Ultra Capable bits being set. */ revname = "1020A"; isp->isp_type = ISP_HA_SCSI_1020A; isp->isp_clock = 40; break; case 3: revname = "1040"; isp->isp_type = ISP_HA_SCSI_1040; isp->isp_clock = 60; break; case 4: revname = "1040A"; isp->isp_type = ISP_HA_SCSI_1040A; isp->isp_clock = 60; break; case 5: revname = "1040B"; isp->isp_type = ISP_HA_SCSI_1040B; isp->isp_clock = 60; break; case 6: revname = "1040C(?)"; isp->isp_type = ISP_HA_SCSI_1040C; isp->isp_clock = 60; break; } /* * Now, while we're at it, gather info about ultra * and/or differential mode. */ if (ISP_READ(isp, SXP_PINS_DIFF) & SXP_PINS_DIFF_MODE) { PRINTF("%s: Differential Mode\n", isp->isp_name); sdp->isp_diffmode = 1; } else { sdp->isp_diffmode = 0; } i = ISP_READ(isp, RISC_PSR); if (isp->isp_bustype == ISP_BT_SBUS) { i &= RISC_PSR_SBUS_ULTRA; } else { i &= RISC_PSR_PCI_ULTRA; } if (i != 0) { PRINTF("%s: Ultra Mode Capable\n", isp->isp_name); sdp->isp_ultramode = 1; /* * If we're in Ultra Mode, we have to be 60Mhz clock- * even for the SBus version. */ isp->isp_clock = 60; } else { sdp->isp_ultramode = 0; /* * Clock is known. Gronk. */ } /* * Machine dependent clock (if set) overrides * our generic determinations. */ if (isp->isp_mdvec->dv_clock) { if (isp->isp_mdvec->dv_clock < isp->isp_clock) { isp->isp_clock = isp->isp_mdvec->dv_clock; } } } /* * Do MD specific pre initialization */ ISP_RESET0(isp); again: /* * Hit the chip over the head with hammer, * and give the ISP a chance to recover. */ if (IS_SCSI(isp)) { ISP_WRITE(isp, BIU_ICR, BIU_ICR_SOFT_RESET); /* * A slight delay... */ SYS_DELAY(100); #if 0 PRINTF("%s: mbox0-5: 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n", isp->isp_name, ISP_READ(isp, OUTMAILBOX0), ISP_READ(isp, OUTMAILBOX1), ISP_READ(isp, OUTMAILBOX2), ISP_READ(isp, OUTMAILBOX3), ISP_READ(isp, OUTMAILBOX4), ISP_READ(isp, OUTMAILBOX5)); #endif /* * Clear data && control DMA engines. */ ISP_WRITE(isp, CDMA_CONTROL, DMA_CNTRL_CLEAR_CHAN | DMA_CNTRL_RESET_INT); ISP_WRITE(isp, DDMA_CONTROL, DMA_CNTRL_CLEAR_CHAN | DMA_CNTRL_RESET_INT); } else { ISP_WRITE(isp, BIU2100_CSR, BIU2100_SOFT_RESET); /* * A slight delay... */ SYS_DELAY(100); /* * Clear data && control DMA engines. */ ISP_WRITE(isp, CDMA2100_CONTROL, DMA_CNTRL2100_CLEAR_CHAN | DMA_CNTRL2100_RESET_INT); ISP_WRITE(isp, TDMA2100_CONTROL, DMA_CNTRL2100_CLEAR_CHAN | DMA_CNTRL2100_RESET_INT); ISP_WRITE(isp, RDMA2100_CONTROL, DMA_CNTRL2100_CLEAR_CHAN | DMA_CNTRL2100_RESET_INT); } /* * Wait for ISP to be ready to go... */ loops = MBOX_DELAY_COUNT; for (;;) { if (isp->isp_type & ISP_HA_SCSI) { if (!(ISP_READ(isp, BIU_ICR) & BIU_ICR_SOFT_RESET)) break; } else { if (!(ISP_READ(isp, BIU2100_CSR) & BIU2100_SOFT_RESET)) break; } SYS_DELAY(100); if (--loops < 0) { isp_dumpregs(isp, "chip reset timed out"); return; } } /* * After we've fired this chip up, zero out the conf1 register * for SCSI adapters and other settings for the 2100. */ if (IS_SCSI(isp)) { ISP_WRITE(isp, BIU_CONF1, 0); } else { ISP_WRITE(isp, BIU2100_CSR, 0); } /* * Reset RISC Processor */ ISP_WRITE(isp, HCCR, HCCR_CMD_RESET); SYS_DELAY(100); /* * Establish some initial burst rate stuff. * (only for the 1XX0 boards). This really should * be done later after fetching from NVRAM. */ if (IS_SCSI(isp)) { u_int16_t tmp = isp->isp_mdvec->dv_conf1; /* * Busted FIFO. Turn off all but burst enables. */ if (isp->isp_type == ISP_HA_SCSI_1040A) { tmp &= BIU_BURST_ENABLE; } ISP_SETBITS(isp, BIU_CONF1, tmp); if (tmp & BIU_BURST_ENABLE) { ISP_SETBITS(isp, CDMA_CONF, DMA_ENABLE_BURST); ISP_SETBITS(isp, DDMA_CONF, DMA_ENABLE_BURST); } #ifdef PTI_CARDS if (((sdparam *) isp->isp_param)->isp_ultramode) { while (ISP_READ(isp, RISC_MTR) != 0x1313) { ISP_WRITE(isp, RISC_MTR, 0x1313); ISP_WRITE(isp, HCCR, HCCR_CMD_STEP); } } else { ISP_WRITE(isp, RISC_MTR, 0x1212); } /* * PTI specific register */ ISP_WRITE(isp, RISC_EMB, DUAL_BANK) #else ISP_WRITE(isp, RISC_MTR, 0x1212); #endif } else { ISP_WRITE(isp, RISC_MTR2100, 0x1212); } ISP_WRITE(isp, HCCR, HCCR_CMD_RELEASE); /* release paused processor */ /* * Do MD specific post initialization */ ISP_RESET1(isp); #if 0 /* * Enable interrupts */ ENABLE_INTS(isp); #endif /* * Wait for everything to finish firing up... */ loops = MBOX_DELAY_COUNT; while (ISP_READ(isp, OUTMAILBOX0) == MBOX_BUSY) { SYS_DELAY(100); if (--loops < 0) { PRINTF("%s: MBOX_BUSY never cleared on reset\n", isp->isp_name); return; } } /* * Up until this point we've done everything by just reading or * setting registers. From this point on we rely on at least *some* * kind of firmware running in the card. */ /* * Do some sanity checking. */ mbs.param[0] = MBOX_NO_OP; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { isp_dumpregs(isp, "NOP test failed"); return; } if (IS_SCSI(isp)) { mbs.param[0] = MBOX_MAILBOX_REG_TEST; mbs.param[1] = 0xdead; mbs.param[2] = 0xbeef; mbs.param[3] = 0xffff; mbs.param[4] = 0x1111; mbs.param[5] = 0xa5a5; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { isp_dumpregs(isp, "Mailbox Register test didn't complete"); return; } if (mbs.param[1] != 0xdead || mbs.param[2] != 0xbeef || mbs.param[3] != 0xffff || mbs.param[4] != 0x1111 || mbs.param[5] != 0xa5a5) { isp_dumpregs(isp, "Register Test Failed"); return; } } /* * Download new Firmware, unless requested not to do so. * This is made slightly trickier in some cases where the * firmware of the ROM revision is newer than the revision * compiled into the driver. So, where we used to compare * versions of our f/w and the ROM f/w, now we just see * whether we have f/w at all and whether a config flag * has disabled our download. */ if ((isp->isp_mdvec->dv_fwlen == 0) || (isp->isp_confopts & ISP_CFG_NORELOAD)) { dodnld = 0; } if (dodnld && isp->isp_mdvec->dv_fwlen) { for (i = 0; i < isp->isp_mdvec->dv_fwlen; i++) { mbs.param[0] = MBOX_WRITE_RAM_WORD; mbs.param[1] = isp->isp_mdvec->dv_codeorg + i; mbs.param[2] = isp->isp_mdvec->dv_ispfw[i]; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { PRINTF("%s: F/W download failed at word %d\n", isp->isp_name, i); dodnld = 0; goto again; } } /* * Verify that it downloaded correctly. */ mbs.param[0] = MBOX_VERIFY_CHECKSUM; mbs.param[1] = isp->isp_mdvec->dv_codeorg; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { isp_dumpregs(isp, "ram checksum failure"); return; } } else { IDPRINTF(3, ("%s: skipping f/w download\n", isp->isp_name)); } /* * Now start it rolling. * * If we didn't actually download f/w, * we still need to (re)start it. */ mbs.param[0] = MBOX_EXEC_FIRMWARE; if (isp->isp_mdvec->dv_codeorg) mbs.param[1] = isp->isp_mdvec->dv_codeorg; else mbs.param[1] = 0x1000; isp_mboxcmd(isp, &mbs); if (isp->isp_type & ISP_HA_SCSI) { /* * Set CLOCK RATE, but only if asked to. */ if (isp->isp_clock) { mbs.param[0] = MBOX_SET_CLOCK_RATE; mbs.param[1] = isp->isp_clock; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { isp_dumpregs(isp, "failed to set CLOCKRATE"); /* but continue */ } else { IDPRINTF(3, ("%s: setting input clock to %d\n", isp->isp_name, isp->isp_clock)); } } } mbs.param[0] = MBOX_ABOUT_FIRMWARE; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { isp_dumpregs(isp, "ABOUT FIRMWARE command failed"); return; } PRINTF("%s: Board Revision %s, %s F/W Revision %d.%d.%d\n", isp->isp_name, revname, dodnld? "loaded" : "resident", mbs.param[1], mbs.param[2], mbs.param[3]); if (IS_FC(isp)) { if (ISP_READ(isp, BIU2100_CSR) & BIU2100_PCI64) { PRINTF("%s: in 64-Bit PCI slot\n", isp->isp_name); } } isp->isp_fwrev[0] = mbs.param[1]; isp->isp_fwrev[1] = mbs.param[2]; isp->isp_fwrev[2] = mbs.param[3]; if (isp->isp_romfw_rev[0] || isp->isp_romfw_rev[1] || isp->isp_romfw_rev[2]) { PRINTF("%s: Last F/W revision was %d.%d.%d\n", isp->isp_name, isp->isp_romfw_rev[0], isp->isp_romfw_rev[1], isp->isp_romfw_rev[2]); } isp_fw_state(isp); /* * Set up DMA for the request and result mailboxes. */ if (ISP_MBOXDMASETUP(isp) != 0) { PRINTF("%s: can't setup dma mailboxes\n", isp->isp_name); return; } isp->isp_state = ISP_RESETSTATE; } /* * Initialize Parameters of Hardware to a known state. * * Locks are held before coming here. */ void isp_init(isp) struct ispsoftc *isp; { /* * Must do this first to get defaults established. */ isp_setdfltparm(isp, 0); if (IS_12X0(isp)) { isp_setdfltparm(isp, 1); } if (IS_FC(isp)) { isp_fibre_init(isp); } else { isp_scsi_init(isp); } } static void isp_scsi_init(isp) struct ispsoftc *isp; { sdparam *sdp_chan0, *sdp_chan1; mbreg_t mbs; sdp_chan0 = isp->isp_param; sdp_chan1 = sdp_chan0; if (IS_12X0(isp)) { sdp_chan1++; } /* First do overall per-card settings. */ /* * If we have fast memory timing enabled, turn it on. */ if (isp->isp_fast_mttr) { ISP_WRITE(isp, RISC_MTR, 0x1313); } /* * Set Retry Delay and Count. * You set both channels at the same time. */ mbs.param[0] = MBOX_SET_RETRY_COUNT; mbs.param[1] = sdp_chan0->isp_retry_count; mbs.param[2] = sdp_chan0->isp_retry_delay; mbs.param[6] = sdp_chan1->isp_retry_count; mbs.param[7] = sdp_chan1->isp_retry_delay; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { PRINTF("%s: failed to set retry count and retry delay\n", isp->isp_name); return; } /* * Set ASYNC DATA SETUP time. This is very important. */ mbs.param[0] = MBOX_SET_ASYNC_DATA_SETUP_TIME; mbs.param[1] = sdp_chan0->isp_async_data_setup; mbs.param[2] = sdp_chan1->isp_async_data_setup; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { PRINTF("%s: failed to set asynchronous data setup time\n", isp->isp_name); return; } /* * Set ACTIVE Negation State. */ mbs.param[0] = MBOX_SET_ACT_NEG_STATE; mbs.param[1] = (sdp_chan0->isp_req_ack_active_neg << 4) | (sdp_chan0->isp_data_line_active_neg << 5); mbs.param[2] = (sdp_chan1->isp_req_ack_active_neg << 4) | (sdp_chan1->isp_data_line_active_neg << 5); isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { PRINTF("%s: failed to set active negation state " "(%d,%d),(%d,%d)\n", isp->isp_name, sdp_chan0->isp_req_ack_active_neg, sdp_chan0->isp_data_line_active_neg, sdp_chan1->isp_req_ack_active_neg, sdp_chan1->isp_data_line_active_neg); /* * But don't return. */ } /* * Set the Tag Aging limit */ mbs.param[0] = MBOX_SET_TAG_AGE_LIMIT; mbs.param[1] = sdp_chan0->isp_tag_aging; mbs.param[2] = sdp_chan1->isp_tag_aging; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { PRINTF("%s: failed to set tag age limit (%d,%d)\n", isp->isp_name, sdp_chan0->isp_tag_aging, sdp_chan1->isp_tag_aging); return; } /* * Set selection timeout. */ mbs.param[0] = MBOX_SET_SELECT_TIMEOUT; mbs.param[1] = sdp_chan0->isp_selection_timeout; mbs.param[2] = sdp_chan1->isp_selection_timeout; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { PRINTF("%s: failed to set selection timeout\n", isp->isp_name); return; } /* now do per-channel settings */ isp_scsi_channel_init(isp, 0); if (IS_12X0(isp)) isp_scsi_channel_init(isp, 1); /* * Now enable request/response queues */ mbs.param[0] = MBOX_INIT_RES_QUEUE; mbs.param[1] = RESULT_QUEUE_LEN; mbs.param[2] = DMA_MSW(isp->isp_result_dma); mbs.param[3] = DMA_LSW(isp->isp_result_dma); mbs.param[4] = 0; mbs.param[5] = 0; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { PRINTF("%s: set of response queue failed\n", isp->isp_name); return; } isp->isp_residx = 0; mbs.param[0] = MBOX_INIT_REQ_QUEUE; mbs.param[1] = RQUEST_QUEUE_LEN; mbs.param[2] = DMA_MSW(isp->isp_rquest_dma); mbs.param[3] = DMA_LSW(isp->isp_rquest_dma); mbs.param[4] = 0; mbs.param[5] = 0; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { PRINTF("%s: set of request queue failed\n", isp->isp_name); return; } isp->isp_reqidx = isp->isp_reqodx = 0; /* * Turn on Fast Posting, LVD transitions */ if (IS_1080(isp) || ISP_FW_REVX(isp->isp_fwrev) >= ISP_FW_REV(7, 55, 0)) { mbs.param[0] = MBOX_SET_FW_FEATURES; #ifndef ISP_NO_FASTPOST_SCSI mbs.param[1] |= FW_FEATURE_FAST_POST; #else mbs.param[1] = 0; #endif if (IS_1080(isp)) mbs.param[1] |= FW_FEATURE_LVD_NOTIFY; if (mbs.param[1] != 0) { isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { PRINTF("%s: unable enable FW features\n", isp->isp_name); } } } /* * Let the outer layers decide whether to issue a SCSI bus reset. */ isp->isp_state = ISP_INITSTATE; } static void isp_scsi_channel_init(isp, channel) struct ispsoftc *isp; int channel; { sdparam *sdp; mbreg_t mbs; int tgt; sdp = isp->isp_param; sdp += channel; /* * Set (possibly new) Initiator ID. */ mbs.param[0] = MBOX_SET_INIT_SCSI_ID; mbs.param[1] = (channel << 7) | sdp->isp_initiator_id; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { PRINTF("%s: cannot set initiator id on bus %d to %d\n", isp->isp_name, channel, sdp->isp_initiator_id); return; } /* * Set current per-target parameters to a safe minimum. */ for (tgt = 0; tgt < MAX_TARGETS; tgt++) { int maxlun, lun; u_int16_t sdf; if (sdp->isp_devparam[tgt].dev_enable == 0) { PRINTF("%s: skipping settings for target %d bus %d\n", isp->isp_name, tgt, channel); continue; } /* * If we're in LVD mode, then we pretty much should * only disable tagged queuing. */ if (IS_1080(isp) && sdp->isp_lvdmode) { sdf = DPARM_DEFAULT & ~DPARM_TQING; } else { sdf = DPARM_SAFE_DFLT; /* * It is not quite clear when this changed over so that * we could force narrow and async, so assume >= 7.55. */ if (ISP_FW_REVX(isp->isp_fwrev) >= ISP_FW_REV(7, 55, 0)) { sdf |= DPARM_NARROW | DPARM_ASYNC; } } mbs.param[0] = MBOX_SET_TARGET_PARAMS; mbs.param[1] = (tgt << 8) | (channel << 15); mbs.param[2] = sdf; mbs.param[3] = (sdp->isp_devparam[tgt].sync_offset << 8) | (sdp->isp_devparam[tgt].sync_period); isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { sdf = DPARM_SAFE_DFLT; mbs.param[0] = MBOX_SET_TARGET_PARAMS; mbs.param[1] = (tgt << 8) | (channel << 15); mbs.param[2] = sdf; mbs.param[3] = (sdp->isp_devparam[tgt].sync_offset << 8) | (sdp->isp_devparam[tgt].sync_period); isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { PRINTF("%s: failed even to set defaults for " "target %d\n", isp->isp_name, tgt); continue; } } #if 0 /* * We don't update dev_flags with what we've set * because that's not the ultimate goal setting. * If we succeed with the command, we *do* update * cur_dflags by getting target parameters. */ mbs.param[0] = MBOX_GET_TARGET_PARAMS; mbs.param[1] = (tgt << 8) | (channel << 15); isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { /* * Urrr.... We'll set cur_dflags to DPARM_SAFE_DFLT so * we don't try and do tags if tags aren't enabled. */ sdp->isp_devparam[tgt].cur_dflags = DPARM_SAFE_DFLT; } else { sdp->isp_devparam[tgt].cur_dflags = mbs.param[2]; sdp->isp_devparam[tgt].cur_offset = mbs.param[3] >> 8; sdp->isp_devparam[tgt].cur_period = mbs.param[3] & 0xff; } IDPRINTF(3, ("%s: set flags 0x%x got 0x%x back for target %d\n", isp->isp_name, sdf, mbs.param[2], tgt)); #else /* * We don't update any information because we need to run * at least one command per target to cause a new state * to be latched. */ #endif /* * Ensure that we don't believe tagged queuing is enabled yet. * It turns out that sometimes the ISP just ignores our * attempts to set parameters for devices that it hasn't * seen yet. */ sdp->isp_devparam[tgt].cur_dflags &= ~DPARM_TQING; if (ISP_FW_REVX(isp->isp_fwrev) >= ISP_FW_REV(7, 55, 0)) maxlun = 32; else maxlun = 8; for (lun = 0; lun < maxlun; lun++) { mbs.param[0] = MBOX_SET_DEV_QUEUE_PARAMS; mbs.param[1] = (channel << 15) | (tgt << 8) | lun; mbs.param[2] = sdp->isp_max_queue_depth; mbs.param[3] = sdp->isp_devparam[tgt].exc_throttle; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { PRINTF("%s: failed to set device queue " "parameters for target %d, lun %d\n", isp->isp_name, tgt, lun); break; } } } } /* * Fibre Channel specific initialization. * * Locks are held before coming here. */ static void isp_fibre_init(isp) struct ispsoftc *isp; { fcparam *fcp; isp_icb_t *icbp; mbreg_t mbs; int loopid; fcp = isp->isp_param; /* * For systems that don't have BIOS methods for which * we can easily change the NVRAM based loopid, we'll * override that here. Note that when we initialize * the firmware we may get back a different loopid than * we asked for anyway. XXX This is probably not the * best way to figure this out XXX */ #ifndef __i386__ loopid = DEFAULT_LOOPID(isp); #else loopid = fcp->isp_loopid; #endif icbp = (isp_icb_t *) fcp->isp_scratch; MEMZERO(icbp, sizeof (*icbp)); icbp->icb_version = ICB_VERSION1; #ifdef ISP_TARGET_MODE fcp->isp_fwoptions = ICBOPT_TGT_ENABLE|ICBOPT_INI_TGTTYPE; #else fcp->isp_fwoptions = 0; #endif fcp->isp_fwoptions |= ICBOPT_FAIRNESS; fcp->isp_fwoptions |= ICBOPT_PDBCHANGE_AE; fcp->isp_fwoptions |= ICBOPT_HARD_ADDRESS; #ifdef ISP2100_FABRIC #if 0 /* * Do not use FULL LOGIN- it resets the loop too much. */ fcp->isp_fwoptions |= ICBOPT_FULL_LOGIN; #endif #endif #if 0 /* * Don't use this either */ fcp->isp_fwoptions |= ICBOPT_INI_ADISC; #endif #ifndef ISP_NO_FASTPOST_FC fcp->isp_fwoptions |= ICBOPT_FAST_POST; #endif if (isp->isp_confopts & ISP_CFG_FULL_DUPLEX) fcp->isp_fwoptions |= ICBOPT_FULL_DUPLEX; /* * We don't set ICBOPT_PORTNAME because we want our * Node Name && Port Names to be distinct. */ icbp->icb_fwoptions = fcp->isp_fwoptions; icbp->icb_maxfrmlen = fcp->isp_maxfrmlen; if (icbp->icb_maxfrmlen < ICB_MIN_FRMLEN || icbp->icb_maxfrmlen > ICB_MAX_FRMLEN) { PRINTF("%s: bad frame length (%d) from NVRAM- using %d\n", isp->isp_name, fcp->isp_maxfrmlen, ICB_DFLT_FRMLEN); icbp->icb_maxfrmlen = ICB_DFLT_FRMLEN; } icbp->icb_maxalloc = fcp->isp_maxalloc; if (icbp->icb_maxalloc < 1) { PRINTF("%s: bad maximum allocation (%d)- using 16\n", isp->isp_name, fcp->isp_maxalloc); icbp->icb_maxalloc = 16; } icbp->icb_execthrottle = fcp->isp_execthrottle; if (icbp->icb_execthrottle < 1) { PRINTF("%s: bad execution throttle of %d- using 16\n", isp->isp_name, fcp->isp_execthrottle); icbp->icb_execthrottle = ICB_DFLT_THROTTLE; } icbp->icb_retry_delay = fcp->isp_retry_delay; icbp->icb_retry_count = fcp->isp_retry_count; icbp->icb_hardaddr = loopid; if (fcp->isp_nodewwn) { u_int64_t pn; MAKE_NODE_NAME_FROM_WWN(icbp->icb_nodename, fcp->isp_nodewwn); if (fcp->isp_portwwn) { pn = fcp->isp_portwwn; } else { pn = fcp->isp_nodewwn | (((u_int64_t)(isp->isp_unit+1)) << 56); } /* * If the top nibble is 2, we can construct a port name * from the node name by setting a nonzero instance in * bits 56..59. Otherwise, we need to make it identical * to Node name... */ if ((fcp->isp_nodewwn >> 60) == 2) { MAKE_NODE_NAME_FROM_WWN(icbp->icb_portname, pn); } else { MAKE_NODE_NAME_FROM_WWN(icbp->icb_portname, fcp->isp_nodewwn); } } else { fcp->isp_fwoptions &= ~(ICBOPT_USE_PORTNAME|ICBOPT_FULL_LOGIN); } icbp->icb_rqstqlen = RQUEST_QUEUE_LEN; icbp->icb_rsltqlen = RESULT_QUEUE_LEN; icbp->icb_rqstaddr[RQRSP_ADDR0015] = DMA_LSW(isp->isp_rquest_dma); icbp->icb_rqstaddr[RQRSP_ADDR1631] = DMA_MSW(isp->isp_rquest_dma); icbp->icb_respaddr[RQRSP_ADDR0015] = DMA_LSW(isp->isp_result_dma); icbp->icb_respaddr[RQRSP_ADDR1631] = DMA_MSW(isp->isp_result_dma); MemoryBarrier(); for (;;) { mbs.param[0] = MBOX_INIT_FIRMWARE; mbs.param[1] = 0; mbs.param[2] = DMA_MSW(fcp->isp_scdma); mbs.param[3] = DMA_LSW(fcp->isp_scdma); mbs.param[4] = 0; mbs.param[5] = 0; mbs.param[6] = 0; mbs.param[7] = 0; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { PRINTF("%s: INIT FIRMWARE failed (code 0x%x)\n", isp->isp_name, mbs.param[0]); if (mbs.param[0] & 0xc000) { SYS_DELAY(1000); continue; } return; } break; } isp->isp_reqidx = isp->isp_reqodx = 0; isp->isp_residx = 0; isp->isp_sendmarker = 1; /* * Whatever happens, we're now committed to being here. */ isp->isp_state = ISP_INITSTATE; fcp->isp_fwstate = FW_CONFIG_WAIT; isp_mark_getpdb_all(isp); #ifdef ISP_TARGET_MODE if (isp_modify_lun(isp, 0, 1, 1)) { PRINTF("%s: failed to enable target mode\n", isp->isp_name); } #endif } /* * Fibre Channel Support- get the port database for the id. * * Locks are held before coming here. Return 0 if success, * else failure. */ static void isp_mark_getpdb_all(isp) struct ispsoftc *isp; { fcparam *fcp = (fcparam *) isp->isp_param; int i; for (i = 0; i < MAX_FC_TARG; i++) { fcp->portdb[i].valid = 0; } } static int isp_getpdb(isp, id, pdbp) struct ispsoftc *isp; int id; isp_pdb_t *pdbp; { fcparam *fcp = (fcparam *) isp->isp_param; mbreg_t mbs; mbs.param[0] = MBOX_GET_PORT_DB; mbs.param[1] = id << 8; mbs.param[2] = DMA_MSW(fcp->isp_scdma); mbs.param[3] = DMA_LSW(fcp->isp_scdma); /* * Unneeded. For the 2100, except for initializing f/w, registers * 4/5 have to not be written to. * mbs.param[4] = 0; * mbs.param[5] = 0; * */ mbs.param[6] = 0; mbs.param[7] = 0; isp_mboxcmd(isp, &mbs); switch (mbs.param[0]) { case MBOX_COMMAND_COMPLETE: MemoryBarrier(); MEMCPY(pdbp, fcp->isp_scratch, sizeof (isp_pdb_t)); break; case MBOX_HOST_INTERFACE_ERROR: PRINTF("%s: DMA error getting port database\n", isp->isp_name); return (-1); case MBOX_COMMAND_PARAM_ERROR: /* Not Logged In */ IDPRINTF(3, ("%s: Param Error on Get Port Database for id %d\n", isp->isp_name, id)); return (-1); default: PRINTF("%s: error 0x%x getting port database for ID %d\n", isp->isp_name, mbs.param[0], id); return (-1); } return (0); } static u_int64_t isp_get_portname(isp, loopid, nodename) struct ispsoftc *isp; int loopid; int nodename; { u_int64_t wwn = 0; mbreg_t mbs; mbs.param[0] = MBOX_GET_PORT_NAME; mbs.param[1] = loopid << 8; if (nodename) mbs.param[1] |= 1; isp_mboxcmd(isp, &mbs); if (mbs.param[0] == MBOX_COMMAND_COMPLETE) { wwn = (((u_int64_t)(mbs.param[2] & 0xff)) << 56) | (((u_int64_t)(mbs.param[2] >> 8)) << 48) | (((u_int64_t)(mbs.param[3] & 0xff)) << 40) | (((u_int64_t)(mbs.param[3] >> 8)) << 32) | (((u_int64_t)(mbs.param[6] & 0xff)) << 24) | (((u_int64_t)(mbs.param[6] >> 8)) << 16) | (((u_int64_t)(mbs.param[7] & 0xff)) << 8) | (((u_int64_t)(mbs.param[7] >> 8))); } return (wwn); } /* * Make sure we have good FC link and know our Loop ID. */ static int isp_fclink_test(isp, waitdelay) struct ispsoftc *isp; int waitdelay; { mbreg_t mbs; int count; u_int8_t lwfs; fcparam *fcp; #if defined(ISP2100_FABRIC) isp_pdb_t pdb; #endif fcp = isp->isp_param; /* * Wait up to N microseconds for F/W to go to a ready state. */ lwfs = FW_CONFIG_WAIT; for (count = 0; count < waitdelay; count += 100) { isp_fw_state(isp); if (lwfs != fcp->isp_fwstate) { PRINTF("%s: Firmware State %s -> %s\n", isp->isp_name, isp2100_fw_statename((int)lwfs), isp2100_fw_statename((int)fcp->isp_fwstate)); lwfs = fcp->isp_fwstate; } if (fcp->isp_fwstate == FW_READY) { break; } SYS_DELAY(100); /* wait 100 microseconds */ } /* * If we haven't gone to 'ready' state, return. */ if (fcp->isp_fwstate != FW_READY) { return (-1); } /* * Get our Loop ID (if possible). We really need to have it. */ mbs.param[0] = MBOX_GET_LOOP_ID; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { PRINTF("%s: GET LOOP ID failed\n", isp->isp_name); return (-1); } fcp->isp_loopid = mbs.param[1]; /* * If we're not on a fabric, the low 8 bits will be our AL_PA. * If we're on a fabric, the low 8 bits will still be our AL_PA. */ fcp->isp_alpa = mbs.param[2]; #if defined(ISP2100_FABRIC) if (isp_getpdb(isp, FL_PORT_ID, &pdb) == 0) { fcp->isp_portid = mbs.param[2] | (((int)mbs.param[3]) << 16); fcp->isp_onfabric = 1; PRINTF("%s: Loop ID %d, AL_PA 0x%x, Port ID 0x%x\n", isp->isp_name, fcp->isp_loopid, fcp->isp_alpa, fcp->isp_portid); /* * Make sure we're logged out of all fabric devices. */ for (count = FC_SNS_ID+1; count < MAX_FC_TARG; count++) { struct lportdb *lp = &fcp->portdb[count]; if (lp->valid == 0 || lp->fabdev == 0) continue; PRINTF("%s: logging out target %d at Loop ID %d " "(port id 0x%x)\n", isp->isp_name, count, lp->loopid, lp->portid); mbs.param[0] = MBOX_FABRIC_LOGOUT; mbs.param[1] = lp->loopid << 8; mbs.param[2] = 0; mbs.param[3] = 0; isp_mboxcmd(isp, &mbs); } } else #endif PRINTF("%s: Loop ID %d, ALPA 0x%x\n", isp->isp_name, fcp->isp_loopid, fcp->isp_alpa); fcp->loop_seen_once = 1; return (0); } /* * Compare two local port db entities and return 1 if they're the same, else 0. */ static int isp_same_lportdb(a, b) struct lportdb *a, *b; { /* * We decide two lports are the same if they have non-zero and * identical port WWNs and identical loop IDs. */ if (a->port_wwn == 0 || a->port_wwn != b->port_wwn || a->loopid != b->loopid) { return (0); } else { return (1); } } /* * Synchronize our soft copy of the port database with what the f/w thinks * (with a view toward possibly for a specific target....) */ static int isp_pdb_sync(isp, target) struct ispsoftc *isp; int target; { struct lportdb *lp, tport[FL_PORT_ID]; fcparam *fcp = isp->isp_param; isp_pdb_t pdb; int loopid, lim; target = target; #ifdef ISP2100_FABRIC /* * XXX: If we do this *after* building up our local port database, * XXX: the commands simply don't work. */ /* * (Re)discover all fabric devices */ if (fcp->isp_onfabric) (void) isp_scan_fabric(isp); #endif /* * Run through the local loop ports and get port database info * for each loop ID. * * There's a somewhat unexplained situation where the f/w passes back * the wrong database entity- if that happens, just restart (up to * FL_PORT_ID times). */ for (lim = loopid = 0; loopid < FL_PORT_ID; loopid++) { /* * make sure the temp port database is clean... */ lp = &tport[loopid]; MEMZERO((void *) lp, sizeof (*lp)); lp->node_wwn = isp_get_portname(isp, loopid, 1); if (lp->node_wwn == 0) continue; lp->port_wwn = isp_get_portname(isp, loopid, 0); if (lp->port_wwn == 0) { lp->node_wwn = 0; continue; } /* * Get an entry.... */ if (isp_getpdb(isp, loopid, &pdb) != 0) { continue; } /* * If the returned database element doesn't match what we * asked for, restart the process entirely (up to a point...). */ if (pdb.pdb_loopid != loopid) { IDPRINTF(0, ("%s: wankage (%d != %d)\n", isp->isp_name, pdb.pdb_loopid, loopid)); loopid = 0; if (lim++ < FL_PORT_ID) { continue; } PRINTF("%s: giving up on synchronizing the port " "database\n", isp->isp_name); return (-1); } /* * Save the pertinent info locally. */ lp->node_wwn = (((u_int64_t)pdb.pdb_nodename[0]) << 56) | (((u_int64_t)pdb.pdb_nodename[1]) << 48) | (((u_int64_t)pdb.pdb_nodename[2]) << 40) | (((u_int64_t)pdb.pdb_nodename[3]) << 32) | (((u_int64_t)pdb.pdb_nodename[4]) << 24) | (((u_int64_t)pdb.pdb_nodename[5]) << 16) | (((u_int64_t)pdb.pdb_nodename[6]) << 8) | (((u_int64_t)pdb.pdb_nodename[7])); lp->port_wwn = (((u_int64_t)pdb.pdb_portname[0]) << 56) | (((u_int64_t)pdb.pdb_portname[1]) << 48) | (((u_int64_t)pdb.pdb_portname[2]) << 40) | (((u_int64_t)pdb.pdb_portname[3]) << 32) | (((u_int64_t)pdb.pdb_portname[4]) << 24) | (((u_int64_t)pdb.pdb_portname[5]) << 16) | (((u_int64_t)pdb.pdb_portname[6]) << 8) | (((u_int64_t)pdb.pdb_portname[7])); lp->roles = (pdb.pdb_prli_svc3 & SVC3_ROLE_MASK) >> SVC3_ROLE_SHIFT; lp->portid = BITS2WORD(pdb.pdb_portid_bits); lp->loopid = pdb.pdb_loopid; /* * Do a quick check to see whether this matches the saved port * database for the same loopid. We do this here to save * searching later (if possible). Note that this fails over * time as things shuffle on the loop- we get the current * loop state (where loop id as an index matches loop id in * use) and then compare it to our saved database which * never shifts. */ if (isp_same_lportdb(lp, &fcp->portdb[target])) { lp->valid = 1; } } /* * If we get this far, we've settled our differences with the f/w * and we can say that the loop state is ready. */ fcp->isp_loopstate = LOOP_READY; /* * Now merge our local copy of the port database into our saved copy. * Notify the outer layers of new devices arriving. */ for (loopid = 0; loopid < FL_PORT_ID; loopid++) { int i; /* * While we're at it, clear the valid bit for the saved entry * that coincidentally is at this same index. */ fcp->portdb[loopid].valid = 0; /* * If we don't have a non-zero Port WWN, we're not here. */ if (tport[loopid].port_wwn == 0) { continue; } /* * If we've already marked our tmp copy as valid, * this means that we've decided that it's the * same as our saved data base. This does not include * the 'valid' marking though so we have to turn it * back on. */ if (tport[loopid].valid) { IDPRINTF(0, ("%s: loopid %d already valid\n", isp->isp_name, loopid)); fcp->portdb[loopid].valid = 1; continue; } /* * For the purposes of deciding whether this is the * 'same' device or not, we only search for an identical * Port WWN. Node WWNs may or may not be the same as * the Port WWN, and there may be multiple different * Port WWNs with the same Node WWN. It would be chaos * to have multiple identical Port WWNs, so we don't * allow that. */ for (i = 0; i < FL_PORT_ID; i++) { int j; if (fcp->portdb[i].port_wwn == 0) continue; if (fcp->portdb[i].port_wwn != tport[loopid].port_wwn) continue; /* * We found this WWN elsewhere- it's changed * loopids then. We don't change it's actual * position in our cached port database- we * just change the actual loop ID we'd use. */ if (fcp->portdb[i].loopid != loopid) { PRINTF("%s: Target ID %d (0x%x) was loopid 0x%x" " and is now loopid 0x%x\n", isp->isp_name, i, i, fcp->portdb[i].loopid, loopid); } fcp->portdb[i].loopid = loopid; fcp->portdb[i].valid = 1; /* * Now make sure this Port WWN doesn't exist elsewhere * in the port database. */ for (j = i+1; j < FL_PORT_ID; j++) { if (fcp->portdb[i].port_wwn != fcp->portdb[j].port_wwn) { continue; } PRINTF("%s: Target ID %d Duplicates Target ID " "%d- killing off both\n", isp->isp_name, j, i); /* * Invalidate the 'old' *and* 'new' ones. * This is really harsh and not quite right, * but if this happens, we really don't know * who is what at this point. */ fcp->portdb[i].valid = 0; fcp->portdb[j].valid = 0; } break; } /* * If we didn't traverse the entire port database, * then we found (and remapped) an existing entry. * No need to notify anyone- go for the next one. */ if (i < FL_PORT_ID) { continue; } /* * We've not found this Port WWN anywhere. It's a new entry. * See if we can leave it where it is (with target == loopid). */ if (fcp->portdb[loopid].port_wwn != 0) { for (lim = 0; lim < FL_PORT_ID; lim++) { if (fcp->portdb[lim].port_wwn == 0) break; } /* "Cannot Happen" */ if (lim == FL_PORT_ID) { PRINTF("%s: remap overflow?\n", isp->isp_name); continue; } i = lim; } else { i = loopid; } /* * NB: The actual loopid we use here is loopid- we may * in fact be at a completely different index (target). */ fcp->portdb[i].loopid = loopid; fcp->portdb[i].port_wwn = tport[loopid].port_wwn; fcp->portdb[i].node_wwn = tport[loopid].node_wwn; fcp->portdb[i].roles = tport[loopid].roles; fcp->portdb[i].portid = tport[loopid].portid; fcp->portdb[i].valid = 1; /* * Tell the outside world we've arrived. */ (void) isp_async(isp, ISPASYNC_PDB_CHANGED, &i); } /* * Now find all previously used targets that are now invalid and * notify the outer layers that they're gone. */ for (lp = fcp->portdb; lp < &fcp->portdb[FL_PORT_ID]; lp++) { if (lp->valid || lp->port_wwn == 0) continue; /* * Tell the outside world we've gone away; */ loopid = lp - fcp->portdb; (void) isp_async(isp, ISPASYNC_PDB_CHANGED, &loopid); MEMZERO((void *) lp, sizeof (*lp)); } #ifdef ISP2100_FABRIC /* * Now log in any fabric devices */ for (lp = &fcp->portdb[FC_SNS_ID+1]; lp < &fcp->portdb[MAX_FC_TARG]; lp++) { mbreg_t mbs; /* * Nothing here? */ if (lp->port_wwn == 0) continue; /* * Don't try to log into yourself. */ if (lp->portid == fcp->isp_portid) continue; /* * Force a logout. */ lp->loopid = lp - fcp->portdb; mbs.param[0] = MBOX_FABRIC_LOGOUT; mbs.param[1] = lp->loopid << 8; mbs.param[2] = 0; mbs.param[3] = 0; isp_mboxcmd(isp, &mbs); /* * And log in.... */ mbs.param[0] = MBOX_FABRIC_LOGIN; mbs.param[1] = lp->loopid << 8; mbs.param[2] = lp->portid >> 16; mbs.param[3] = lp->portid & 0xffff; isp_mboxcmd(isp, &mbs); if (mbs.param[0] == MBOX_COMMAND_COMPLETE) { continue; lp->valid = 1; lp->fabdev = 1; lp->roles = (SVC3_TGT_ROLE >> SVC3_ROLE_SHIFT); } } #endif return (0); } #ifdef ISP2100_FABRIC static int isp_scan_fabric(isp) struct ispsoftc *isp; { fcparam *fcp = isp->isp_param; u_int32_t portid, first_nz_portid; sns_screq_t *reqp; sns_scrsp_t *resp; mbreg_t mbs; int hicap; reqp = (sns_screq_t *) fcp->isp_scratch; resp = (sns_scrsp_t *) (&((char *)fcp->isp_scratch)[0x100]); first_nz_portid = portid = fcp->isp_portid; for (hicap = 0; hicap < 1024; hicap++) { MEMZERO((void *) reqp, SNS_GAN_REQ_SIZE); reqp->snscb_rblen = SNS_GAN_RESP_SIZE >> 1; reqp->snscb_addr[RQRSP_ADDR0015] = DMA_LSW(fcp->isp_scdma + 0x100); reqp->snscb_addr[RQRSP_ADDR1631] = DMA_MSW(fcp->isp_scdma + 0x100); reqp->snscb_sblen = 6; reqp->snscb_data[0] = SNS_GAN; reqp->snscb_data[4] = portid & 0xffff; reqp->snscb_data[5] = (portid >> 16) & 0xff; mbs.param[0] = MBOX_SEND_SNS; mbs.param[1] = SNS_GAN_REQ_SIZE >> 1; mbs.param[2] = DMA_MSW(fcp->isp_scdma); mbs.param[3] = DMA_LSW(fcp->isp_scdma); mbs.param[6] = 0; mbs.param[7] = 0; MemoryBarrier(); isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { return (-1); } portid = (((u_int32_t) resp->snscb_port_id[0]) << 16) | (((u_int32_t) resp->snscb_port_id[1]) << 8) | (((u_int32_t) resp->snscb_port_id[2])); if (isp_async(isp, ISPASYNC_FABRIC_DEV, resp)) { return (-1); } if (first_nz_portid == 0 && portid) { first_nz_portid = portid; } if (first_nz_portid == portid) { return (0); } } /* * We either have a broken name server or a huge fabric if we get here. */ return (0); } #endif /* * Start a command. Locking is assumed done in the caller. */ int32_t ispscsicmd(xs) ISP_SCSI_XFER_T *xs; { struct ispsoftc *isp; u_int8_t iptr, optr; union { ispreq_t *_reqp; ispreqt2_t *_t2reqp; } _u; #define reqp _u._reqp #define t2reqp _u._t2reqp #define UZSIZE max(sizeof (ispreq_t), sizeof (ispreqt2_t)) int target, i, rqidx; XS_INITERR(xs); isp = XS_ISP(xs); if (isp->isp_state != ISP_RUNSTATE) { PRINTF("%s: adapter not ready\n", isp->isp_name); XS_SETERR(xs, HBA_BOTCH); return (CMD_COMPLETE); } /* * We *could* do the different sequence type that has close * to the whole Queue Entry for the command... */ if (XS_CDBLEN(xs) > (IS_FC(isp) ? 16 : 12) || XS_CDBLEN(xs) == 0) { PRINTF("%s: unsupported cdb length (%d, CDB[0]=0x%x)\n", isp->isp_name, XS_CDBLEN(xs), XS_CDBP(xs)[0]); XS_SETERR(xs, HBA_BOTCH); return (CMD_COMPLETE); } /* * Check to see whether we have good firmware state still or * need to refresh our port database for this target. */ target = XS_TGT(xs); if (IS_FC(isp)) { fcparam *fcp = isp->isp_param; struct lportdb *lp; #if defined(ISP2100_FABRIC) if (target >= FL_PORT_ID) { /* * If we're not on a Fabric, we can't have a target * above FL_PORT_ID-1. If we're on a fabric, we * can't have a target less than FC_SNS_ID+1. */ if (fcp->isp_onfabric == 0 || target <= FC_SNS_ID) { XS_SETERR(xs, HBA_SELTIMEOUT); return (CMD_COMPLETE); } } #endif /* * Check for f/w being in ready state. If the f/w * isn't in ready state, then we don't know our * loop ID and the f/w hasn't completed logging * into all targets on the loop. If this is the * case, then bounce the command. We pretend this is * a SELECTION TIMEOUT error if we've never gone to * FW_READY state at all- in this case we may not * be hooked to a loop at all and we shouldn't hang * the machine for this. Otherwise, defer this command * until later. */ if (fcp->isp_fwstate != FW_READY) { if (isp_fclink_test(isp, FC_FW_READY_DELAY)) { XS_SETERR(xs, HBA_SELTIMEOUT); if (fcp->loop_seen_once) { return (CMD_EAGAIN); } else { return (CMD_COMPLETE); } } } /* * If our loop state is such that we haven't yet received * a "Port Database Changed" notification (after a LIP or * a Loop Reset or firmware initialization), then defer * sending commands for a little while. */ if (fcp->isp_loopstate < LOOP_PDB_RCVD) { XS_SETERR(xs, HBA_SELTIMEOUT); return (CMD_EAGAIN); } /* * If our loop state is now such that we've just now * received a Port Database Change notification, then * we have to go off and (re)synchronize our */ if (fcp->isp_loopstate == LOOP_PDB_RCVD) { if (isp_pdb_sync(isp, target)) { XS_SETERR(xs, HBA_SELTIMEOUT); return (CMD_COMPLETE); } } /* * Now check whether we should even think about pursuing this. */ lp = &fcp->portdb[target]; if ( target < 0x80) { if (lp->valid == 0) { XS_SETERR(xs, HBA_SELTIMEOUT); return (CMD_COMPLETE); } if ((lp->roles & (SVC3_TGT_ROLE >> SVC3_ROLE_SHIFT)) == 0) { XS_SETERR(xs, HBA_SELTIMEOUT); return (CMD_COMPLETE); } } /* * Now turn target into what the actual loop ID is. */ target = lp->loopid; } /* * Next check to see if any HBA or Device * parameters need to be updated. */ if (isp->isp_update != 0) { isp_update(isp); } optr = isp->isp_reqodx = ISP_READ(isp, OUTMAILBOX4); iptr = isp->isp_reqidx; reqp = (ispreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, iptr); iptr = ISP_NXT_QENTRY(iptr, RQUEST_QUEUE_LEN); if (iptr == optr) { IDPRINTF(2, ("%s: Request Queue Overflow\n", isp->isp_name)); XS_SETERR(xs, HBA_BOTCH); return (CMD_EAGAIN); } /* * Now see if we need to synchronize the ISP with respect to anything. * We do dual duty here (cough) for synchronizing for busses other * than which we got here to send a command to. */ if (isp->isp_sendmarker) { u_int8_t niptr, n = (IS_12X0(isp)? 2: 1); /* * Check ports to send markers for... */ for (i = 0; i < n; i++) { if ((isp->isp_sendmarker & (1 << i)) == 0) { continue; } MEMZERO((void *) reqp, sizeof (*reqp)); reqp->req_header.rqs_entry_count = 1; reqp->req_header.rqs_entry_type = RQSTYPE_MARKER; reqp->req_modifier = SYNC_ALL; ISP_SBUSIFY_ISPHDR(isp, &reqp->req_header); reqp->req_target = i << 7; ISP_SBUSIFY_ISPREQ(isp, reqp); /* * Unconditionally update the input pointer anyway. */ ISP_WRITE(isp, INMAILBOX4, iptr); isp->isp_reqidx = iptr; niptr = ISP_NXT_QENTRY(iptr, RQUEST_QUEUE_LEN); if (niptr == optr) { IDPRINTF(2, ("%s: Request Queue Overflow+\n", isp->isp_name)); XS_SETERR(xs, HBA_BOTCH); return (CMD_EAGAIN); } reqp = (ispreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, iptr); iptr = niptr; } } MEMZERO((void *) reqp, UZSIZE); reqp->req_header.rqs_entry_count = 1; if (isp->isp_type & ISP_HA_FC) { reqp->req_header.rqs_entry_type = RQSTYPE_T2RQS; } else { reqp->req_header.rqs_entry_type = RQSTYPE_REQUEST; } reqp->req_header.rqs_flags = 0; reqp->req_header.rqs_seqno = isp->isp_seqno++; ISP_SBUSIFY_ISPHDR(isp, &reqp->req_header); for (rqidx = 0; rqidx < RQUEST_QUEUE_LEN; rqidx++) { if (isp->isp_xflist[rqidx] == NULL) break; } if (rqidx == RQUEST_QUEUE_LEN) { IDPRINTF(2, ("%s: out of xflist pointers\n", isp->isp_name)); XS_SETERR(xs, HBA_BOTCH); return (CMD_EAGAIN); } else { /* * Never have a handle that is zero, so * set req_handle off by one. */ isp->isp_xflist[rqidx] = xs; reqp->req_handle = rqidx+1; } if (isp->isp_type & ISP_HA_FC) { /* * See comment in isp_intr */ XS_RESID(xs) = 0; /* * Fibre Channel always requires some kind of tag. * If we're marked as "Can't Tag", just do simple * instead of ordered tags. It's pretty clear to me * that we shouldn't do head of queue tagging in * this case. */ if (XS_CANTAG(xs)) { t2reqp->req_flags = XS_KINDOF_TAG(xs); } else { t2reqp->req_flags = REQFLAG_STAG; } } else { sdparam *sdp = (sdparam *)isp->isp_param; if ((sdp->isp_devparam[target].cur_dflags & DPARM_TQING) && XS_CANTAG(xs)) { reqp->req_flags = XS_KINDOF_TAG(xs); } else { reqp->req_flags = 0; } } reqp->req_target = target | (XS_CHANNEL(xs) << 7); if (isp->isp_type & ISP_HA_SCSI) { reqp->req_lun_trn = XS_LUN(xs); reqp->req_cdblen = XS_CDBLEN(xs); } else { #ifdef ISP2100_SCCLUN t2reqp->req_scclun = XS_LUN(xs); #else t2reqp->req_lun_trn = XS_LUN(xs); #endif } MEMCPY(reqp->req_cdb, XS_CDBP(xs), XS_CDBLEN(xs)); IDPRINTF(5, ("%s(%d.%d.%d): START%d cmd 0x%x datalen %d\n", isp->isp_name, XS_CHANNEL(xs), target, XS_LUN(xs), reqp->req_header.rqs_seqno, reqp->req_cdb[0], XS_XFRLEN(xs))); reqp->req_time = XS_TIME(xs) / 1000; if (reqp->req_time == 0 && XS_TIME(xs)) reqp->req_time = 1; /* * Always give a bit more leeway to commands after a bus reset. * XXX: DOES NOT DISTINGUISH WHICH PORT MAY HAVE BEEN SYNCED */ if (isp->isp_sendmarker && reqp->req_time < 5) reqp->req_time = 5; i = ISP_DMASETUP(isp, xs, reqp, &iptr, optr); if (i != CMD_QUEUED) { /* * Take memory of it away... */ isp->isp_xflist[rqidx] = NULL; /* * dmasetup sets actual error in packet, and * return what we were given to return. */ return (i); } XS_SETERR(xs, HBA_NOERROR); ISP_SBUSIFY_ISPREQ(isp, reqp); MemoryBarrier(); ISP_WRITE(isp, INMAILBOX4, iptr); isp->isp_reqidx = iptr; isp->isp_nactive++; if (isp->isp_sendmarker) isp->isp_sendmarker = 0; return (CMD_QUEUED); #undef reqp #undef t2reqp } /* * isp control * Locks (ints blocked) assumed held. */ int isp_control(isp, ctl, arg) struct ispsoftc *isp; ispctl_t ctl; void *arg; { ISP_SCSI_XFER_T *xs; mbreg_t mbs; int i, bus, tgt; switch (ctl) { default: PRINTF("%s: isp_control unknown control op %x\n", isp->isp_name, ctl); break; case ISPCTL_RESET_BUS: /* * Issue a bus reset. */ mbs.param[0] = MBOX_BUS_RESET; if (isp->isp_type & ISP_HA_SCSI) { mbs.param[1] = ((sdparam *) isp->isp_param)->isp_bus_reset_delay; if (mbs.param[1] < 2) mbs.param[1] = 2; } else { /* * Unparameterized. */ mbs.param[1] = 5; } bus = *((int *) arg); mbs.param[2] = bus; isp->isp_sendmarker = 1 << bus; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { isp_dumpregs(isp, "isp_control SCSI bus reset failed"); break; } PRINTF("%s: driver initiated bus reset of bus %d\n", isp->isp_name, bus); return (0); case ISPCTL_RESET_DEV: tgt = (*((int *) arg)) & 0xffff; bus = (*((int *) arg)) >> 16; mbs.param[0] = MBOX_ABORT_TARGET; mbs.param[1] = (tgt << 8) | (bus << 15); mbs.param[2] = 3; /* 'delay', in seconds */ isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { isp_dumpregs(isp, "Target Reset Failed"); break; } PRINTF("%s: Target %d on Bus %d Reset Succeeded\n", isp->isp_name, tgt, bus); isp->isp_sendmarker = 1 << bus; return (0); case ISPCTL_ABORT_CMD: xs = (ISP_SCSI_XFER_T *) arg; for (i = 0; i < RQUEST_QUEUE_LEN; i++) { if (xs == isp->isp_xflist[i]) { break; } } if (i == RQUEST_QUEUE_LEN) { PRINTF("%s: isp_control- cannot find command to abort " "in active list\n", isp->isp_name); break; } mbs.param[0] = MBOX_ABORT; #ifdef ISP2100_SCCLUN if (isp->isp_type & ISP_HA_FC) { mbs.param[1] = XS_TGT(xs) << 8; mbs.param[4] = 0; mbs.param[5] = 0; mbs.param[6] = XS_LUN(xs); } else { mbs.param[1] = XS_TGT(xs) << 8 | XS_LUN(xs); } #else mbs.param[1] = XS_TGT(xs) << 8 | XS_LUN(xs); #endif /* * XXX: WHICH BUS? */ mbs.param[2] = (i+1) >> 16; mbs.param[3] = (i+1) & 0xffff; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { PRINTF("%s: isp_control MBOX_ABORT failure (code %x)\n", isp->isp_name, mbs.param[0]); break; } PRINTF("%s: command for target %d lun %d was aborted\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); return (0); case ISPCTL_UPDATE_PARAMS: isp_update(isp); return (0); case ISPCTL_FCLINK_TEST: return (isp_fclink_test(isp, FC_FW_READY_DELAY)); } return (-1); } /* * Interrupt Service Routine(s). * * External (OS) framework has done the appropriate locking, * and the locking will be held throughout this function. */ int isp_intr(arg) void *arg; { ISP_SCSI_XFER_T *complist[RESULT_QUEUE_LEN], *xs; struct ispsoftc *isp = arg; u_int8_t iptr, optr; u_int16_t isr, sema; int i, nlooked = 0, ndone = 0; /* * Well, if we've disabled interrupts, we may get a case where * isr isn't set, but sema is. */ isr = ISP_READ(isp, BIU_ISR); sema = ISP_READ(isp, BIU_SEMA) & 0x1; IDPRINTF(5, ("%s: isp_intr isr %x sem %x\n", isp->isp_name, isr, sema)); if (IS_FC(isp)) { if (isr == 0 || (isr & BIU2100_ISR_RISC_INT) == 0) { if (isr) { IDPRINTF(4, ("%s: isp_intr isr=%x\n", isp->isp_name, isr)); } return (0); } } else { if (isr == 0 || (isr & BIU_ISR_RISC_INT) == 0) { if (isr) { IDPRINTF(4, ("%s: isp_intr isr=%x\n", isp->isp_name, isr)); } return (0); } } if (isp->isp_state != ISP_RUNSTATE) { IDPRINTF(3, ("%s: interrupt (isr=%x,sema=%x) when not ready\n", isp->isp_name, isr, sema)); ISP_WRITE(isp, INMAILBOX5, ISP_READ(isp, OUTMAILBOX5)); ISP_WRITE(isp, HCCR, HCCR_CMD_CLEAR_RISC_INT); ISP_WRITE(isp, BIU_SEMA, 0); ENABLE_INTS(isp); return (1); } if (sema) { u_int16_t mbox = ISP_READ(isp, OUTMAILBOX0); if (mbox & 0x4000) { IDPRINTF(3, ("%s: Command Mbox 0x%x\n", isp->isp_name, mbox)); } else { u_int32_t fhandle = isp_parse_async(isp, (int) mbox); IDPRINTF(3, ("%s: Async Mbox 0x%x\n", isp->isp_name, mbox)); if (fhandle > 0) { xs = (void *)isp->isp_xflist[fhandle - 1]; isp->isp_xflist[fhandle - 1] = NULL; /* * Since we don't have a result queue entry * item, we must believe that SCSI status is * zero and that all data transferred. */ XS_RESID(xs) = 0; XS_STS(xs) = 0; if (XS_XFRLEN(xs)) { ISP_DMAFREE(isp, xs, fhandle - 1); } if (isp->isp_nactive > 0) isp->isp_nactive--; XS_CMD_DONE(xs); } } ISP_WRITE(isp, BIU_SEMA, 0); ISP_WRITE(isp, HCCR, HCCR_CMD_CLEAR_RISC_INT); ENABLE_INTS(isp); return (1); } /* * You *must* read OUTMAILBOX5 prior to clearing the RISC interrupt. */ optr = isp->isp_residx; iptr = ISP_READ(isp, OUTMAILBOX5); ISP_WRITE(isp, HCCR, HCCR_CMD_CLEAR_RISC_INT); if (optr == iptr) { IDPRINTF(4, ("why intr? isr %x iptr %x optr %x\n", isr, optr, iptr)); } while (optr != iptr) { ispstatusreq_t *sp; u_int8_t oop; int buddaboom = 0; sp = (ispstatusreq_t *) ISP_QUEUE_ENTRY(isp->isp_result, optr); oop = optr; optr = ISP_NXT_QENTRY(optr, RESULT_QUEUE_LEN); nlooked++; MemoryBarrier(); ISP_SBUSIFY_ISPHDR(isp, &sp->req_header); if (sp->req_header.rqs_entry_type != RQSTYPE_RESPONSE) { if (isp_handle_other_response(isp, sp, &optr) == 0) { ISP_WRITE(isp, INMAILBOX5, optr); continue; } /* * It really has to be a bounced request just copied * from the request queue to the response queue. If * not, something bad has happened. */ if (sp->req_header.rqs_entry_type != RQSTYPE_REQUEST) { ISP_WRITE(isp, INMAILBOX5, optr); PRINTF("%s: not RESPONSE in RESPONSE Queue " "(type 0x%x) @ idx %d (next %d)\n", isp->isp_name, sp->req_header.rqs_entry_type, oop, optr); continue; } buddaboom = 1; } if (sp->req_header.rqs_flags & 0xf) { #define _RQS_OFLAGS \ ~(RQSFLAG_CONTINUATION|RQSFLAG_FULL|RQSFLAG_BADHEADER|RQSFLAG_BADPACKET) if (sp->req_header.rqs_flags & RQSFLAG_CONTINUATION) { IDPRINTF(3, ("%s: continuation segment\n", isp->isp_name)); ISP_WRITE(isp, INMAILBOX5, optr); continue; } if (sp->req_header.rqs_flags & RQSFLAG_FULL) { IDPRINTF(2, ("%s: internal queues full\n", isp->isp_name)); /* * We'll synthesize a QUEUE FULL message below. */ } if (sp->req_header.rqs_flags & RQSFLAG_BADHEADER) { PRINTF("%s: bad header\n", isp->isp_name); buddaboom++; } if (sp->req_header.rqs_flags & RQSFLAG_BADPACKET) { PRINTF("%s: bad request packet\n", isp->isp_name); buddaboom++; } if (sp->req_header.rqs_flags & _RQS_OFLAGS) { PRINTF("%s: unknown flags in response (0x%x)\n", isp->isp_name, sp->req_header.rqs_flags); buddaboom++; } #undef _RQS_OFLAGS } if (sp->req_handle > RQUEST_QUEUE_LEN || sp->req_handle < 1) { PRINTF("%s: bad request handle %d\n", isp->isp_name, sp->req_handle); ISP_WRITE(isp, INMAILBOX5, optr); continue; } xs = (void *) isp->isp_xflist[sp->req_handle - 1]; if (xs == NULL) { PRINTF("%s: NULL xs in xflist (handle %x)\n", isp->isp_name, sp->req_handle); isp_dumpxflist(isp); ISP_WRITE(isp, INMAILBOX5, optr); continue; } isp->isp_xflist[sp->req_handle - 1] = NULL; if (sp->req_status_flags & RQSTF_BUS_RESET) { isp->isp_sendmarker |= (1 << XS_CHANNEL(xs)); } if (buddaboom) { XS_SETERR(xs, HBA_BOTCH); } XS_STS(xs) = sp->req_scsi_status & 0xff; if (IS_SCSI(isp)) { if (sp->req_state_flags & RQSF_GOT_SENSE) { MEMCPY(XS_SNSP(xs), sp->req_sense_data, XS_SNSLEN(xs)); XS_SNS_IS_VALID(xs); } /* * A new synchronous rate was negotiated for this * target. Mark state such that we'll go look up * that which has changed later. */ if (sp->req_status_flags & RQSTF_NEGOTIATION) { sdparam *sdp = isp->isp_param; sdp += XS_CHANNEL(xs); sdp->isp_devparam[XS_TGT(xs)].dev_refresh = 1; isp->isp_update |= (1 << XS_CHANNEL(xs)); } } else { if (XS_STS(xs) == SCSI_CHECK) { XS_SNS_IS_VALID(xs); MEMCPY(XS_SNSP(xs), sp->req_sense_data, XS_SNSLEN(xs)); sp->req_state_flags |= RQSF_GOT_SENSE; } } if (XS_NOERR(xs) && XS_STS(xs) == SCSI_BUSY) { XS_SETERR(xs, HBA_TGTBSY); } if (sp->req_header.rqs_entry_type == RQSTYPE_RESPONSE) { if (XS_NOERR(xs)) { if (sp->req_completion_status != RQCS_COMPLETE) { isp_parse_status(isp, sp, xs); } else { XS_SETERR(xs, HBA_NOERROR); } } } else if (sp->req_header.rqs_entry_type == RQSTYPE_REQUEST) { if (sp->req_header.rqs_flags & RQSFLAG_FULL) { /* * Force Queue Full status. */ XS_STS(xs) = SCSI_QFULL; XS_SETERR(xs, HBA_NOERROR); } else if (XS_NOERR(xs)) { XS_SETERR(xs, HBA_BOTCH); } } else { PRINTF("%s: unhandled respose queue type 0x%x\n", isp->isp_name, sp->req_header.rqs_entry_type); if (XS_NOERR(xs)) { XS_SETERR(xs, HBA_BOTCH); } } if (isp->isp_type & ISP_HA_SCSI) { XS_RESID(xs) = sp->req_resid; } else if (sp->req_scsi_status & RQCS_RU) { XS_RESID(xs) = sp->req_resid; IDPRINTF(4, ("%s: cnt %d rsd %d\n", isp->isp_name, XS_XFRLEN(xs), sp->req_resid)); } if (XS_XFRLEN(xs)) { ISP_DMAFREE(isp, xs, sp->req_handle - 1); } /* * XXX: If we have a check condition, but no Sense Data, * XXX: mark it as an error (ARQ failed). We need to * XXX: to do a more distinct job because there may * XXX: cases where ARQ is disabled. */ if (XS_STS(xs) == SCSI_CHECK && !(XS_IS_SNS_VALID(xs))) { if (XS_NOERR(xs)) { PRINTF("%s: ARQ failure for target %d lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); XS_SETERR(xs, HBA_ARQFAIL); } } if ((isp->isp_dblev >= 5) || (isp->isp_dblev > 2 && !XS_NOERR(xs))) { PRINTF("%s(%d.%d): FIN%d dl%d resid%d STS %x", isp->isp_name, XS_TGT(xs), XS_LUN(xs), sp->req_header.rqs_seqno, XS_XFRLEN(xs), XS_RESID(xs), XS_STS(xs)); if (sp->req_state_flags & RQSF_GOT_SENSE) { PRINTF(" Skey: %x", XS_SNSKEY(xs)); if (!(XS_IS_SNS_VALID(xs))) { PRINTF(" BUT NOT SET"); } } PRINTF(" XS_ERR=0x%x\n", (unsigned int) XS_ERR(xs)); } if (isp->isp_nactive > 0) isp->isp_nactive--; complist[ndone++] = xs; /* defer completion call until later */ } /* * If we looked at any commands, then it's valid to find out * what the outpointer is. It also is a trigger to update the * ISP's notion of what we've seen so far. */ if (nlooked) { ISP_WRITE(isp, INMAILBOX5, optr); isp->isp_reqodx = ISP_READ(isp, OUTMAILBOX4); } isp->isp_residx = optr; for (i = 0; i < ndone; i++) { xs = complist[i]; if (xs) { XS_CMD_DONE(xs); } } ENABLE_INTS(isp); return (1); } /* * Support routines. */ static int isp_parse_async(isp, mbox) struct ispsoftc *isp; int mbox; { u_int32_t fast_post_handle = 0; switch (mbox) { case MBOX_COMMAND_COMPLETE: /* sometimes these show up */ break; case ASYNC_BUS_RESET: { int bus; if (IS_1080(isp) || IS_12X0(isp)) { bus = ISP_READ(isp, OUTMAILBOX6); } else { bus = 0; } isp->isp_sendmarker = (1 << bus); isp_async(isp, ISPASYNC_BUS_RESET, &bus); #ifdef ISP_TARGET_MODE isp_notify_ack(isp, NULL); #endif break; } case ASYNC_SYSTEM_ERROR: mbox = ISP_READ(isp, OUTMAILBOX1); PRINTF("%s: Internal FW Error @ RISC Addr 0x%x\n", isp->isp_name, mbox); isp_restart(isp); /* no point continuing after this */ return (-1); case ASYNC_RQS_XFER_ERR: PRINTF("%s: Request Queue Transfer Error\n", isp->isp_name); break; case ASYNC_RSP_XFER_ERR: PRINTF("%s: Response Queue Transfer Error\n", isp->isp_name); break; case ASYNC_QWAKEUP: /* don't need to be chatty */ mbox = ISP_READ(isp, OUTMAILBOX4); break; case ASYNC_TIMEOUT_RESET: PRINTF("%s: timeout initiated SCSI bus reset\n", isp->isp_name); isp->isp_sendmarker = 1; #ifdef ISP_TARGET_MODE isp_notify_ack(isp, NULL); #endif break; case ASYNC_DEVICE_RESET: /* * XXX: WHICH BUS? */ isp->isp_sendmarker = 1; PRINTF("%s: device reset\n", isp->isp_name); #ifdef ISP_TARGET_MODE isp_notify_ack(isp, NULL); #endif break; case ASYNC_EXTMSG_UNDERRUN: PRINTF("%s: extended message underrun\n", isp->isp_name); break; case ASYNC_SCAM_INT: PRINTF("%s: SCAM interrupt\n", isp->isp_name); break; case ASYNC_HUNG_SCSI: PRINTF("%s: stalled SCSI Bus after DATA Overrun\n", isp->isp_name); /* XXX: Need to issue SCSI reset at this point */ break; case ASYNC_KILLED_BUS: PRINTF("%s: SCSI Bus reset after DATA Overrun\n", isp->isp_name); break; case ASYNC_BUS_TRANSIT: /* * XXX: WHICH BUS? */ mbox = ISP_READ(isp, OUTMAILBOX2); switch (mbox & 0x1c00) { case SXP_PINS_LVD_MODE: PRINTF("%s: Transition to LVD mode\n", isp->isp_name); ((sdparam *)isp->isp_param)->isp_diffmode = 0; ((sdparam *)isp->isp_param)->isp_ultramode = 0; ((sdparam *)isp->isp_param)->isp_lvdmode = 1; break; case SXP_PINS_HVD_MODE: PRINTF("%s: Transition to Differential mode\n", isp->isp_name); ((sdparam *)isp->isp_param)->isp_diffmode = 1; ((sdparam *)isp->isp_param)->isp_ultramode = 0; ((sdparam *)isp->isp_param)->isp_lvdmode = 0; break; case SXP_PINS_SE_MODE: PRINTF("%s: Transition to Single Ended mode\n", isp->isp_name); ((sdparam *)isp->isp_param)->isp_diffmode = 0; ((sdparam *)isp->isp_param)->isp_ultramode = 1; ((sdparam *)isp->isp_param)->isp_lvdmode = 0; break; default: PRINTF("%s: Transition to unknown mode 0x%x\n", isp->isp_name, mbox); break; } /* * XXX: Set up to renegotiate again! */ /* Can only be for a 1080... */ isp->isp_sendmarker = (1 << ISP_READ(isp, OUTMAILBOX6)); break; case ASYNC_CMD_CMPLT: fast_post_handle = (ISP_READ(isp, OUTMAILBOX2) << 16) | ISP_READ(isp, OUTMAILBOX1); IDPRINTF(3, ("%s: fast post completion of %u\n", isp->isp_name, fast_post_handle)); break; case ASYNC_CTIO_DONE: /* Should only occur when Fast Posting Set for 2100s */ PRINTF("%s: CTIO done\n", isp->isp_name); break; case ASYNC_LIP_OCCURRED: ((fcparam *) isp->isp_param)->isp_fwstate = FW_CONFIG_WAIT; ((fcparam *) isp->isp_param)->isp_loopstate = LOOP_LIP_RCVD; isp->isp_sendmarker = 1; isp_mark_getpdb_all(isp); PRINTF("%s: LIP occurred\n", isp->isp_name); break; case ASYNC_LOOP_UP: isp->isp_sendmarker = 1; ((fcparam *) isp->isp_param)->isp_fwstate = FW_CONFIG_WAIT; ((fcparam *) isp->isp_param)->isp_loopstate = LOOP_LIP_RCVD; isp_mark_getpdb_all(isp); isp_async(isp, ISPASYNC_LOOP_UP, NULL); break; case ASYNC_LOOP_DOWN: isp->isp_sendmarker = 1; ((fcparam *) isp->isp_param)->isp_fwstate = FW_CONFIG_WAIT; ((fcparam *) isp->isp_param)->isp_loopstate = LOOP_NIL; isp_mark_getpdb_all(isp); isp_async(isp, ISPASYNC_LOOP_DOWN, NULL); break; case ASYNC_LOOP_RESET: isp->isp_sendmarker = 1; ((fcparam *) isp->isp_param)->isp_fwstate = FW_CONFIG_WAIT; ((fcparam *) isp->isp_param)->isp_loopstate = LOOP_NIL; isp_mark_getpdb_all(isp); PRINTF("%s: Loop RESET\n", isp->isp_name); #ifdef ISP_TARGET_MODE isp_notify_ack(isp, NULL); #endif break; case ASYNC_PDB_CHANGED: isp->isp_sendmarker = 1; ((fcparam *) isp->isp_param)->isp_loopstate = LOOP_PDB_RCVD; isp_mark_getpdb_all(isp); IDPRINTF(3, ("%s: Port Database Changed\n", isp->isp_name)); break; case ASYNC_CHANGE_NOTIFY: break; default: PRINTF("%s: unknown async code 0x%x\n", isp->isp_name, mbox); break; } return (fast_post_handle); } static int isp_handle_other_response(isp, sp, optrp) struct ispsoftc *isp; ispstatusreq_t *sp; u_int8_t *optrp; { u_int8_t iptr, optr; int reqsize = 0; void *ireqp = NULL; #ifdef ISP_TARGET_MODE union { at_entry_t *atio; at2_entry_t *at2io; ct_entry_t *ctio; ct2_entry_t *ct2io; lun_entry_t *lunen; in_entry_t *inot; in_fcentry_t *inot_fc; na_entry_t *nack; na_fcentry_t *nack_fc; void *voidp; #define atio un.atio #define at2io un.at2io #define ctio un.ctio #define ct2io un.ct2io #define lunen un.lunen #define inot un.inot #define inot_fc un.inot_fc #define nack un.nack #define nack_fc un.nack_fc } un; un.voidp = sp; #endif switch (sp->req_header.rqs_entry_type) { case RQSTYPE_REQUEST: return (-1); #ifdef ISP_TARGET_MODE case RQSTYPE_NOTIFY_ACK: { static const char *f = "%s: Notify Ack Status 0x%x Sequence Id 0x%x\n" /* * The ISP is acknowleding our ack of an Immediate Notify. */ if (isp->isp_type & ISP_HA_FC) { PRINTF(f, isp->isp_name, nack_fc->na-status, nack_fc->na_seqid); } else { PRINTF(f, isp->isp_name, nack->na_status, nack->na_seqid); } break; } case RQSTYPE_NOTIFY: { u_int16_t seqid, status; /* * Either the ISP received a SCSI message it cannot handle * or some other out of band condition (e.g., Port Logout) * or it is returning an Immediate Notify entry we sent. */ if (isp->isp_type & ISP_HA_FC) { status = inot_fc->status; seqid = inot_fc->in_seqid; } else { status = inot->status; seqid = inot->seqid & 0xff; } PRINTF("%s: Immediate Notify Status 0x%x Sequence Id 0x%x\n", isp->isp_name, status, seqid); switch (status) { case IN_MSG_RECEIVED: case IN_IDE_RECEIVED: ptisp_got_msg(ptp, &inot); break; case IN_RSRC_UNAVAIL: PRINTF("%s: Firmware out of ATIOs\n", isp->isp_name); break; case IN_ABORT_TASK: PRINTF("%s: Abort Task iid %d rx_id 0x%x\n", inot_fc->in_iid, seqid); break; case IN_PORT_LOGOUT: PRINTF("%s: Port Logout for Initiator %d\n", isp->isp_name, inot_fc->in_iid); break; default: PRINTF("%s: bad status (0x%x) in Immediate Notify\n", isp->isp_name, status); break; } isp_notify_ack(isp, un.voidp); reqsize = 0; break; } case RQSTYPE_ENABLE_LUN: case RQSTYPE_MODIFY_LUN: if (lunen->req_status != 1) { PRINTF("%s: ENABLE/MODIFY LUN returned status 0x%x\n", isp->isp_name, lunen->req_status); } break; case RQSTYPE_ATIO2: { fcparam *fcp = isp->isp_param; ispctiot2_t local, *ct2 = NULL; ispatiot2_t *at2 = (ispatiot2_t *) sp; int s, lun; #ifdef ISP2100_SCCLUN lun = at2->req_scclun; #else lun = at2->req_lun; #endif PRINTF("%s: atio2 loopid %d for lun %d rxid 0x%x flags0x%x " "tflags0x%x ecodes0x%x rqstatus0x%x\n", isp->isp_name, at2->req_initiator, lun, at2->req_rxid, at2->req_flags, at2->req_taskflags, at2->req_execodes, at2->req_status); switch (at2->req_status & ~ATIO_SENSEVALID) { case ATIO_PATH_INVALID: PRINTF("%s: ATIO2 Path Invalid\n", isp->isp_name); break; case ATIO_NOCAP: PRINTF("%s: ATIO2 No Cap\n", isp->isp_name); break; case ATIO_BDR_MSG: PRINTF("%s: ATIO2 BDR Received\n", isp->isp_name); break; case ATIO_CDB_RECEIVED: ct2 = &local; break; default: PRINTF("%s: unknown req_status 0x%x\n", isp->isp_name, at2->req_status); break; } if (ct2 == NULL) { /* * Just do an ACCEPT on this fellow. */ at2->req_header.rqs_entry_type = RQSTYPE_ATIO2; at2->req_header.rqs_flags = 0; at2->req_flags = 1; ireqp = at2; reqsize = sizeof (*at2); break; } PRINTF("%s: datalen %d cdb0=0x%x\n", isp->isp_name, at2->req_datalen, at2->req_cdb[0]); MEMZERO((void *) ct2, sizeof (*ct2)); ct2->req_header.rqs_entry_type = RQSTYPE_CTIO2; ct2->req_header.rqs_entry_count = 1; ct2->req_header.rqs_flags = 0; ct2->req_header.rqs_seqno = isp->isp_seqno++; ct2->req_handle = (at2->req_initiator << 16) | lun; #ifndef ISP2100_SCCLUN ct2->req_lun = lun; #endif ct2->req_initiator = at2->req_initiator; ct2->req_rxid = at2->req_rxid; ct2->req_flags = CTIO_SEND_STATUS; switch (at2->req_cdb[0]) { case 0x0: /* TUR */ ct2->req_flags |= CTIO_NODATA | CTIO2_SMODE0; ct2->req_m.mode0.req_scsi_status = CTIO2_STATUS_VALID; break; case 0x3: /* REQUEST SENSE */ case 0x12: /* INQUIRE */ ct2->req_flags |= CTIO_SEND_DATA | CTIO2_SMODE0; ct2->req_m.mode0.req_scsi_status = CTIO2_STATUS_VALID; ct2->req_seg_count = 1; if (at2->req_cdb[0] == 0x12) { s = sizeof (tgtiqd); MEMCPY(fcp->isp_scratch, tgtiqd, s); } else { s = at2->req_datalen; MEMZERO(fcp->isp_scratch, s); } ct2->req_m.mode0.req_dataseg[0].ds_base = fcp->isp_scdma; ct2->req_m.mode0.req_dataseg[0].ds_count = s; ct2->req_m.mode0.req_datalen = s; #if 1 if (at2->req_datalen < s) { ct2->req_m.mode1.req_scsi_status |= CTIO2_RESP_VALID|CTIO2_RSPOVERUN; } else if (at2->req_datalen > s) { ct2->req_m.mode1.req_scsi_status |= CTIO2_RESP_VALID|CTIO2_RSPUNDERUN; } #endif break; default: /* ALL OTHERS */ ct2->req_flags |= CTIO_NODATA | CTIO2_SMODE1; ct2->req_m.mode1.req_scsi_status = 0; #if 1 if (at2->req_datalen) { ct2->req_m.mode1.req_scsi_status |= CTIO2_RSPUNDERUN; ct2->req_resid[0] = at2->req_datalen & 0xff; ct2->req_resid[1] = (at2->req_datalen >> 8) & 0xff; ct2->req_resid[2] = (at2->req_datalen >> 16) & 0xff; ct2->req_resid[3] = (at2->req_datalen >> 24) & 0xff; } #endif if ((at2->req_status & ATIO_SENSEVALID) == 0) { ct2->req_m.mode1.req_sense_len = 18; ct2->req_m.mode1.req_scsi_status |= 2; ct2->req_m.mode1.req_response[0] = 0x70; ct2->req_m.mode1.req_response[2] = 0x2; } else { ct2->req_m.mode1.req_sense_len = 18; ct2->req_m.mode1.req_scsi_status |= at2->req_scsi_status; MEMCPY(ct2->req_m.mode1.req_response, at2->req_sense, sizeof (at2->req_sense)); } break; } reqsize = sizeof (*ct2); ireqp = ct2; break; } case RQSTYPE_CTIO2: { ispatiot2_t *at2; ispctiot2_t *ct2 = (ispctiot2_t *) sp; PRINTF("%s: CTIO2 returned status 0x%x\n", isp->isp_name, ct2->req_status); /* * Return the ATIO to the board. */ at2 = (ispatiot2_t *) sp; at2->req_header.rqs_entry_type = RQSTYPE_ATIO2; at2->req_header.rqs_entry_count = 1; at2->req_header.rqs_flags = 0; at2->req_header.rqs_seqno = isp->isp_seqno++; at2->req_status = 1; reqsize = sizeof (*at2); ireqp = at2; break; } #undef atio #undef at2io #undef ctio #undef ct2io #undef lunen #undef inot #undef inot_fc #undef nack #undef nack_fc #endif default: PRINTF("%s: other response type %x\n", isp->isp_name, sp->req_header.rqs_entry_type); break; } if (reqsize) { void *reqp; optr = isp->isp_reqodx = ISP_READ(isp, OUTMAILBOX4); iptr = isp->isp_reqidx; reqp = (void *) ISP_QUEUE_ENTRY(isp->isp_rquest, iptr); iptr = ISP_NXT_QENTRY(iptr, RQUEST_QUEUE_LEN); if (iptr == optr) { PRINTF("%s: Request Queue Overflow other response\n", isp->isp_name); } else { MEMCPY(reqp, ireqp, reqsize); ISP_WRITE(isp, INMAILBOX4, iptr); isp->isp_reqidx = iptr; } } return (0); } #ifdef ISP_TARGET_MODE static void isp_tmd_newcmd_dflt __P((void *, tmd_cmd_t *)); static void isp_tmd_event_dflt __P((void *, int)); static void isp_tmd_notify_dflt __P((void *, tmd_notify_t *)); static void isp_tgt_data_xfer __P ((tmd_cmd_t *)); static void isp_tgt_endcmd __P ((tmd_cmd_t *, u_int8_t)); static void isp_tgt_done __P ((tmd_cmd_t *)); static void isp_tmd_newcmd_dflt(arg0, cmdp) void *arg0; tmd_cmd_t *cmdp; { } static void isp_tmd_event_dflt(arg0, event) void *arg0; int event; { } static void isp_tmd_notify_dflt(arg0, npt) void *arg0; tmd_notify_t *npt; { } /* * Locks held, and ints disabled (if FC). * * XXX: SETUP ONLY FOR INITIAL ENABLING RIGHT NOW */ static int isp_modify_lun(isp, lun, icnt, ccnt) struct ispsoftc *isp; int lun; /* logical unit to enable, modify, or disable */ int icnt; /* immediate notify count */ int ccnt; /* command count */ { isplun_t *ip = NULL; u_int8_t iptr, optr; optr = isp->isp_reqodx = ISP_READ(isp, OUTMAILBOX4); iptr = isp->isp_reqidx; ip = (isplun_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, iptr); iptr = ISP_NXT_QENTRY(iptr, RQUEST_QUEUE_LEN); if (iptr == optr) { PRINTF("%s: Request Queue Overflow in isp_modify_lun\n", isp->isp_name); return (-1); } MEMZERO((void *) ip, sizeof (*ip)); ip->req_header.rqs_entry_type = RQSTYPE_ENABLE_LUN; ip->req_header.rqs_entry_count = 1; ip->req_header.rqs_seqno = isp->isp_seqno++; ip->req_handle = RQSTYPE_ENABLE_LUN; if (isp->isp_type & ISP_HA_SCSI) { ip->req_lun = lun; } ip->req_cmdcount = ccnt; ip->req_imcount = icnt; ip->req_timeout = 0; /* default 30 seconds */ ISP_WRITE(isp, INMAILBOX4, iptr); isp->isp_reqidx = iptr; return (0); } static void isp_notify_ack(isp, ptrp) struct ispsoftc *isp; void *ptrp; { void *reqp; u_int8_t iptr, optr; union { na_fcentry_t _naf; na_entry_t _nas; } un; MEMZERO((caddr_t)&un, sizeof (un)); un._nas.na_header.rqs_entry_type = RQSTYPE_NOTIFY_ACK; un._nas.na_header.rqs_entry_count = 1; if (isp->isp_type & ISP_HA_FC) { na_fcentry_t *na = &un._nas; if (ptrp) { in_fcentry_t *inp = ptrp; na->na_iid = inp->in_iid; na->na_lun = inp->in_lun; na->na_task_flags = inp->in_task_flags; na->na_seqid = inp->in_seqid; na->na_status = inp->in_status; } else { na->na_flags = NAFC_RST_CLRD; } } else { na_entry_t *na = &un._nas; if (ptrp) { in_entry_t *inp = ptrp; na->na_iid = inp->in_iid; na->na_lun = inp->in_lun; na->na_tgt = inp->in_tgt; na->na_seqid = inp->in_seqid; } else { na->na_flags = NA_RST_CLRD; } } optr = isp->isp_reqodx = ISP_READ(isp, OUTMAILBOX4); iptr = isp->isp_reqidx; reqp = (void *) ISP_QUEUE_ENTRY(isp->isp_rquest, iptr); iptr = ISP_NXT_QENTRY(iptr, RQUEST_QUEUE_LEN); if (iptr == optr) { PRINTF("%s: Request Queue Overflow For isp_notify_ack\n", isp->isp_name); } else { MEMCPY(reqp, ireqp, sizeof (un)); ISP_WRITE(isp, INMAILBOX4, iptr); isp->isp_reqidx = iptr; } } /* * These are dummy stubs for now until the outside framework is plugged in. */ static void isp_handle_atio (isp, aep) struct ispsoftc *isp; at_entry_t *aep; { int status, connected; tmd_cmd_t local, *cdp = &local; /* * Get the ATIO status and see if we're still connected. */ status = aep->at_status; connected = ((aep->at_flags & AT_NODISC) != 0); PRINTF("%s: ATIO status=0x%x, connected=%d\n", isp->isp_name, status, connected); /* * The firmware status (except for the SenseValid bit) indicates * why this ATIO was sent to us. * If SenseValid is set, the firware has recommended Sense Data. * If the Disconnects Disabled bit is set in the flags field, * we're still connected on the SCSI bus - i.e. the initiator * did not set DiscPriv in the identify message. We don't care * about this so it's ignored. */ switch (status & ~TGTSVALID) { case AT_PATH_INVALID: /* * ATIO rejected by the firmware due to disabled lun. */ PRINTF("%s: Firmware rejected ATIO for disabled lun %d\n", isp->isp_name, aep->at_lun); break; case AT_PHASE_ERROR: /* * Bus Pase Sequence error. * * The firmware should have filled in the correct * sense data. */ if (status & TGTSVALID) { MEMCPY(&cdp->cd_sensedata, aep->at_sense, sizeof (cdp->cd_sensedata)); PRINTF("%s: Bus Phase Sequence error key 0x%x\n", isp->isp_name, cdp->cd_sensedata[2] & 0xf); } else { PRINTF("%s: Bus Phase Sequence With No Sense\n", isp->isp_name); } (*isp->isp_tmd_newcmd)(isp, cdp); break; case AT_NOCAP: /* * Requested Capability not available * We sent an ATIO that overflowed the firmware's * command resource count. */ PRINTF("%s: Firmware rejected ATIO, command count overflow\n", isp->isp_name); break; case AT_BDR_MSG: /* * If we send an ATIO to the firmware to increment * its command resource count, and the firmware is * recovering from a Bus Device Reset, it returns * the ATIO with this status. */ PRINTF("%s: ATIO returned with BDR received\n", isp->isp_name); break; case AT_CDB: /* * New CDB */ cdp->cd_hba = isp; cdp->cd_iid = aep->at_iid; cdp->cd_tgt = aep->at_tgt; cdp->cd_lun = aep->at_lun; cdp->cd_tagtype = aep->at_tag_type; cdp->cd_tagval = aep->at_tag_val; MEMCPY(cdp->cd_cdb, aep->at_cdb, 16); PRINTF("%s: CDB 0x%x itl %d/%d/%d\n", isp->isp_name, cdp->cd_cdb[0], cdp->cd_iid, cdp->cd_tgt, cdp->cd_lun); (*isp->isp_tmd_newcmd)(isp, cdp); break; default: PRINTF("%s: Unknown status (0x%x) in ATIO\n", isp->isp_name, status); cdp->cd_hba = isp; cdp->cd_iid = aep->at_iid; cdp->cd_tgt = aep->at_tgt; cdp->cd_lun = aep->at_lun; cdp->cd_tagtype = aep->at_tag_type; cdp->cd_tagval = aep->at_tag_val; isp_tgtcmd_done(cdp); break; } } static void isp_handle_atio2(isp, aep) struct ispsoftc *isp; at2_entry_t *aep; { int status; tmd_cmd_t local, *cdp = &local; /* * Get the ATIO2 status. */ status = aep->at_status; PRINTD("%s: ATIO2 status=0x%x\n", status); /* * The firmware status (except for the SenseValid bit) indicates * why this ATIO was sent to us. * If SenseValid is set, the firware has recommended Sense Data. */ switch (status & ~TGTSVALID) { case AT_PATH_INVALID: /* * ATIO rejected by the firmware due to disabled lun. */ PRINTF("%s: Firmware rejected ATIO2 for disabled lun %d\n", isp->isp_name, aep->at_lun); break; case AT_NOCAP: /* * Requested Capability not available * We sent an ATIO that overflowed the firmware's * command resource count. */ PRINTF("%s: Firmware rejected ATIO2, command count overflow\n", isp->isp_name); break; case AT_BDR_MSG: /* * If we send an ATIO to the firmware to increment * its command resource count, and the firmware is * recovering from a Bus Device Reset, it returns * the ATIO with this status. */ PRINTF("%s: ATIO2 returned with BDR rcvd\n", isp->isp_name); break; case AT_CDB: /* * New CDB */ cdp->cd_hba = isp; cdp->cd_iid = aep->at_iid; cdp->cd_tgt = 0; cdp->cd_lun = aep->at_lun; MEMCPY(cdp->cd_cdb, aep->at_cdb, 16); cdp->cd_rxid = aep->at_rxid; cdp->cp_origdlen = aep->at_datalen; cdp->cp_totbytes = 0; PRINTF("%s: CDB 0x%x rx_id 0x%x itl %d/%d/%d dlen %d\n", isp->isp_name, cdp->cd_cdb[0], cdp->cd_tagval, cdp->cd_iid, cdp->cd_tgt, cdp->cd_lun, aep->at_datalen); (*isp->isp_tmd_newcmd)(isp, cdp); break; default: PRINTF("%s: Unknown status (0x%x) in ATIO2\n", isp->isp_name, status); cdp->cd_hba = isp; cdp->cd_iid = aep->at_iid; cdp->cd_tgt = aep->at_tgt; cdp->cd_lun = aep->at_lun; cdp->cp_rxid = aep->at_rxid; isp_tgtcmd_done(cdp); break; } } static void isp_handle_ctio(isp, cep) struct ispsoftc *isp; ct_entry_t *aep; { } static void isp_handle_ctio2(isp, cep) struct ispsoftc *isp; at2_entry_t *aep; { } #endif static void isp_parse_status(isp, sp, xs) struct ispsoftc *isp; ispstatusreq_t *sp; ISP_SCSI_XFER_T *xs; { switch (sp->req_completion_status) { case RQCS_COMPLETE: XS_SETERR(xs, HBA_NOERROR); return; case RQCS_INCOMPLETE: if ((sp->req_state_flags & RQSF_GOT_TARGET) == 0) { IDPRINTF(3, ("%s: Selection Timeout for target %d\n", isp->isp_name, XS_TGT(xs))); XS_SETERR(xs, HBA_SELTIMEOUT); return; } PRINTF("%s: command incomplete for target %d lun %d, state " "0x%x\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs), sp->req_state_flags); break; case RQCS_DMA_ERROR: PRINTF("%s: DMA error for command on target %d, lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_TRANSPORT_ERROR: PRINTF("%s: transport error\n", isp->isp_name); isp_prtstst(sp); break; case RQCS_RESET_OCCURRED: IDPRINTF(2, ("%s: bus reset destroyed command for target %d " "lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs))); /* * XXX: Get port number for bus */ isp->isp_sendmarker = 3; XS_SETERR(xs, HBA_BUSRESET); return; case RQCS_ABORTED: PRINTF("%s: command aborted for target %d lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); /* * XXX: Get port number for bus */ isp->isp_sendmarker = 3; XS_SETERR(xs, HBA_ABORTED); return; case RQCS_TIMEOUT: IDPRINTF(2, ("%s: command timed out for target %d lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs))); XS_SETERR(xs, HBA_CMDTIMEOUT); return; case RQCS_DATA_OVERRUN: if (isp->isp_type & ISP_HA_FC) { XS_RESID(xs) = sp->req_resid; break; } XS_SETERR(xs, HBA_DATAOVR); return; case RQCS_COMMAND_OVERRUN: PRINTF("%s: command overrun for command on target %d, lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_STATUS_OVERRUN: PRINTF("%s: status overrun for command on target %d, lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_BAD_MESSAGE: PRINTF("%s: message not COMMAND COMPLETE after status on " "target %d, lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_NO_MESSAGE_OUT: PRINTF("%s: No MESSAGE OUT phase after selection on " "target %d, lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_EXT_ID_FAILED: PRINTF("%s: EXTENDED IDENTIFY failed on target %d, lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_IDE_MSG_FAILED: PRINTF("%s: target %d lun %d rejected INITIATOR DETECTED " "ERROR message\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_ABORT_MSG_FAILED: PRINTF("%s: target %d lun %d rejected ABORT message\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_REJECT_MSG_FAILED: PRINTF("%s: target %d lun %d rejected MESSAGE REJECT message\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_NOP_MSG_FAILED: PRINTF("%s: target %d lun %d rejected NOP message\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_PARITY_ERROR_MSG_FAILED: PRINTF("%s: target %d lun %d rejected MESSAGE PARITY ERROR " "message\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_DEVICE_RESET_MSG_FAILED: PRINTF("%s: target %d lun %d rejected BUS DEVICE RESET " "message\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_ID_MSG_FAILED: PRINTF("%s: target %d lun %d rejected IDENTIFY " "message\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_UNEXP_BUS_FREE: PRINTF("%s: target %d lun %d had an unexpected bus free\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_DATA_UNDERRUN: if (isp->isp_type & ISP_HA_FC) { XS_RESID(xs) = sp->req_resid; /* an UNDERRUN is not a botch ??? */ } XS_SETERR(xs, HBA_NOERROR); return; case RQCS_XACT_ERR1: PRINTF("%s: HBA attempted queued transaction with disconnect " "not set for target %d lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_XACT_ERR2: PRINTF("%s: HBA attempted queued transaction to target " "routine %d on target %d\n", isp->isp_name, XS_LUN(xs), XS_TGT(xs)); break; case RQCS_XACT_ERR3: PRINTF("%s: HBA attempted queued transaction for target %d lun " "%d when queueing disabled\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_BAD_ENTRY: PRINTF("%s: invalid IOCB entry type detected\n", isp->isp_name); break; case RQCS_QUEUE_FULL: IDPRINTF(3, ("%s: internal queues full for target %d lun %d " "status 0x%x\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs), XS_STS(xs))); /* * If QFULL or some other status byte is set, then this * isn't an error, per se. */ if (XS_STS(xs) != 0) { XS_SETERR(xs, HBA_NOERROR); return; } break; case RQCS_PHASE_SKIPPED: PRINTF("%s: SCSI phase skipped (e.g., COMMAND COMPLETE w/o " "STATUS phase) for target %d lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_ARQS_FAILED: PRINTF("%s: Auto Request Sense failed for target %d lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); XS_SETERR(xs, HBA_ARQFAIL); return; case RQCS_WIDE_FAILED: PRINTF("%s: Wide Negotiation failed for target %d lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); if (IS_SCSI(isp)) { sdparam *sdp = isp->isp_param; sdp += XS_CHANNEL(xs); sdp->isp_devparam[XS_TGT(xs)].dev_flags &= ~DPARM_WIDE; sdp->isp_devparam[XS_TGT(xs)].dev_update = 1; isp->isp_update = XS_CHANNEL(xs)+1; } XS_SETERR(xs, HBA_NOERROR); return; case RQCS_SYNCXFER_FAILED: PRINTF("%s: SDTR Message failed for target %d lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); if (IS_SCSI(isp)) { sdparam *sdp = isp->isp_param; sdp += XS_CHANNEL(xs); sdp->isp_devparam[XS_TGT(xs)].dev_flags &= ~DPARM_SYNC; sdp->isp_devparam[XS_TGT(xs)].dev_update = 1; isp->isp_update = XS_CHANNEL(xs)+1; } break; case RQCS_LVD_BUSERR: PRINTF("%s: Bad LVD Bus condition while talking to target %d " "lun %d\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs)); break; case RQCS_PORT_UNAVAILABLE: /* * No such port on the loop. Moral equivalent of SELTIMEO */ IDPRINTF(3, ("%s: Port Unavailable for target %d\n", isp->isp_name, XS_TGT(xs))); XS_SETERR(xs, HBA_SELTIMEOUT); return; case RQCS_PORT_LOGGED_OUT: /* * It was there (maybe)- treat as a selection timeout. */ IDPRINTF(2, ("%s: port logout for target %d\n", isp->isp_name, XS_TGT(xs))); XS_SETERR(xs, HBA_SELTIMEOUT); return; case RQCS_PORT_CHANGED: PRINTF("%s: port changed for target %d\n", isp->isp_name, XS_TGT(xs)); break; case RQCS_PORT_BUSY: PRINTF("%s: port busy for target %d\n", isp->isp_name, XS_TGT(xs)); XS_SETERR(xs, HBA_TGTBSY); return; default: PRINTF("%s: comp status %x\n", isp->isp_name, sp->req_completion_status); break; } XS_SETERR(xs, HBA_BOTCH); } static void isp_fastpost_complete(isp, fph) struct ispsoftc *isp; int fph; { ISP_SCSI_XFER_T *xs; if (fph < 1) return; xs = (ISP_SCSI_XFER_T *) isp->isp_xflist[fph - 1]; isp->isp_xflist[fph - 1] = NULL; if (xs == NULL) { PRINTF("%s: fast posting handle 0x%x not found\n", isp->isp_name, fph - 1); return; } /* * Since we don't have a result queue entry item, * we must believe that SCSI status is zero and * that all data transferred. */ XS_RESID(xs) = 0; XS_STS(xs) = 0; if (XS_XFRLEN(xs)) { ISP_DMAFREE(isp, xs, fph - 1); } XS_CMD_DONE(xs); } #define HINIB(x) ((x) >> 0x4) #define LONIB(x) ((x) & 0xf) #define MAKNIB(a, b) (((a) << 4) | (b)) static u_int8_t mbpcnt[] = { MAKNIB(1, 1), /* 0x00: MBOX_NO_OP */ MAKNIB(5, 5), /* 0x01: MBOX_LOAD_RAM */ MAKNIB(2, 0), /* 0x02: MBOX_EXEC_FIRMWARE */ MAKNIB(5, 5), /* 0x03: MBOX_DUMP_RAM */ MAKNIB(3, 3), /* 0x04: MBOX_WRITE_RAM_WORD */ MAKNIB(2, 3), /* 0x05: MBOX_READ_RAM_WORD */ MAKNIB(6, 6), /* 0x06: MBOX_MAILBOX_REG_TEST */ MAKNIB(2, 3), /* 0x07: MBOX_VERIFY_CHECKSUM */ MAKNIB(1, 4), /* 0x08: MBOX_ABOUT_FIRMWARE */ MAKNIB(0, 0), /* 0x09: */ MAKNIB(0, 0), /* 0x0a: */ MAKNIB(0, 0), /* 0x0b: */ MAKNIB(0, 0), /* 0x0c: */ MAKNIB(0, 0), /* 0x0d: */ MAKNIB(1, 2), /* 0x0e: MBOX_CHECK_FIRMWARE */ MAKNIB(0, 0), /* 0x0f: */ MAKNIB(5, 5), /* 0x10: MBOX_INIT_REQ_QUEUE */ MAKNIB(6, 6), /* 0x11: MBOX_INIT_RES_QUEUE */ MAKNIB(4, 4), /* 0x12: MBOX_EXECUTE_IOCB */ MAKNIB(2, 2), /* 0x13: MBOX_WAKE_UP */ MAKNIB(1, 6), /* 0x14: MBOX_STOP_FIRMWARE */ MAKNIB(4, 4), /* 0x15: MBOX_ABORT */ MAKNIB(2, 2), /* 0x16: MBOX_ABORT_DEVICE */ MAKNIB(3, 3), /* 0x17: MBOX_ABORT_TARGET */ MAKNIB(3, 1), /* 0x18: MBOX_BUS_RESET */ MAKNIB(2, 3), /* 0x19: MBOX_STOP_QUEUE */ MAKNIB(2, 3), /* 0x1a: MBOX_START_QUEUE */ MAKNIB(2, 3), /* 0x1b: MBOX_SINGLE_STEP_QUEUE */ MAKNIB(2, 3), /* 0x1c: MBOX_ABORT_QUEUE */ MAKNIB(2, 4), /* 0x1d: MBOX_GET_DEV_QUEUE_STATUS */ MAKNIB(0, 0), /* 0x1e: */ MAKNIB(1, 3), /* 0x1f: MBOX_GET_FIRMWARE_STATUS */ MAKNIB(1, 4), /* 0x20: MBOX_GET_INIT_SCSI_ID, MBOX_GET_LOOP_ID */ MAKNIB(1, 3), /* 0x21: MBOX_GET_SELECT_TIMEOUT */ MAKNIB(1, 3), /* 0x22: MBOX_GET_RETRY_COUNT */ MAKNIB(1, 2), /* 0x23: MBOX_GET_TAG_AGE_LIMIT */ MAKNIB(1, 2), /* 0x24: MBOX_GET_CLOCK_RATE */ MAKNIB(1, 2), /* 0x25: MBOX_GET_ACT_NEG_STATE */ MAKNIB(1, 2), /* 0x26: MBOX_GET_ASYNC_DATA_SETUP_TIME */ MAKNIB(1, 3), /* 0x27: MBOX_GET_PCI_PARAMS */ MAKNIB(2, 4), /* 0x28: MBOX_GET_TARGET_PARAMS */ MAKNIB(2, 4), /* 0x29: MBOX_GET_DEV_QUEUE_PARAMS */ MAKNIB(1, 2), /* 0x2a: MBOX_GET_RESET_DELAY_PARAMS */ MAKNIB(0, 0), /* 0x2b: */ MAKNIB(0, 0), /* 0x2c: */ MAKNIB(0, 0), /* 0x2d: */ MAKNIB(0, 0), /* 0x2e: */ MAKNIB(0, 0), /* 0x2f: */ MAKNIB(2, 2), /* 0x30: MBOX_SET_INIT_SCSI_ID */ MAKNIB(2, 3), /* 0x31: MBOX_SET_SELECT_TIMEOUT */ MAKNIB(3, 3), /* 0x32: MBOX_SET_RETRY_COUNT */ MAKNIB(2, 2), /* 0x33: MBOX_SET_TAG_AGE_LIMIT */ MAKNIB(2, 2), /* 0x34: MBOX_SET_CLOCK_RATE */ MAKNIB(2, 2), /* 0x35: MBOX_SET_ACT_NEG_STATE */ MAKNIB(2, 2), /* 0x36: MBOX_SET_ASYNC_DATA_SETUP_TIME */ MAKNIB(3, 3), /* 0x37: MBOX_SET_PCI_CONTROL_PARAMS */ MAKNIB(4, 4), /* 0x38: MBOX_SET_TARGET_PARAMS */ MAKNIB(4, 4), /* 0x39: MBOX_SET_DEV_QUEUE_PARAMS */ MAKNIB(1, 2), /* 0x3a: MBOX_SET_RESET_DELAY_PARAMS */ MAKNIB(0, 0), /* 0x3b: */ MAKNIB(0, 0), /* 0x3c: */ MAKNIB(0, 0), /* 0x3d: */ MAKNIB(0, 0), /* 0x3e: */ MAKNIB(0, 0), /* 0x3f: */ MAKNIB(1, 2), /* 0x40: MBOX_RETURN_BIOS_BLOCK_ADDR */ MAKNIB(6, 1), /* 0x41: MBOX_WRITE_FOUR_RAM_WORDS */ MAKNIB(2, 3), /* 0x42: MBOX_EXEC_BIOS_IOCB */ MAKNIB(0, 0), /* 0x43: */ MAKNIB(0, 0), /* 0x44: */ MAKNIB(0, 0), /* 0x45: */ MAKNIB(0, 0), /* 0x46: */ MAKNIB(0, 0), /* 0x47: */ MAKNIB(0, 0), /* 0x48: */ MAKNIB(0, 0), /* 0x49: */ MAKNIB(2, 1), /* 0x4a: MBOX_SET_FIRMWARE_FEATURES */ MAKNIB(1, 2), /* 0x4b: MBOX_GET_FIRMWARE_FEATURES */ MAKNIB(0, 0), /* 0x4c: */ MAKNIB(0, 0), /* 0x4d: */ MAKNIB(0, 0), /* 0x4e: */ MAKNIB(0, 0), /* 0x4f: */ MAKNIB(0, 0), /* 0x50: */ MAKNIB(0, 0), /* 0x51: */ MAKNIB(0, 0), /* 0x52: */ MAKNIB(0, 0), /* 0x53: */ MAKNIB(8, 0), /* 0x54: MBOX_EXEC_COMMAND_IOCB_A64 */ MAKNIB(0, 0), /* 0x55: */ MAKNIB(0, 0), /* 0x56: */ MAKNIB(0, 0), /* 0x57: */ MAKNIB(0, 0), /* 0x58: */ MAKNIB(0, 0), /* 0x59: */ MAKNIB(0, 0), /* 0x5a: */ MAKNIB(0, 0), /* 0x5b: */ MAKNIB(0, 0), /* 0x5c: */ MAKNIB(0, 0), /* 0x5d: */ MAKNIB(0, 0), /* 0x5e: */ MAKNIB(0, 0), /* 0x5f: */ MAKNIB(8, 6), /* 0x60: MBOX_INIT_FIRMWARE */ MAKNIB(0, 0), /* 0x61: */ MAKNIB(2, 1), /* 0x62: MBOX_INIT_LIP */ MAKNIB(8, 1), /* 0x63: MBOX_GET_FC_AL_POSITION_MAP */ MAKNIB(8, 1), /* 0x64: MBOX_GET_PORT_DB */ MAKNIB(3, 1), /* 0x65: MBOX_CLEAR_ACA */ MAKNIB(3, 1), /* 0x66: MBOX_TARGET_RESET */ MAKNIB(3, 1), /* 0x67: MBOX_CLEAR_TASK_SET */ MAKNIB(3, 1), /* 0x68: MBOX_ABORT_TASK_SET */ MAKNIB(1, 2), /* 0x69: MBOX_GET_FW_STATE */ MAKNIB(2, 8), /* 0x6a: MBOX_GET_PORT_NAME */ MAKNIB(8, 1), /* 0x6b: MBOX_GET_LINK_STATUS */ MAKNIB(4, 4), /* 0x6c: MBOX_INIT_LIP_RESET */ MAKNIB(0, 0), /* 0x6d: */ MAKNIB(8, 1), /* 0x6e: MBOX_SEND_SNS */ MAKNIB(4, 3), /* 0x6f: MBOX_FABRIC_LOGIN */ MAKNIB(2, 1), /* 0x70: MBOX_SEND_CHANGE_REQUEST */ MAKNIB(2, 1), /* 0x71: MBOX_FABRIC_LOGOUT */ MAKNIB(4, 1) /* 0x72: MBOX_INIT_LIP_LOGIN */ }; #define NMBCOM (sizeof (mbpcnt) / sizeof (mbpcnt[0])) static void isp_mboxcmd(isp, mbp) struct ispsoftc *isp; mbreg_t *mbp; { int outparam, inparam; int loops, dld = 0; u_int8_t opcode; if (mbp->param[0] == ISP2100_SET_PCI_PARAM) { opcode = mbp->param[0] = MBOX_SET_PCI_PARAMETERS; inparam = 4; outparam = 4; goto command_known; } else if (mbp->param[0] > NMBCOM) { PRINTF("%s: bad command %x\n", isp->isp_name, mbp->param[0]); return; } opcode = mbp->param[0]; inparam = HINIB(mbpcnt[mbp->param[0]]); outparam = LONIB(mbpcnt[mbp->param[0]]); if (inparam == 0 && outparam == 0) { PRINTF("%s: no parameters for %x\n", isp->isp_name, mbp->param[0]); return; } /* * Check for variants */ #ifdef ISP2100_SCCLUN if (isp->isp_type & ISP_HA_FC) { switch (mbp->param[0]) { case MBOX_ABORT: inparam = 7; break; case MBOX_ABORT_DEVICE: case MBOX_START_QUEUE: case MBOX_STOP_QUEUE: case MBOX_SINGLE_STEP_QUEUE: case MBOX_ABORT_QUEUE: case MBOX_GET_DEV_QUEUE_STATUS: inparam = 3; break; default: break; } } #endif command_known: /* * Set semaphore on mailbox registers to win any races to acquire them. */ ISP_WRITE(isp, BIU_SEMA, 1); /* * Make sure we can send some words. * Check to see if there's an async mbox event pending. */ loops = MBOX_DELAY_COUNT; while ((ISP_READ(isp, HCCR) & HCCR_HOST_INT) != 0) { if (ISP_READ(isp, BIU_SEMA) & 1) { int fph; u_int16_t mbox = ISP_READ(isp, OUTMAILBOX0); /* * We have a pending MBOX async event. */ if (mbox & 0x8000) { fph = isp_parse_async(isp, (int) mbox); ISP_WRITE(isp, BIU_SEMA, 0); ISP_WRITE(isp, HCCR, HCCR_CMD_CLEAR_RISC_INT); if (fph < 0) { return; } else if (fph > 0) { isp_fastpost_complete(isp, fph); } SYS_DELAY(100); goto command_known; } /* * We have a pending MBOX completion? Might be * from a previous command. We can't (sometimes) * just clear HOST INTERRUPT, so we'll just silently * eat this here. */ if (mbox & 0x4000) { ISP_WRITE(isp, BIU_SEMA, 0); ISP_WRITE(isp, HCCR, HCCR_CMD_CLEAR_RISC_INT); SYS_DELAY(100); goto command_known; } } SYS_DELAY(100); if (--loops < 0) { if (dld++ > 10) { PRINTF("%s: isp_mboxcmd could not get command " "started\n", isp->isp_name); return; } ISP_WRITE(isp, BIU_SEMA, 0); ISP_WRITE(isp, HCCR, HCCR_CMD_CLEAR_RISC_INT); goto command_known; } } /* * Write input parameters. * * Special case some of the setups for the dual port SCSI cards. * XXX Eventually will be fixed by converting register write/read * XXX counts to bitmasks. */ if (IS_12X0(isp)) { switch (opcode) { case MBOX_GET_RETRY_COUNT: case MBOX_SET_RETRY_COUNT: ISP_WRITE(isp, INMAILBOX7, mbp->param[7]); mbp->param[7] = 0; ISP_WRITE(isp, INMAILBOX6, mbp->param[6]); mbp->param[6] = 0; break; case MBOX_SET_ASYNC_DATA_SETUP_TIME: case MBOX_SET_ACT_NEG_STATE: case MBOX_SET_TAG_AGE_LIMIT: case MBOX_SET_SELECT_TIMEOUT: ISP_WRITE(isp, INMAILBOX2, mbp->param[2]); break; } } switch (inparam) { case 8: ISP_WRITE(isp, INMAILBOX7, mbp->param[7]); mbp->param[7] = 0; case 7: ISP_WRITE(isp, INMAILBOX6, mbp->param[6]); mbp->param[6] = 0; case 6: /* * The Qlogic 2100 cannot have registers 4 and 5 written to * after initialization or BAD THINGS HAPPEN (tm). */ if (IS_SCSI(isp) || mbp->param[0] == MBOX_INIT_FIRMWARE) ISP_WRITE(isp, INMAILBOX5, mbp->param[5]); mbp->param[5] = 0; case 5: if (IS_SCSI(isp) || mbp->param[0] == MBOX_INIT_FIRMWARE) ISP_WRITE(isp, INMAILBOX4, mbp->param[4]); mbp->param[4] = 0; case 4: ISP_WRITE(isp, INMAILBOX3, mbp->param[3]); mbp->param[3] = 0; case 3: ISP_WRITE(isp, INMAILBOX2, mbp->param[2]); mbp->param[2] = 0; case 2: ISP_WRITE(isp, INMAILBOX1, mbp->param[1]); mbp->param[1] = 0; case 1: ISP_WRITE(isp, INMAILBOX0, mbp->param[0]); mbp->param[0] = 0; } /* * Clear RISC int condition. */ ISP_WRITE(isp, HCCR, HCCR_CMD_CLEAR_RISC_INT); /* * Clear semaphore on mailbox registers so that the Qlogic * may update outgoing registers. */ ISP_WRITE(isp, BIU_SEMA, 0); /* * Set Host Interrupt condition so that RISC will pick up mailbox regs. */ ISP_WRITE(isp, HCCR, HCCR_CMD_SET_HOST_INT); /* * Wait until HOST INT has gone away (meaning that the Qlogic * has picked up the mailbox command. Wait a long time. */ loops = MBOX_DELAY_COUNT * 5; while ((ISP_READ(isp, HCCR) & HCCR_CMD_CLEAR_RISC_INT) != 0) { SYS_DELAY(100); if (--loops < 0) { PRINTF("%s: isp_mboxcmd timeout #2\n", isp->isp_name); return; } } /* * While the Semaphore registers isn't set, wait for the Qlogic * to process the mailbox command. Again- wait a long time. */ loops = MBOX_DELAY_COUNT * 5; while ((ISP_READ(isp, BIU_SEMA) & 1) == 0) { SYS_DELAY(100); /* * Wierd- I've seen the case where the semaphore register * isn't getting set- sort of a violation of the protocol.. */ if (ISP_READ(isp, OUTMAILBOX0) & 0x4000) break; if (--loops < 0) { PRINTF("%s: isp_mboxcmd timeout #3\n", isp->isp_name); return; } } /* * Make sure that the MBOX_BUSY has gone away */ loops = MBOX_DELAY_COUNT; for (;;) { u_int16_t mbox = ISP_READ(isp, OUTMAILBOX0); if (mbox == MBOX_BUSY) { if (--loops < 0) { PRINTF("%s: isp_mboxcmd timeout #4\n", isp->isp_name); return; } SYS_DELAY(100); continue; } /* * We have a pending MBOX async event. */ if (mbox & 0x8000) { int fph = isp_parse_async(isp, (int) mbox); ISP_WRITE(isp, BIU_SEMA, 0); ISP_WRITE(isp, HCCR, HCCR_CMD_CLEAR_RISC_INT); if (fph < 0) { return; } else if (fph > 0) { isp_fastpost_complete(isp, fph); } SYS_DELAY(100); continue; } break; } /* * Pick up output parameters. Special case some of the readbacks * for the dual port SCSI cards. */ if (IS_12X0(isp)) { switch (opcode) { case MBOX_GET_RETRY_COUNT: case MBOX_SET_RETRY_COUNT: mbp->param[7] = ISP_READ(isp, OUTMAILBOX7); mbp->param[6] = ISP_READ(isp, OUTMAILBOX6); break; case MBOX_GET_TAG_AGE_LIMIT: case MBOX_SET_TAG_AGE_LIMIT: case MBOX_GET_ACT_NEG_STATE: case MBOX_SET_ACT_NEG_STATE: case MBOX_SET_ASYNC_DATA_SETUP_TIME: case MBOX_GET_ASYNC_DATA_SETUP_TIME: case MBOX_GET_RESET_DELAY_PARAMS: case MBOX_SET_RESET_DELAY_PARAMS: mbp->param[2] = ISP_READ(isp, OUTMAILBOX2); break; } } switch (outparam) { case 8: mbp->param[7] = ISP_READ(isp, OUTMAILBOX7); case 7: mbp->param[6] = ISP_READ(isp, OUTMAILBOX6); case 6: mbp->param[5] = ISP_READ(isp, OUTMAILBOX5); case 5: mbp->param[4] = ISP_READ(isp, OUTMAILBOX4); case 4: mbp->param[3] = ISP_READ(isp, OUTMAILBOX3); case 3: mbp->param[2] = ISP_READ(isp, OUTMAILBOX2); case 2: mbp->param[1] = ISP_READ(isp, OUTMAILBOX1); case 1: mbp->param[0] = ISP_READ(isp, OUTMAILBOX0); } /* * Clear RISC int. */ ISP_WRITE(isp, HCCR, HCCR_CMD_CLEAR_RISC_INT); /* * Release semaphore on mailbox registers */ ISP_WRITE(isp, BIU_SEMA, 0); /* * Just to be chatty here... */ switch (mbp->param[0]) { case MBOX_COMMAND_COMPLETE: break; case MBOX_INVALID_COMMAND: IDPRINTF(2, ("%s: mbox cmd %x failed with INVALID_COMMAND\n", isp->isp_name, opcode)); break; case MBOX_HOST_INTERFACE_ERROR: PRINTF("%s: mbox cmd %x failed with HOST_INTERFACE_ERROR\n", isp->isp_name, opcode); break; case MBOX_TEST_FAILED: PRINTF("%s: mbox cmd %x failed with TEST_FAILED\n", isp->isp_name, opcode); break; case MBOX_COMMAND_ERROR: if (opcode != MBOX_ABOUT_FIRMWARE) PRINTF("%s: mbox cmd %x failed with COMMAND_ERROR\n", isp->isp_name, opcode); break; case MBOX_COMMAND_PARAM_ERROR: switch (opcode) { case MBOX_GET_PORT_DB: case MBOX_GET_PORT_NAME: case MBOX_GET_DEV_QUEUE_PARAMS: break; default: PRINTF("%s: mbox cmd %x failed with " "COMMAND_PARAM_ERROR\n", isp->isp_name, opcode); } break; /* * Be silent about these... */ case ASYNC_PDB_CHANGED: ((fcparam *) isp->isp_param)->isp_loopstate = LOOP_PDB_RCVD; break; case ASYNC_LOOP_UP: case ASYNC_LIP_OCCURRED: ((fcparam *) isp->isp_param)->isp_fwstate = FW_CONFIG_WAIT; ((fcparam *) isp->isp_param)->isp_loopstate = LOOP_LIP_RCVD; break; case ASYNC_LOOP_DOWN: case ASYNC_LOOP_RESET: ((fcparam *) isp->isp_param)->isp_fwstate = FW_CONFIG_WAIT; ((fcparam *) isp->isp_param)->isp_loopstate = LOOP_NIL; /* FALLTHROUGH */ case ASYNC_CHANGE_NOTIFY: break; default: /* * The expected return of EXEC_FIRMWARE is zero. */ if ((opcode == MBOX_EXEC_FIRMWARE && mbp->param[0] != 0) || (opcode != MBOX_EXEC_FIRMWARE)) { PRINTF("%s: mbox cmd %x failed with error %x\n", isp->isp_name, opcode, mbp->param[0]); } break; } } void isp_lostcmd(isp, xs) struct ispsoftc *isp; ISP_SCSI_XFER_T *xs; { mbreg_t mbs; mbs.param[0] = MBOX_GET_FIRMWARE_STATUS; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { isp_dumpregs(isp, "couldn't GET FIRMWARE STATUS"); return; } if (mbs.param[1]) { PRINTF("%s: %d commands on completion queue\n", isp->isp_name, mbs.param[1]); } if (XS_NULL(xs)) return; mbs.param[0] = MBOX_GET_DEV_QUEUE_STATUS; mbs.param[1] = (XS_TGT(xs) << 8) | XS_LUN(xs); /* XXX: WHICH BUS? */ isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { isp_dumpregs(isp, "couldn't GET DEVICE QUEUE STATUS"); return; } PRINTF("%s: lost command for target %d lun %d, %d active of %d, " "Queue State: %x\n", isp->isp_name, XS_TGT(xs), XS_LUN(xs), mbs.param[2], mbs.param[3], mbs.param[1]); isp_dumpregs(isp, "lost command"); /* * XXX: Need to try and do something to recover. */ } static void isp_dumpregs(isp, msg) struct ispsoftc *isp; const char *msg; { PRINTF("%s: %s\n", isp->isp_name, msg); if (isp->isp_type & ISP_HA_SCSI) PRINTF(" biu_conf1=%x", ISP_READ(isp, BIU_CONF1)); else PRINTF(" biu_csr=%x", ISP_READ(isp, BIU2100_CSR)); PRINTF(" biu_icr=%x biu_isr=%x biu_sema=%x ", ISP_READ(isp, BIU_ICR), ISP_READ(isp, BIU_ISR), ISP_READ(isp, BIU_SEMA)); PRINTF("risc_hccr=%x\n", ISP_READ(isp, HCCR)); if (isp->isp_type & ISP_HA_SCSI) { ISP_WRITE(isp, HCCR, HCCR_CMD_PAUSE); PRINTF(" cdma_conf=%x cdma_sts=%x cdma_fifostat=%x\n", ISP_READ(isp, CDMA_CONF), ISP_READ(isp, CDMA_STATUS), ISP_READ(isp, CDMA_FIFO_STS)); PRINTF(" ddma_conf=%x ddma_sts=%x ddma_fifostat=%x\n", ISP_READ(isp, DDMA_CONF), ISP_READ(isp, DDMA_STATUS), ISP_READ(isp, DDMA_FIFO_STS)); PRINTF(" sxp_int=%x sxp_gross=%x sxp(scsi_ctrl)=%x\n", ISP_READ(isp, SXP_INTERRUPT), ISP_READ(isp, SXP_GROSS_ERR), ISP_READ(isp, SXP_PINS_CONTROL)); ISP_WRITE(isp, HCCR, HCCR_CMD_RELEASE); } PRINTF(" mbox regs: %x %x %x %x %x\n", ISP_READ(isp, OUTMAILBOX0), ISP_READ(isp, OUTMAILBOX1), ISP_READ(isp, OUTMAILBOX2), ISP_READ(isp, OUTMAILBOX3), ISP_READ(isp, OUTMAILBOX4)); ISP_DUMPREGS(isp); } static void isp_dumpxflist(isp) struct ispsoftc *isp; { volatile ISP_SCSI_XFER_T *xs; int i, hdp; for (hdp = i = 0; i < RQUEST_QUEUE_LEN; i++) { xs = isp->isp_xflist[i]; if (xs == NULL) { continue; } if (hdp == 0) { PRINTF("%s: active requests\n", isp->isp_name); hdp++; } PRINTF(" Active Handle %d: tgt %d lun %d dlen %d\n", i+1, XS_TGT(xs), XS_LUN(xs), XS_XFRLEN(xs)); } } static void isp_fw_state(isp) struct ispsoftc *isp; { mbreg_t mbs; if (isp->isp_type & ISP_HA_FC) { int once = 0; fcparam *fcp = isp->isp_param; again: mbs.param[0] = MBOX_GET_FW_STATE; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { IDPRINTF(0, ("%s: isp_fw_state 0x%x\n", isp->isp_name, mbs.param[0])); switch (mbs.param[0]) { case ASYNC_PDB_CHANGED: if (once++ < 10) { goto again; } fcp->isp_fwstate = FW_CONFIG_WAIT; fcp->isp_loopstate = LOOP_PDB_RCVD; goto again; case ASYNC_LOOP_UP: case ASYNC_LIP_OCCURRED: fcp->isp_fwstate = FW_CONFIG_WAIT; fcp->isp_loopstate = LOOP_LIP_RCVD; if (once++ < 10) { goto again; } break; case ASYNC_LOOP_RESET: case ASYNC_LOOP_DOWN: fcp->isp_fwstate = FW_CONFIG_WAIT; fcp->isp_loopstate = LOOP_NIL; /* FALLTHROUGH */ case ASYNC_CHANGE_NOTIFY: if (once++ < 10) { goto again; } break; } PRINTF("%s: GET FIRMWARE STATE failed (0x%x)\n", isp->isp_name, mbs.param[0]); return; } fcp->isp_fwstate = mbs.param[1]; } } static void isp_update(isp) struct ispsoftc *isp; { int bus; for (bus = 0; isp->isp_update != 0; bus++) { if (isp->isp_update & (1 << bus)) { isp_update_bus(isp, bus); isp->isp_update ^= (1 << bus); } } } static void isp_update_bus(isp, bus) struct ispsoftc *isp; int bus; { int tgt; mbreg_t mbs; sdparam *sdp; if (isp->isp_type & ISP_HA_FC) { return; } sdp = isp->isp_param; sdp += bus; for (tgt = 0; tgt < MAX_TARGETS; tgt++) { u_int16_t flags, period, offset; int get; if (sdp->isp_devparam[tgt].dev_enable == 0) { PRINTF("%s: skipping update of target %d on bus %d\n", isp->isp_name, tgt, bus); continue; } /* * If the goal is to update the status of the device, * take what's in dev_flags and try and set the device * toward that. Otherwise, if we're just refreshing the * current device state, get the current parameters. */ if (sdp->isp_devparam[tgt].dev_update) { mbs.param[0] = MBOX_SET_TARGET_PARAMS; mbs.param[2] = sdp->isp_devparam[tgt].dev_flags; /* * Insist that PARITY must be enabled if SYNC * is enabled. */ if (mbs.param[2] & DPARM_SYNC) { mbs.param[2] |= DPARM_PARITY; } mbs.param[3] = (sdp->isp_devparam[tgt].sync_offset << 8) | (sdp->isp_devparam[tgt].sync_period); sdp->isp_devparam[tgt].dev_update = 0; /* * A command completion later that has * RQSTF_NEGOTIATION set will cause * the dev_refresh/announce cycle. * * Note: It is really important to update our current * flags with at least the state of TAG capabilities- * otherwise we might try and send a tagged command * when we have it all turned off. So change it here * to say that current already matches goal. */ sdp->isp_devparam[tgt].cur_dflags &= ~DPARM_TQING; sdp->isp_devparam[tgt].cur_dflags |= (sdp->isp_devparam[tgt].dev_flags & DPARM_TQING); sdp->isp_devparam[tgt].dev_refresh = 1; IDPRINTF(3, ("%s: bus %d set tgt %d flags 0x%x off 0x%x" " period 0x%x\n", isp->isp_name, bus, tgt, mbs.param[2], mbs.param[3] >> 8, mbs.param[3] & 0xff)); get = 0; } else if (sdp->isp_devparam[tgt].dev_refresh) { mbs.param[0] = MBOX_GET_TARGET_PARAMS; sdp->isp_devparam[tgt].dev_refresh = 0; get = 1; } else { continue; } mbs.param[1] = (bus << 15) | (tgt << 8) ; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { PRINTF("%s: failed to %cet SCSI parameters for " "target %d\n", isp->isp_name, (get)? 'g' : 's', tgt); continue; } if (get == 0) { isp->isp_sendmarker |= (1 << bus); continue; } flags = mbs.param[2]; period = mbs.param[3] & 0xff; offset = mbs.param[3] >> 8; sdp->isp_devparam[tgt].cur_dflags = flags; sdp->isp_devparam[tgt].cur_period = period; sdp->isp_devparam[tgt].cur_offset = offset; get = (bus << 16) | tgt; (void) isp_async(isp, ISPASYNC_NEW_TGT_PARAMS, &get); } } static void isp_setdfltparm(isp, channel) struct ispsoftc *isp; int channel; { int tgt; mbreg_t mbs; sdparam *sdp, *sdp_chan0, *sdp_chan1; if (IS_FC(isp)) { fcparam *fcp = (fcparam *) isp->isp_param; fcp += channel; if (fcp->isp_gotdparms) { return; } fcp->isp_gotdparms = 1; fcp->isp_maxfrmlen = ICB_DFLT_FRMLEN; fcp->isp_maxalloc = ICB_DFLT_ALLOC; fcp->isp_execthrottle = ICB_DFLT_THROTTLE; fcp->isp_retry_delay = ICB_DFLT_RDELAY; fcp->isp_retry_count = ICB_DFLT_RCOUNT; /* Platform specific.... */ fcp->isp_loopid = DEFAULT_LOOPID(isp); fcp->isp_nodewwn = DEFAULT_WWN(isp); fcp->isp_portwwn = DEFAULT_WWN(isp); /* * Now try and read NVRAM */ if ((isp->isp_confopts & ISP_CFG_NONVRAM) == 0) { if (isp_read_nvram(isp)) { PRINTF("%s: using default WWN 0x%08x%08x\n", isp->isp_name, (u_int32_t)(fcp->isp_portwwn >> 32), (u_int32_t)(fcp->isp_portwwn & 0xffffffff)); } } return; } sdp_chan0 = (sdparam *) isp->isp_param; sdp_chan1 = sdp_chan0 + 1; sdp = sdp_chan0 + channel; /* * Been there, done that, got the T-shirt... */ if (sdp->isp_gotdparms) { return; } sdp->isp_gotdparms = 1; /* * If we've not been told to avoid reading NVRAM, try and read it. * If we're successful reading it, we can return since NVRAM will * tell us the right thing to do. Otherwise, establish some reasonable * defaults. */ if ((isp->isp_confopts & ISP_CFG_NONVRAM) == 0) { if (isp_read_nvram(isp) == 0) { return; } } /* * Now try and see whether we have specific values for them. */ mbs.param[0] = MBOX_GET_ACT_NEG_STATE; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { IDPRINTF(2, ("could not GET ACT NEG STATE\n")); sdp_chan0->isp_req_ack_active_neg = 1; sdp_chan0->isp_data_line_active_neg = 1; if (IS_12X0(isp)) { sdp_chan1->isp_req_ack_active_neg = 1; sdp_chan1->isp_data_line_active_neg = 1; } } else { sdp_chan0->isp_req_ack_active_neg = (mbs.param[1] >> 4) & 0x1; sdp_chan0->isp_data_line_active_neg = (mbs.param[1] >> 5) & 0x1; if (IS_12X0(isp)) { sdp_chan1->isp_req_ack_active_neg = (mbs.param[2] >> 4) & 0x1; sdp_chan1->isp_data_line_active_neg = (mbs.param[2] >> 5) & 0x1; } } /* * The trick here is to establish a default for the default (honk!) * state (dev_flags). Then try and get the current status from * the card to fill in the current state. We don't, in fact, set * the default to the SAFE default state- that's not the goal state. */ for (tgt = 0; tgt < MAX_TARGETS; tgt++) { sdp->isp_devparam[tgt].cur_offset = 0; sdp->isp_devparam[tgt].cur_period = 0; sdp->isp_devparam[tgt].dev_flags = DPARM_DEFAULT; sdp->isp_devparam[tgt].cur_dflags = 0; if (isp->isp_type < ISP_HA_SCSI_1040 || (isp->isp_clock && isp->isp_clock < 60)) { sdp->isp_devparam[tgt].sync_offset = ISP_10M_SYNCPARMS >> 8; sdp->isp_devparam[tgt].sync_period = ISP_10M_SYNCPARMS & 0xff; } else if (IS_1080(isp)) { sdp->isp_devparam[tgt].sync_offset = ISP_40M_SYNCPARMS >> 8; sdp->isp_devparam[tgt].sync_period = ISP_40M_SYNCPARMS & 0xff; } else { sdp->isp_devparam[tgt].sync_offset = ISP_20M_SYNCPARMS >> 8; sdp->isp_devparam[tgt].sync_period = ISP_20M_SYNCPARMS & 0xff; } /* * Don't get current target parameters if we've been * told not to use NVRAM- it's really the same thing. */ if (isp->isp_confopts & ISP_CFG_NONVRAM) { continue; } mbs.param[0] = MBOX_GET_TARGET_PARAMS; mbs.param[1] = tgt << 8; isp_mboxcmd(isp, &mbs); if (mbs.param[0] != MBOX_COMMAND_COMPLETE) { continue; } sdp->isp_devparam[tgt].cur_dflags = mbs.param[2]; sdp->isp_devparam[tgt].dev_flags = mbs.param[2]; sdp->isp_devparam[tgt].cur_period = mbs.param[3] & 0xff; sdp->isp_devparam[tgt].cur_offset = mbs.param[3] >> 8; /* * The maximum period we can really see * here is 100 (decimal), or 400 ns. * For some unknown reason we sometimes * get back wildass numbers from the * boot device's parameters (alpha only). */ if ((mbs.param[3] & 0xff) <= 0x64) { sdp->isp_devparam[tgt].sync_period = mbs.param[3] & 0xff; sdp->isp_devparam[tgt].sync_offset = mbs.param[3] >> 8; } /* * It is not safe to run Ultra Mode with a clock < 60. */ if (((isp->isp_clock && isp->isp_clock < 60) || (isp->isp_type < ISP_HA_SCSI_1020A)) && (sdp->isp_devparam[tgt].sync_period <= (ISP_20M_SYNCPARMS & 0xff))) { sdp->isp_devparam[tgt].sync_offset = ISP_10M_SYNCPARMS >> 8; sdp->isp_devparam[tgt].sync_period = ISP_10M_SYNCPARMS & 0xff; } } /* * Establish default some more default parameters. */ sdp->isp_cmd_dma_burst_enable = 1; sdp->isp_data_dma_burst_enabl = 1; sdp->isp_fifo_threshold = 0; sdp->isp_initiator_id = 7; /* XXXX This is probably based upon clock XXXX */ if (isp->isp_type >= ISP_HA_SCSI_1040) { sdp->isp_async_data_setup = 9; } else { sdp->isp_async_data_setup = 6; } sdp->isp_selection_timeout = 250; sdp->isp_max_queue_depth = MAXISPREQUEST; sdp->isp_tag_aging = 8; sdp->isp_bus_reset_delay = 3; sdp->isp_retry_count = 2; sdp->isp_retry_delay = 2; for (tgt = 0; tgt < MAX_TARGETS; tgt++) { sdp->isp_devparam[tgt].exc_throttle = 16; sdp->isp_devparam[tgt].dev_enable = 1; } } /* * Re-initialize the ISP and complete all orphaned commands * with a 'botched' notice. * * Locks held prior to coming here. */ void isp_restart(isp) struct ispsoftc *isp; { ISP_SCSI_XFER_T *tlist[RQUEST_QUEUE_LEN], *xs; int i; for (i = 0; i < RQUEST_QUEUE_LEN; i++) { tlist[i] = (ISP_SCSI_XFER_T *) isp->isp_xflist[i]; isp->isp_xflist[i] = NULL; } #if 0 isp->isp_gotdparms = 0; #endif isp_reset(isp); if (isp->isp_state == ISP_RESETSTATE) { isp_init(isp); if (isp->isp_state == ISP_INITSTATE) { isp->isp_state = ISP_RUNSTATE; } } if (isp->isp_state != ISP_RUNSTATE) { PRINTF("%s: isp_restart cannot restart ISP\n", isp->isp_name); } for (i = 0; i < RQUEST_QUEUE_LEN; i++) { xs = tlist[i]; if (XS_NULL(xs)) { continue; } if (isp->isp_nactive > 0) isp->isp_nactive--; XS_RESID(xs) = XS_XFRLEN(xs); XS_SETERR(xs, HBA_BUSRESET); XS_CMD_DONE(xs); } } /* * NVRAM Routines */ static int isp_read_nvram(isp) struct ispsoftc *isp; { static char *tru = "true"; static char *not = "false"; int i, amt; u_int8_t csum, minversion; union { u_int8_t _x[ISP2100_NVRAM_SIZE]; u_int16_t _s[ISP2100_NVRAM_SIZE>>1]; } _n; #define nvram_data _n._x #define nvram_words _n._s if (IS_FC(isp)) { amt = ISP2100_NVRAM_SIZE; minversion = 1; } else if (IS_1080(isp) || IS_12X0(isp)) { amt = ISP1080_NVRAM_SIZE; minversion = 0; } else { amt = ISP_NVRAM_SIZE; minversion = 2; } /* * Just read the first two words first to see if we have a valid * NVRAM to continue reading the rest with. */ for (i = 0; i < 2; i++) { isp_rdnvram_word(isp, i, &nvram_words[i]); } if (nvram_data[0] != 'I' || nvram_data[1] != 'S' || nvram_data[2] != 'P') { if (isp->isp_bustype != ISP_BT_SBUS) { PRINTF("%s: invalid NVRAM header (%x,%x,%x,%x)\n", isp->isp_name, nvram_data[0], nvram_data[1], nvram_data[2], nvram_data[3]); } return (-1); } for (i = 2; i < amt>>1; i++) { isp_rdnvram_word(isp, i, &nvram_words[i]); } for (csum = 0, i = 0; i < amt; i++) { csum += nvram_data[i]; } if (csum != 0) { PRINTF("%s: invalid NVRAM checksum\n", isp->isp_name); return (-1); } if (ISP_NVRAM_VERSION(nvram_data) < minversion) { PRINTF("%s: version %d NVRAM not understood\n", isp->isp_name, ISP_NVRAM_VERSION(nvram_data)); return (-1); } if (IS_1080(isp) || IS_12X0(isp)) { int bus; sdparam *sdp = (sdparam *) isp->isp_param; for (bus = 0; bus < (IS_1080(isp)? 1 : 2); bus++, sdp++) { sdp->isp_fifo_threshold = ISP1080_NVRAM_FIFO_THRESHOLD(nvram_data); sdp->isp_initiator_id = ISP1080_NVRAM_INITIATOR_ID(nvram_data, bus); sdp->isp_bus_reset_delay = ISP1080_NVRAM_BUS_RESET_DELAY(nvram_data, bus); sdp->isp_retry_count = ISP1080_NVRAM_BUS_RETRY_COUNT(nvram_data, bus); sdp->isp_retry_delay = ISP1080_NVRAM_BUS_RETRY_DELAY(nvram_data, bus); sdp->isp_async_data_setup = ISP1080_NVRAM_ASYNC_DATA_SETUP_TIME(nvram_data, bus); sdp->isp_req_ack_active_neg = ISP1080_NVRAM_REQ_ACK_ACTIVE_NEGATION(nvram_data, bus); sdp->isp_data_line_active_neg = ISP1080_NVRAM_DATA_LINE_ACTIVE_NEGATION(nvram_data, bus); sdp->isp_data_dma_burst_enabl = ISP1080_NVRAM_BURST_ENABLE(nvram_data); sdp->isp_cmd_dma_burst_enable = ISP1080_NVRAM_BURST_ENABLE(nvram_data); sdp->isp_selection_timeout = ISP1080_NVRAM_SELECTION_TIMEOUT(nvram_data, bus); sdp->isp_max_queue_depth = ISP1080_NVRAM_MAX_QUEUE_DEPTH(nvram_data, bus); if (isp->isp_dblev >= 3) { PRINTF("%s: ISP1080 bus %d NVRAM values:\n", isp->isp_name, bus); PRINTF(" Initiator ID = %d\n", sdp->isp_initiator_id); PRINTF(" Fifo Threshold = 0x%x\n", sdp->isp_fifo_threshold); PRINTF(" Bus Reset Delay = %d\n", sdp->isp_bus_reset_delay); PRINTF(" Retry Count = %d\n", sdp->isp_retry_count); PRINTF(" Retry Delay = %d\n", sdp->isp_retry_delay); PRINTF(" Tag Age Limit = %d\n", sdp->isp_tag_aging); PRINTF(" Selection Timeout = %d\n", sdp->isp_selection_timeout); PRINTF(" Max Queue Depth = %d\n", sdp->isp_max_queue_depth); PRINTF(" Async Data Setup = 0x%x\n", sdp->isp_async_data_setup); PRINTF(" REQ/ACK Active Negation = %s\n", sdp->isp_req_ack_active_neg? tru : not); PRINTF(" Data Line Active Negation = %s\n", sdp->isp_data_line_active_neg? tru : not); PRINTF(" Cmd DMA Burst Enable = %s\n", sdp->isp_cmd_dma_burst_enable? tru : not); } for (i = 0; i < MAX_TARGETS; i++) { sdp->isp_devparam[i].dev_enable = ISP1080_NVRAM_TGT_DEVICE_ENABLE(nvram_data, i, bus); sdp->isp_devparam[i].exc_throttle = ISP1080_NVRAM_TGT_EXEC_THROTTLE(nvram_data, i, bus); sdp->isp_devparam[i].sync_offset = ISP1080_NVRAM_TGT_SYNC_OFFSET(nvram_data, i, bus); sdp->isp_devparam[i].sync_period = ISP1080_NVRAM_TGT_SYNC_PERIOD(nvram_data, i, bus); sdp->isp_devparam[i].dev_flags = 0; if (ISP1080_NVRAM_TGT_RENEG(nvram_data, i, bus)) sdp->isp_devparam[i].dev_flags |= DPARM_RENEG; if (ISP1080_NVRAM_TGT_QFRZ(nvram_data, i, bus)) { PRINTF("%s: not supporting QFRZ option " "for target %d bus %d\n", isp->isp_name, i, bus); } sdp->isp_devparam[i].dev_flags |= DPARM_ARQ; if (ISP1080_NVRAM_TGT_ARQ(nvram_data, i, bus) == 0) { PRINTF("%s: not disabling ARQ option " "for target %d bus %d\n", isp->isp_name, i, bus); } if (ISP1080_NVRAM_TGT_TQING(nvram_data, i, bus)) sdp->isp_devparam[i].dev_flags |= DPARM_TQING; if (ISP1080_NVRAM_TGT_SYNC(nvram_data, i, bus)) sdp->isp_devparam[i].dev_flags |= DPARM_SYNC; if (ISP1080_NVRAM_TGT_WIDE(nvram_data, i, bus)) sdp->isp_devparam[i].dev_flags |= DPARM_WIDE; if (ISP1080_NVRAM_TGT_PARITY(nvram_data, i, bus)) sdp->isp_devparam[i].dev_flags |= DPARM_PARITY; if (ISP1080_NVRAM_TGT_DISC(nvram_data, i, bus)) sdp->isp_devparam[i].dev_flags |= DPARM_DISC; sdp->isp_devparam[i].cur_dflags = 0; if (isp->isp_dblev >= 3) { PRINTF(" Target %d: Ena %d Throttle " "%d Offset %d Period %d Flags " "0x%x\n", i, sdp->isp_devparam[i].dev_enable, sdp->isp_devparam[i].exc_throttle, sdp->isp_devparam[i].sync_offset, sdp->isp_devparam[i].sync_period, sdp->isp_devparam[i].dev_flags); } } } } else if (IS_SCSI(isp)) { sdparam *sdp = (sdparam *) isp->isp_param; sdp->isp_fifo_threshold = ISP_NVRAM_FIFO_THRESHOLD(nvram_data) | (ISP_NVRAM_FIFO_THRESHOLD_128(nvram_data) << 2); sdp->isp_initiator_id = ISP_NVRAM_INITIATOR_ID(nvram_data); sdp->isp_bus_reset_delay = ISP_NVRAM_BUS_RESET_DELAY(nvram_data); sdp->isp_retry_count = ISP_NVRAM_BUS_RETRY_COUNT(nvram_data); sdp->isp_retry_delay = ISP_NVRAM_BUS_RETRY_DELAY(nvram_data); sdp->isp_async_data_setup = ISP_NVRAM_ASYNC_DATA_SETUP_TIME(nvram_data); if (isp->isp_type >= ISP_HA_SCSI_1040) { if (sdp->isp_async_data_setup < 9) { sdp->isp_async_data_setup = 9; } } else { if (sdp->isp_async_data_setup != 6) { sdp->isp_async_data_setup = 6; } } sdp->isp_req_ack_active_neg = ISP_NVRAM_REQ_ACK_ACTIVE_NEGATION(nvram_data); sdp->isp_data_line_active_neg = ISP_NVRAM_DATA_LINE_ACTIVE_NEGATION(nvram_data); sdp->isp_data_dma_burst_enabl = ISP_NVRAM_DATA_DMA_BURST_ENABLE(nvram_data); sdp->isp_cmd_dma_burst_enable = ISP_NVRAM_CMD_DMA_BURST_ENABLE(nvram_data); sdp->isp_tag_aging = ISP_NVRAM_TAG_AGE_LIMIT(nvram_data); sdp->isp_selection_timeout = ISP_NVRAM_SELECTION_TIMEOUT(nvram_data); sdp->isp_max_queue_depth = ISP_NVRAM_MAX_QUEUE_DEPTH(nvram_data); isp->isp_fast_mttr = ISP_NVRAM_FAST_MTTR_ENABLE(nvram_data); if (isp->isp_dblev > 2) { PRINTF("%s: NVRAM values:\n", isp->isp_name); PRINTF(" Fifo Threshold = 0x%x\n", sdp->isp_fifo_threshold); PRINTF(" Bus Reset Delay = %d\n", sdp->isp_bus_reset_delay); PRINTF(" Retry Count = %d\n", sdp->isp_retry_count); PRINTF(" Retry Delay = %d\n", sdp->isp_retry_delay); PRINTF(" Tag Age Limit = %d\n", sdp->isp_tag_aging); PRINTF(" Selection Timeout = %d\n", sdp->isp_selection_timeout); PRINTF(" Max Queue Depth = %d\n", sdp->isp_max_queue_depth); PRINTF(" Async Data Setup = 0x%x\n", sdp->isp_async_data_setup); PRINTF(" REQ/ACK Active Negation = %s\n", sdp->isp_req_ack_active_neg? tru : not); PRINTF(" Data Line Active Negation = %s\n", sdp->isp_data_line_active_neg? tru : not); PRINTF(" Data DMA Burst Enable = %s\n", sdp->isp_data_dma_burst_enabl? tru : not); PRINTF(" Cmd DMA Burst Enable = %s\n", sdp->isp_cmd_dma_burst_enable? tru : not); PRINTF(" Fast MTTR = %s\n", isp->isp_fast_mttr? tru : not); } for (i = 0; i < MAX_TARGETS; i++) { sdp->isp_devparam[i].dev_enable = ISP_NVRAM_TGT_DEVICE_ENABLE(nvram_data, i); sdp->isp_devparam[i].exc_throttle = ISP_NVRAM_TGT_EXEC_THROTTLE(nvram_data, i); sdp->isp_devparam[i].sync_offset = ISP_NVRAM_TGT_SYNC_OFFSET(nvram_data, i); sdp->isp_devparam[i].sync_period = ISP_NVRAM_TGT_SYNC_PERIOD(nvram_data, i); if (isp->isp_type < ISP_HA_SCSI_1040) { /* * If we're not ultra, we can't possibly * be a shorter period than this. */ if (sdp->isp_devparam[i].sync_period < 0x19) { sdp->isp_devparam[i].sync_period = 0x19; } if (sdp->isp_devparam[i].sync_offset > 0xc) { sdp->isp_devparam[i].sync_offset = 0x0c; } } else { if (sdp->isp_devparam[i].sync_offset > 0x8) { sdp->isp_devparam[i].sync_offset = 0x8; } } sdp->isp_devparam[i].dev_flags = 0; if (ISP_NVRAM_TGT_RENEG(nvram_data, i)) sdp->isp_devparam[i].dev_flags |= DPARM_RENEG; if (ISP_NVRAM_TGT_QFRZ(nvram_data, i)) { PRINTF("%s: not supporting QFRZ option for " "target %d\n", isp->isp_name, i); } sdp->isp_devparam[i].dev_flags |= DPARM_ARQ; if (ISP_NVRAM_TGT_ARQ(nvram_data, i) == 0) { PRINTF("%s: not disabling ARQ option for " "target %d\n", isp->isp_name, i); } if (ISP_NVRAM_TGT_TQING(nvram_data, i)) sdp->isp_devparam[i].dev_flags |= DPARM_TQING; if (ISP_NVRAM_TGT_SYNC(nvram_data, i)) sdp->isp_devparam[i].dev_flags |= DPARM_SYNC; if (ISP_NVRAM_TGT_WIDE(nvram_data, i)) sdp->isp_devparam[i].dev_flags |= DPARM_WIDE; if (ISP_NVRAM_TGT_PARITY(nvram_data, i)) sdp->isp_devparam[i].dev_flags |= DPARM_PARITY; if (ISP_NVRAM_TGT_DISC(nvram_data, i)) sdp->isp_devparam[i].dev_flags |= DPARM_DISC; sdp->isp_devparam[i].cur_dflags = 0; /* we don't know */ if (isp->isp_dblev > 2) { PRINTF(" Target %d: Enabled %d Throttle %d " "Offset %d Period %d Flags 0x%x\n", i, sdp->isp_devparam[i].dev_enable, sdp->isp_devparam[i].exc_throttle, sdp->isp_devparam[i].sync_offset, sdp->isp_devparam[i].sync_period, sdp->isp_devparam[i].dev_flags); } } } else { fcparam *fcp = (fcparam *) isp->isp_param; union { struct { #if BYTE_ORDER == BIG_ENDIAN u_int32_t hi32; u_int32_t lo32; #else u_int32_t lo32; u_int32_t hi32; #endif } wds; u_int64_t full64; } wwnstore; wwnstore.full64 = ISP2100_NVRAM_NODE_NAME(nvram_data); PRINTF("%s: Adapter WWN 0x%08x%08x\n", isp->isp_name, wwnstore.wds.hi32, wwnstore.wds.lo32); fcp->isp_nodewwn = wwnstore.full64; /* * If the Node WWN has 2 in the top nibble, we can * authoritatively construct a Port WWN by adding * our unit number (plus one to make it nonzero) and * putting it into bits 59..56. If the top nibble isn't * 2, then we just set them identically. */ if ((fcp->isp_nodewwn >> 60) == 2) { fcp->isp_portwwn = fcp->isp_nodewwn | (((u_int64_t)(isp->isp_unit+1)) << 56); } else { fcp->isp_portwwn = fcp->isp_nodewwn; } wwnstore.full64 = ISP2100_NVRAM_BOOT_NODE_NAME(nvram_data); if (wwnstore.full64 != 0) { PRINTF("%s: BOOT DEVICE WWN 0x%08x%08x\n", isp->isp_name, wwnstore.wds.hi32, wwnstore.wds.lo32); } fcp->isp_maxalloc = ISP2100_NVRAM_MAXIOCBALLOCATION(nvram_data); fcp->isp_maxfrmlen = ISP2100_NVRAM_MAXFRAMELENGTH(nvram_data); fcp->isp_retry_delay = ISP2100_NVRAM_RETRY_DELAY(nvram_data); fcp->isp_retry_count = ISP2100_NVRAM_RETRY_COUNT(nvram_data); fcp->isp_loopid = ISP2100_NVRAM_HARDLOOPID(nvram_data); fcp->isp_execthrottle = ISP2100_NVRAM_EXECUTION_THROTTLE(nvram_data); fcp->isp_fwoptions = ISP2100_NVRAM_OPTIONS(nvram_data); if (isp->isp_dblev > 2) { PRINTF("%s: NVRAM values:\n", isp->isp_name); PRINTF(" Max IOCB Allocation = %d\n", fcp->isp_maxalloc); PRINTF(" Max Frame Length = %d\n", fcp->isp_maxfrmlen); PRINTF(" Execution Throttle = %d\n", fcp->isp_execthrottle); PRINTF(" Retry Count = %d\n", fcp->isp_retry_count); PRINTF(" Retry Delay = %d\n", fcp->isp_retry_delay); PRINTF(" Hard Loop ID = %d\n", fcp->isp_loopid); PRINTF(" Options = 0x%x\n", fcp->isp_fwoptions); PRINTF(" HBA Options = 0x%x\n", ISP2100_NVRAM_HBA_OPTIONS(nvram_data)); } } IDPRINTF(3, ("%s: NVRAM is valid\n", isp->isp_name)); return (0); } static void isp_rdnvram_word(isp, wo, rp) struct ispsoftc *isp; int wo; u_int16_t *rp; { int i, cbits; u_int16_t bit, rqst; ISP_WRITE(isp, BIU_NVRAM, BIU_NVRAM_SELECT); SYS_DELAY(2); ISP_WRITE(isp, BIU_NVRAM, BIU_NVRAM_SELECT|BIU_NVRAM_CLOCK); SYS_DELAY(2); if (IS_FC(isp)) { wo &= ((ISP2100_NVRAM_SIZE >> 1) - 1); rqst = (ISP_NVRAM_READ << 8) | wo; cbits = 10; } else if (IS_1080(isp) || IS_12X0(isp)) { wo &= ((ISP1080_NVRAM_SIZE >> 1) - 1); rqst = (ISP_NVRAM_READ << 8) | wo; cbits = 10; } else { wo &= ((ISP_NVRAM_SIZE >> 1) - 1); rqst = (ISP_NVRAM_READ << 6) | wo; cbits = 8; } /* * Clock the word select request out... */ for (i = cbits; i >= 0; i--) { if ((rqst >> i) & 1) { bit = BIU_NVRAM_SELECT | BIU_NVRAM_DATAOUT; } else { bit = BIU_NVRAM_SELECT; } ISP_WRITE(isp, BIU_NVRAM, bit); SYS_DELAY(2); ISP_WRITE(isp, BIU_NVRAM, bit | BIU_NVRAM_CLOCK); SYS_DELAY(2); ISP_WRITE(isp, BIU_NVRAM, bit); SYS_DELAY(2); } /* * Now read the result back in (bits come back in MSB format). */ *rp = 0; for (i = 0; i < 16; i++) { u_int16_t rv; *rp <<= 1; ISP_WRITE(isp, BIU_NVRAM, BIU_NVRAM_SELECT|BIU_NVRAM_CLOCK); SYS_DELAY(2); rv = ISP_READ(isp, BIU_NVRAM); if (rv & BIU_NVRAM_DATAIN) { *rp |= 1; } SYS_DELAY(2); ISP_WRITE(isp, BIU_NVRAM, BIU_NVRAM_SELECT); SYS_DELAY(2); } ISP_WRITE(isp, BIU_NVRAM, 0); SYS_DELAY(2); #if BYTE_ORDER == BIG_ENDIAN *rp = ((*rp >> 8) | ((*rp & 0xff) << 8)); #endif }