The parse driver currently supports several clocks with different query mechanisms. In order for you to find a sample that might be similar to a clock you might want to integrate into parse i'll sum up the major features of the clocks (this information is distributed in the parse/clk_*.c and xntpd/refclock_parse.c files). --- Meinberg: 127.127.8. 0- 3 (PZF535TCXO) 127.127.8. 4- 7 (PZF535OCXO) 127.127.8. 8-11 (DCFUA31) 127.127.8.28-31 (GPS166) Meinberg: start=, end=, sync on start pattern="\2D: . . ;T: ;U: . . ; \3" pattern="\2 . . ; ; : : ; \3" pattern="\2 . . ; ; : : ; : ; ; . . " Meinberg is a german manufacturer of time code receivers. Those clocks have a pretty common output format in the stock version. In order to support NTP Meinberg was so kind to produce some special versions of the firmware for the use with NTP. So, if you are going to use a Meinberg clock please ask whether there is a special Uni Erlangen version. General characteristics: Meinberg clocks primarily output pulse per second and a describing ASCII string. This string can be produced in two modes. either upon the reception of a question mark or every second. NTP uses the latter mechanism. The DCF77 variants have a pretty good relationship between RS232 time code and the PPS signal while the GPS receiver has no fixed timeing between the datagram and the pulse (you need to use PPS with GPS!) on DCF77 you might get away without the PPS signal. The preferred tty setting for Meinberg is: CFLAG (B9600|CS7|PARENB|CREAD|HUPCL) IFLAG (IGNBRK|IGNPAR|ISTRIP) OFLAG 0 LFLAG 0 The clock is run at datagram once per second. Stock dataformat is: D:
..;T:;U:::; pos: 0 00 00 0 00 0 11 111 1 111 12 2 22 2 22 2 2 2 3 3 3 1 23 45 6 78 9 01 234 5 678 90 1 23 4 56 7 8 9 0 1 2 = '\002' ASCII start of text = '\003' ASCII end of text
,, = day, month, year(2 digits!!) = day of week (sunday= 0) ,, = hour, minute, second = '#' if never synced since powerup else ' ' for DCF U/A 31 '#' if not PZF sychronisation available else ' ' for PZF 535 = '*' if time comes from internal quartz else ' ' = 'S' if daylight saving time is active else ' ' = '!' during the hour preceeding an daylight saving time start/end change For the university of Erlangen a special format was implemented to support LEAP announcement and anouncement of alternate antenna. Version for UNI-ERLANGEN Software is: PZFUERL V4.6 (Meinberg) The use of this software release (or higher) is *ABSOLUTELY* recommended (ask for PZFUERL version as some minor HW fixes have been introduced) due to the LEAP second support and UTC indication. The standard timecode does not indicate when the timecode is in UTC (by front panel configuration) thus we have no chance to find the correct utc offset. For the standard format do not ever use UTC display as this is not detectable in the time code !!!
..; ; ::; pos: 0 00 0 00 0 00 11 1 11 11 1 11 2 22 22 2 2 2 2 2 3 3 3 1 23 4 56 7 89 01 2 34 56 7 89 0 12 34 5 6 7 8 9 0 1 2 = '\002' ASCII start of text = '\003' ASCII end of text
,, = day, month, year(2 digits!!) = day of week (sunday= 0) ,, = hour, minute, second = 'U' UTC time display = '#' if never synced since powerup else ' ' for DCF U/A 31 '#' if not PZF sychronisation available else ' ' for PZF 535 = '*' if time comes from internal quartz else ' ' = 'S' if daylight saving time is active else ' ' = '!' during the hour preceeding an daylight saving time start/end change = 'A' LEAP second announcement = 'R' alternate antenna Meinberg GPS166 receiver You must get the Uni-Erlangen firmware for the GPS receiver support to work to full satisfaction !
..; ; ::; <+/-><00:00>; ; * 000000000111111111122222222223333333333444444444455555555556666666 123456789012345678901234567890123456789012345678901234567890123456 \x0209.07.93; 5; 08:48:26; +00:00; ; 49.5736N 11.0280E 373m\x03 * = '\002' ASCII start of text = '\003' ASCII end of text
,, = day, month, year(2 digits!!) = day of week (sunday= 0) ,, = hour, minute, second <+/->,<00:00> = offset to UTC = '#' if never synced since powerup else ' ' for DCF U/A 31 '#' if not PZF sychronisation available else ' ' for PZF 535 = 'U' UTC time display = '*' if time comes from internal quartz else ' ' = 'S' if daylight saving time is active else ' ' = '!' during the hour preceeding an daylight saving time start/end change = 'A' LEAP second announcement = 'R' alternate antenna (reminiscent of PZF535) usually ' ' = 'L' on 23:59:60 For the Meinberg parse look into clock_meinberg.c --- RAWDCF: 127.127.8.20-23 (Conrad receiver module - delay 258ms) 127.127.8.24-27 (FAU receiver - delay 210ms) 127.127.8.40-43 (Boeder receiver - delay 258ms) RAWDCF: end=TIMEOUT>1.5s, sync each char (any char), generate psuedo time codes, fixed format direct DCF77 code input In Europe it is relatively easy/cheap the receive the german time code transmitter DCF77. The simplest version to process its signal is to feed the 100/200ms pulse of the demodulated AM signal via a level converter to an RS232 port at 50Baud. parse/clk_rawdcf.c holds all necessary decoding logic for the time code which is transmitted each minute for one minute. A bit of the time code is sent once a second. The preferred tty setting is: CFLAG (B50|CS8|CREAD|CLOCAL) IFLAG 0 OFLAG 0 LFLAG 0 DCF77 raw time code From "Zur Zeit", Physikalisch-Technische Bundesanstalt (PTB), Braunschweig und Berlin, Maerz 1989 Timecode transmission: AM: time marks are send every second except for the second before the next minute mark time marks consist of a reduction of transmitter power to 25% of the nominal level the falling edge is the time indication (on time) time marks of a 100ms duration constitute a logical 0 time marks of a 200ms duration constitute a logical 1 FM: see the spec. (basically a (non-)inverted psuedo random phase shift) Encoding: Second Contents 0 - 10 AM: free, FM: 0 11 - 14 free 15 R - alternate antenna 16 A1 - expect zone change (1 hour before) 17 - 18 Z1,Z2 - time zone 0 0 illegal 0 1 MEZ (MET) 1 0 MESZ (MED, MET DST) 1 1 illegal 19 A2 - expect leap insertion/deletion (1 hour before) 20 S - start of time code (1) 21 - 24 M1 - BCD (lsb first) Minutes 25 - 27 M10 - BCD (lsb first) 10 Minutes 28 P1 - Minute Parity (even) 29 - 32 H1 - BCD (lsb first) Hours 33 - 34 H10 - BCD (lsb first) 10 Hours 35 P2 - Hour Parity (even) 36 - 39 D1 - BCD (lsb first) Days 40 - 41 D10 - BCD (lsb first) 10 Days 42 - 44 DW - BCD (lsb first) day of week (1: Monday -> 7: Sunday) 45 - 49 MO - BCD (lsb first) Month 50 MO0 - 10 Months 51 - 53 Y1 - BCD (lsb first) Years 54 - 57 Y10 - BCD (lsb first) 10 Years 58 P3 - Date Parity (even) 59 - usually missing (minute indication), except for leap insertion --- Schmid clock: 127.127.8.16-19 Schmid clock: needs poll, binary input, end='\xFC', sync start The Schmid clock is a DCF77 receiver that sends a binary time code at the reception of a flag byte. The contents if the flag byte determined the time code format. The binary time code is delimited by the byte 0xFC. TTY setup is: CFLAG (B1200|CS8|CREAD|CLOCAL) IFLAG 0 OFLAG 0 LFLAG 0 The command to Schmid's DCF77 clock is a single byte; each bit allows the user to select some part of the time string, as follows (the output for the lsb is sent first). Bit 0: time in MEZ, 4 bytes *binary, not BCD*; hh.mm.ss.tenths Bit 1: date 3 bytes *binary, not BCD: dd.mm.yy Bit 2: week day, 1 byte (unused here) Bit 3: time zone, 1 byte, 0=MET, 1=MEST. (unused here) Bit 4: clock status, 1 byte, 0=time invalid, 1=time from crystal backup, 3=time from DCF77 Bit 5: transmitter status, 1 byte, bit 0: backup antenna bit 1: time zone change within 1h bit 3,2: TZ 01=MEST, 10=MET bit 4: leap second will be added within one hour bits 5-7: Zero Bit 6: time in backup mode, units of 5 minutes (unused here) --- Trimble SV6: 127.127.8.32-35 Trimble SV6: needs poll, ascii timecode, start='>', end='<', query='>QTM<', eol='<' Trimble SV6 is a GPS receiver with PPS output. It needs to be polled. It also need a special tty mode setup (EOL='<'). TTY setup is: CFLAG (B4800|CS8|CREAD) IFLAG (BRKINT|IGNPAR|ISTRIP|ICRNL|IXON) OFLAG (OPOST|ONLCR) LFLAG (ICANON|ECHOK) Special flags are: PARSE_F_PPSPPS - use CIOGETEV for PPS time stamping PARSE_F_PPSONSECOND - the time code is not related to the PPS pulse (so use the time code only for the second epoch) Timecode 0000000000111111111122222222223333333 / char 0123456789012345678901234567890123456 \ posn >RTMhhmmssdddDDMMYYYYoodnnvrrrrr;*xx< Actual ----33445566600112222BB7__-_____--99- Parse >RTM 1 ;* <", Check --- ELV DCF7000: 127.127.8.12-15 ELV DCF7000: end='\r', pattern=" - - - - - - - \r" The ELV DCF7000 is a cheap DCF77 receiver sending each second a time code (though not very precise!) delimited by '`r' Timecode YY-MM-DD-HH-MM-SS-FF\r FF&0x1 - DST FF&0x2 - DST switch warning FF&0x4 - unsynchronised