//===- ProfilingUtils.cpp - Helper functions shared by profilers ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements a few helper functions which are used by profile // instrumentation code to instrument the code. This allows the profiler pass // to worry about *what* to insert, and these functions take care of *how* to do // it. // //===----------------------------------------------------------------------===// #include "ProfilingUtils.h" #include "llvm/Constants.h" #include "llvm/DerivedTypes.h" #include "llvm/Instructions.h" #include "llvm/LLVMContext.h" #include "llvm/Module.h" void llvm::InsertProfilingInitCall(Function *MainFn, const char *FnName, GlobalValue *Array, PointerType *arrayType) { LLVMContext &Context = MainFn->getContext(); const Type *ArgVTy = PointerType::getUnqual(Type::getInt8PtrTy(Context)); const PointerType *UIntPtr = arrayType ? arrayType : Type::getInt32PtrTy(Context); Module &M = *MainFn->getParent(); Constant *InitFn = M.getOrInsertFunction(FnName, Type::getInt32Ty(Context), Type::getInt32Ty(Context), ArgVTy, UIntPtr, Type::getInt32Ty(Context), (Type *)0); // This could force argc and argv into programs that wouldn't otherwise have // them, but instead we just pass null values in. std::vector Args(4); Args[0] = Constant::getNullValue(Type::getInt32Ty(Context)); Args[1] = Constant::getNullValue(ArgVTy); // Skip over any allocas in the entry block. BasicBlock *Entry = MainFn->begin(); BasicBlock::iterator InsertPos = Entry->begin(); while (isa(InsertPos)) ++InsertPos; std::vector GEPIndices(2, Constant::getNullValue(Type::getInt32Ty(Context))); unsigned NumElements = 0; if (Array) { Args[2] = ConstantExpr::getGetElementPtr(Array, &GEPIndices[0], GEPIndices.size()); NumElements = cast(Array->getType()->getElementType())->getNumElements(); } else { // If this profiling instrumentation doesn't have a constant array, just // pass null. Args[2] = ConstantPointerNull::get(UIntPtr); } Args[3] = ConstantInt::get(Type::getInt32Ty(Context), NumElements); CallInst *InitCall = CallInst::Create(InitFn, Args.begin(), Args.end(), "newargc", InsertPos); // If argc or argv are not available in main, just pass null values in. Function::arg_iterator AI; switch (MainFn->arg_size()) { default: case 2: AI = MainFn->arg_begin(); ++AI; if (AI->getType() != ArgVTy) { Instruction::CastOps opcode = CastInst::getCastOpcode(AI, false, ArgVTy, false); InitCall->setArgOperand(1, CastInst::Create(opcode, AI, ArgVTy, "argv.cast", InitCall)); } else { InitCall->setArgOperand(1, AI); } /* FALL THROUGH */ case 1: AI = MainFn->arg_begin(); // If the program looked at argc, have it look at the return value of the // init call instead. if (!AI->getType()->isIntegerTy(32)) { Instruction::CastOps opcode; if (!AI->use_empty()) { opcode = CastInst::getCastOpcode(InitCall, true, AI->getType(), true); AI->replaceAllUsesWith( CastInst::Create(opcode, InitCall, AI->getType(), "", InsertPos)); } opcode = CastInst::getCastOpcode(AI, true, Type::getInt32Ty(Context), true); InitCall->setArgOperand(0, CastInst::Create(opcode, AI, Type::getInt32Ty(Context), "argc.cast", InitCall)); } else { AI->replaceAllUsesWith(InitCall); InitCall->setArgOperand(0, AI); } case 0: break; } } void llvm::IncrementCounterInBlock(BasicBlock *BB, unsigned CounterNum, GlobalValue *CounterArray, bool beginning) { // Insert the increment after any alloca or PHI instructions... BasicBlock::iterator InsertPos = beginning ? BB->getFirstNonPHI() : BB->getTerminator(); while (isa(InsertPos)) ++InsertPos; LLVMContext &Context = BB->getContext(); // Create the getelementptr constant expression std::vector Indices(2); Indices[0] = Constant::getNullValue(Type::getInt32Ty(Context)); Indices[1] = ConstantInt::get(Type::getInt32Ty(Context), CounterNum); Constant *ElementPtr = ConstantExpr::getGetElementPtr(CounterArray, &Indices[0], Indices.size()); // Load, increment and store the value back. Value *OldVal = new LoadInst(ElementPtr, "OldFuncCounter", InsertPos); Value *NewVal = BinaryOperator::Create(Instruction::Add, OldVal, ConstantInt::get(Type::getInt32Ty(Context), 1), "NewFuncCounter", InsertPos); new StoreInst(NewVal, ElementPtr, InsertPos); } void llvm::InsertProfilingShutdownCall(Function *Callee, Module *Mod) { // llvm.global_dtors is an array of type { i32, void ()* }. Prepare those // types. const Type *GlobalDtorElems[2] = { Type::getInt32Ty(Mod->getContext()), FunctionType::get(Type::getVoidTy(Mod->getContext()), false)->getPointerTo() }; const StructType *GlobalDtorElemTy = StructType::get(Mod->getContext(), GlobalDtorElems, false); // Construct the new element we'll be adding. Constant *Elem[2] = { ConstantInt::get(Type::getInt32Ty(Mod->getContext()), 65535), ConstantExpr::getBitCast(Callee, GlobalDtorElems[1]) }; // If llvm.global_dtors exists, make a copy of the things in its list and // delete it, to replace it with one that has a larger array type. std::vector dtors; if (GlobalVariable *GlobalDtors = Mod->getNamedGlobal("llvm.global_dtors")) { if (ConstantArray *InitList = dyn_cast(GlobalDtors->getInitializer())) { for (unsigned i = 0, e = InitList->getType()->getNumElements(); i != e; ++i) dtors.push_back(cast(InitList->getOperand(i))); } GlobalDtors->eraseFromParent(); } // Build up llvm.global_dtors with our new item in it. GlobalVariable *GlobalDtors = new GlobalVariable( *Mod, ArrayType::get(GlobalDtorElemTy, 1), false, GlobalValue::AppendingLinkage, NULL, "llvm.global_dtors"); dtors.push_back(ConstantStruct::get(Mod->getContext(), Elem, 2, false)); GlobalDtors->setInitializer(ConstantArray::get( cast(GlobalDtors->getType()->getElementType()), dtors)); }