/*- * Copyright (c) 2012 Oleksandr Tymoshenko * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sdhci_if.h" #include "bcm2835_dma.h" #include #include "bcm2835_vcbus.h" #define BCM2835_DEFAULT_SDHCI_FREQ 50 #define BCM_SDHCI_BUFFER_SIZE 512 #define NUM_DMA_SEGS 2 #ifdef DEBUG #define dprintf(fmt, args...) do { printf("%s(): ", __func__); \ printf(fmt,##args); } while (0) #else #define dprintf(fmt, args...) #endif /* DMA doesn't yet work with the bcm3826 */ #ifdef SOC_BCM2836 #define PIO_MODE 1 #else #define PIO_MODE 0 #endif static int bcm2835_sdhci_hs = 1; static int bcm2835_sdhci_pio_mode = PIO_MODE; TUNABLE_INT("hw.bcm2835.sdhci.hs", &bcm2835_sdhci_hs); TUNABLE_INT("hw.bcm2835.sdhci.pio_mode", &bcm2835_sdhci_pio_mode); struct bcm_sdhci_softc { device_t sc_dev; struct mtx sc_mtx; struct resource * sc_mem_res; struct resource * sc_irq_res; bus_space_tag_t sc_bst; bus_space_handle_t sc_bsh; void * sc_intrhand; struct mmc_request * sc_req; struct mmc_data * sc_data; uint32_t sc_flags; #define LPC_SD_FLAGS_IGNORECRC (1 << 0) int sc_xfer_direction; #define DIRECTION_READ 0 #define DIRECTION_WRITE 1 int sc_xfer_done; int sc_bus_busy; struct sdhci_slot sc_slot; int sc_dma_inuse; int sc_dma_ch; bus_dma_tag_t sc_dma_tag; bus_dmamap_t sc_dma_map; vm_paddr_t sc_sdhci_buffer_phys; uint32_t cmd_and_mode; bus_addr_t dmamap_seg_addrs[NUM_DMA_SEGS]; bus_size_t dmamap_seg_sizes[NUM_DMA_SEGS]; int dmamap_seg_count; int dmamap_seg_index; int dmamap_status; }; static int bcm_sdhci_probe(device_t); static int bcm_sdhci_attach(device_t); static int bcm_sdhci_detach(device_t); static void bcm_sdhci_intr(void *); static int bcm_sdhci_get_ro(device_t, device_t); static void bcm_sdhci_dma_intr(int ch, void *arg); #define bcm_sdhci_lock(_sc) \ mtx_lock(&_sc->sc_mtx); #define bcm_sdhci_unlock(_sc) \ mtx_unlock(&_sc->sc_mtx); static void bcm_sdhci_dmacb(void *arg, bus_dma_segment_t *segs, int nseg, int err) { struct bcm_sdhci_softc *sc = arg; int i; sc->dmamap_status = err; sc->dmamap_seg_count = nseg; /* Note nseg is guaranteed to be zero if err is non-zero. */ for (i = 0; i < nseg; i++) { sc->dmamap_seg_addrs[i] = segs[i].ds_addr; sc->dmamap_seg_sizes[i] = segs[i].ds_len; } } static int bcm_sdhci_probe(device_t dev) { if (!ofw_bus_status_okay(dev)) return (ENXIO); if (!ofw_bus_is_compatible(dev, "broadcom,bcm2835-sdhci")) return (ENXIO); device_set_desc(dev, "Broadcom 2708 SDHCI controller"); return (BUS_PROBE_DEFAULT); } static int bcm_sdhci_attach(device_t dev) { struct bcm_sdhci_softc *sc = device_get_softc(dev); int rid, err; phandle_t node; pcell_t cell; u_int default_freq; sc->sc_dev = dev; sc->sc_req = NULL; err = bcm2835_mbox_set_power_state(dev, BCM2835_MBOX_POWER_ID_EMMC, TRUE); if (err != 0) { if (bootverbose) device_printf(dev, "Unable to enable the power\n"); return (err); } default_freq = 0; err = bcm2835_mbox_get_clock_rate(dev, BCM2835_MBOX_CLOCK_ID_EMMC, &default_freq); if (err == 0) { /* Convert to MHz */ default_freq /= 1000000; if (bootverbose) device_printf(dev, "default frequency: %dMHz\n", default_freq); } if (default_freq == 0) default_freq = BCM2835_DEFAULT_SDHCI_FREQ; node = ofw_bus_get_node(sc->sc_dev); if ((OF_getprop(node, "clock-frequency", &cell, sizeof(cell))) > 0) default_freq = fdt32_to_cpu(cell)/1000000; if (bootverbose) device_printf(dev, "SDHCI frequency: %dMHz\n", default_freq); mtx_init(&sc->sc_mtx, "bcm sdhci", "sdhci", MTX_DEF); rid = 0; sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (!sc->sc_mem_res) { device_printf(dev, "cannot allocate memory window\n"); err = ENXIO; goto fail; } sc->sc_bst = rman_get_bustag(sc->sc_mem_res); sc->sc_bsh = rman_get_bushandle(sc->sc_mem_res); rid = 0; sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE); if (!sc->sc_irq_res) { device_printf(dev, "cannot allocate interrupt\n"); err = ENXIO; goto fail; } if (bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_BIO | INTR_MPSAFE, NULL, bcm_sdhci_intr, sc, &sc->sc_intrhand)) { device_printf(dev, "cannot setup interrupt handler\n"); err = ENXIO; goto fail; } if (!bcm2835_sdhci_pio_mode) sc->sc_slot.opt = SDHCI_PLATFORM_TRANSFER; sc->sc_slot.caps = SDHCI_CAN_VDD_330 | SDHCI_CAN_VDD_180; if (bcm2835_sdhci_hs) sc->sc_slot.caps |= SDHCI_CAN_DO_HISPD; sc->sc_slot.caps |= (default_freq << SDHCI_CLOCK_BASE_SHIFT); sc->sc_slot.quirks = SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK | SDHCI_QUIRK_BROKEN_TIMEOUT_VAL | SDHCI_QUIRK_DONT_SET_HISPD_BIT | SDHCI_QUIRK_MISSING_CAPS; sdhci_init_slot(dev, &sc->sc_slot, 0); sc->sc_dma_ch = bcm_dma_allocate(BCM_DMA_CH_FAST1); if (sc->sc_dma_ch == BCM_DMA_CH_INVALID) sc->sc_dma_ch = bcm_dma_allocate(BCM_DMA_CH_FAST2); if (sc->sc_dma_ch == BCM_DMA_CH_INVALID) sc->sc_dma_ch = bcm_dma_allocate(BCM_DMA_CH_ANY); if (sc->sc_dma_ch == BCM_DMA_CH_INVALID) goto fail; bcm_dma_setup_intr(sc->sc_dma_ch, bcm_sdhci_dma_intr, sc); /* Allocate bus_dma resources. */ err = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, BCM_SDHCI_BUFFER_SIZE, NUM_DMA_SEGS, BCM_SDHCI_BUFFER_SIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_dma_tag); if (err) { device_printf(dev, "failed allocate DMA tag"); goto fail; } err = bus_dmamap_create(sc->sc_dma_tag, 0, &sc->sc_dma_map); if (err) { device_printf(dev, "bus_dmamap_create failed\n"); goto fail; } sc->sc_sdhci_buffer_phys = BUS_SPACE_PHYSADDR(sc->sc_mem_res, SDHCI_BUFFER); bus_generic_probe(dev); bus_generic_attach(dev); sdhci_start_slot(&sc->sc_slot); return (0); fail: if (sc->sc_intrhand) bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_intrhand); if (sc->sc_irq_res) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res); if (sc->sc_mem_res) bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res); mtx_destroy(&sc->sc_mtx); return (err); } static int bcm_sdhci_detach(device_t dev) { return (EBUSY); } static void bcm_sdhci_intr(void *arg) { struct bcm_sdhci_softc *sc = arg; sdhci_generic_intr(&sc->sc_slot); } static int bcm_sdhci_get_ro(device_t bus, device_t child) { return (0); } static inline uint32_t RD4(struct bcm_sdhci_softc *sc, bus_size_t off) { uint32_t val = bus_space_read_4(sc->sc_bst, sc->sc_bsh, off); return val; } static inline void WR4(struct bcm_sdhci_softc *sc, bus_size_t off, uint32_t val) { bus_space_write_4(sc->sc_bst, sc->sc_bsh, off, val); /* * The Arasan HC has a bug where it may lose the content of * consecutive writes to registers that are within two SD-card * clock cycles of each other (a clock domain crossing problem). */ if (sc->sc_slot.clock > 0) DELAY(((2 * 1000000) / sc->sc_slot.clock) + 1); } static uint8_t bcm_sdhci_read_1(device_t dev, struct sdhci_slot *slot, bus_size_t off) { struct bcm_sdhci_softc *sc = device_get_softc(dev); uint32_t val = RD4(sc, off & ~3); return ((val >> (off & 3)*8) & 0xff); } static uint16_t bcm_sdhci_read_2(device_t dev, struct sdhci_slot *slot, bus_size_t off) { struct bcm_sdhci_softc *sc = device_get_softc(dev); uint32_t val = RD4(sc, off & ~3); /* * Standard 32-bit handling of command and transfer mode. */ if (off == SDHCI_TRANSFER_MODE) { return (sc->cmd_and_mode >> 16); } else if (off == SDHCI_COMMAND_FLAGS) { return (sc->cmd_and_mode & 0x0000ffff); } return ((val >> (off & 3)*8) & 0xffff); } static uint32_t bcm_sdhci_read_4(device_t dev, struct sdhci_slot *slot, bus_size_t off) { struct bcm_sdhci_softc *sc = device_get_softc(dev); return RD4(sc, off); } static void bcm_sdhci_read_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint32_t *data, bus_size_t count) { struct bcm_sdhci_softc *sc = device_get_softc(dev); bus_space_read_multi_4(sc->sc_bst, sc->sc_bsh, off, data, count); } static void bcm_sdhci_write_1(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint8_t val) { struct bcm_sdhci_softc *sc = device_get_softc(dev); uint32_t val32 = RD4(sc, off & ~3); val32 &= ~(0xff << (off & 3)*8); val32 |= (val << (off & 3)*8); WR4(sc, off & ~3, val32); } static void bcm_sdhci_write_2(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint16_t val) { struct bcm_sdhci_softc *sc = device_get_softc(dev); uint32_t val32; if (off == SDHCI_COMMAND_FLAGS) val32 = sc->cmd_and_mode; else val32 = RD4(sc, off & ~3); val32 &= ~(0xffff << (off & 3)*8); val32 |= (val << (off & 3)*8); if (off == SDHCI_TRANSFER_MODE) sc->cmd_and_mode = val32; else { WR4(sc, off & ~3, val32); if (off == SDHCI_COMMAND_FLAGS) sc->cmd_and_mode = val32; } } static void bcm_sdhci_write_4(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint32_t val) { struct bcm_sdhci_softc *sc = device_get_softc(dev); WR4(sc, off, val); } static void bcm_sdhci_write_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off, uint32_t *data, bus_size_t count) { struct bcm_sdhci_softc *sc = device_get_softc(dev); bus_space_write_multi_4(sc->sc_bst, sc->sc_bsh, off, data, count); } static void bcm_sdhci_start_dma_seg(struct bcm_sdhci_softc *sc) { struct sdhci_slot *slot; vm_paddr_t pdst, psrc; int err, idx, len, sync_op; slot = &sc->sc_slot; idx = sc->dmamap_seg_index++; len = sc->dmamap_seg_sizes[idx]; slot->offset += len; if (slot->curcmd->data->flags & MMC_DATA_READ) { bcm_dma_setup_src(sc->sc_dma_ch, BCM_DMA_DREQ_EMMC, BCM_DMA_SAME_ADDR, BCM_DMA_32BIT); bcm_dma_setup_dst(sc->sc_dma_ch, BCM_DMA_DREQ_NONE, BCM_DMA_INC_ADDR, (len & 0xf) ? BCM_DMA_32BIT : BCM_DMA_128BIT); psrc = sc->sc_sdhci_buffer_phys; pdst = sc->dmamap_seg_addrs[idx]; sync_op = BUS_DMASYNC_PREREAD; } else { bcm_dma_setup_src(sc->sc_dma_ch, BCM_DMA_DREQ_NONE, BCM_DMA_INC_ADDR, (len & 0xf) ? BCM_DMA_32BIT : BCM_DMA_128BIT); bcm_dma_setup_dst(sc->sc_dma_ch, BCM_DMA_DREQ_EMMC, BCM_DMA_SAME_ADDR, BCM_DMA_32BIT); psrc = sc->dmamap_seg_addrs[idx]; pdst = sc->sc_sdhci_buffer_phys; sync_op = BUS_DMASYNC_PREWRITE; } /* * When starting a new DMA operation do the busdma sync operation, and * disable SDCHI data interrrupts because we'll be driven by DMA * interrupts (or SDHCI error interrupts) until the IO is done. */ if (idx == 0) { bus_dmamap_sync(sc->sc_dma_tag, sc->sc_dma_map, sync_op); slot->intmask &= ~(SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL | SDHCI_INT_DATA_END); bcm_sdhci_write_4(sc->sc_dev, &sc->sc_slot, SDHCI_SIGNAL_ENABLE, slot->intmask); } /* * Start the DMA transfer. Only programming errors (like failing to * allocate a channel) cause a non-zero return from bcm_dma_start(). */ err = bcm_dma_start(sc->sc_dma_ch, psrc, pdst, len); KASSERT((err == 0), ("bcm2835_sdhci: failed DMA start")); } static void bcm_sdhci_dma_intr(int ch, void *arg) { struct bcm_sdhci_softc *sc = (struct bcm_sdhci_softc *)arg; struct sdhci_slot *slot = &sc->sc_slot; uint32_t reg, mask; int left, sync_op; mtx_lock(&slot->mtx); /* * If there are more segments for the current dma, start the next one. * Otherwise unload the dma map and decide what to do next based on the * status of the sdhci controller and whether there's more data left. */ if (sc->dmamap_seg_index < sc->dmamap_seg_count) { bcm_sdhci_start_dma_seg(sc); mtx_unlock(&slot->mtx); return; } if (slot->curcmd->data->flags & MMC_DATA_READ) { sync_op = BUS_DMASYNC_POSTREAD; mask = SDHCI_INT_DATA_AVAIL; } else { sync_op = BUS_DMASYNC_POSTWRITE; mask = SDHCI_INT_SPACE_AVAIL; } bus_dmamap_sync(sc->sc_dma_tag, sc->sc_dma_map, sync_op); bus_dmamap_unload(sc->sc_dma_tag, sc->sc_dma_map); sc->dmamap_seg_count = 0; sc->dmamap_seg_index = 0; left = min(BCM_SDHCI_BUFFER_SIZE, slot->curcmd->data->len - slot->offset); /* DATA END? */ reg = bcm_sdhci_read_4(slot->bus, slot, SDHCI_INT_STATUS); if (reg & SDHCI_INT_DATA_END) { /* ACK for all outstanding interrupts */ bcm_sdhci_write_4(slot->bus, slot, SDHCI_INT_STATUS, reg); /* enable INT */ slot->intmask |= SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL | SDHCI_INT_DATA_END; bcm_sdhci_write_4(slot->bus, slot, SDHCI_SIGNAL_ENABLE, slot->intmask); /* finish this data */ sdhci_finish_data(slot); } else { /* already available? */ if (reg & mask) { /* ACK for DATA_AVAIL or SPACE_AVAIL */ bcm_sdhci_write_4(slot->bus, slot, SDHCI_INT_STATUS, mask); /* continue next DMA transfer */ if (bus_dmamap_load(sc->sc_dma_tag, sc->sc_dma_map, (uint8_t *)slot->curcmd->data->data + slot->offset, left, bcm_sdhci_dmacb, sc, BUS_DMA_NOWAIT) != 0 || sc->dmamap_status != 0) { slot->curcmd->error = MMC_ERR_NO_MEMORY; sdhci_finish_data(slot); } else { bcm_sdhci_start_dma_seg(sc); } } else { /* wait for next data by INT */ /* enable INT */ slot->intmask |= SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL | SDHCI_INT_DATA_END; bcm_sdhci_write_4(slot->bus, slot, SDHCI_SIGNAL_ENABLE, slot->intmask); } } mtx_unlock(&slot->mtx); } static void bcm_sdhci_read_dma(device_t dev, struct sdhci_slot *slot) { struct bcm_sdhci_softc *sc = device_get_softc(slot->bus); size_t left; if (sc->dmamap_seg_count != 0) { device_printf(sc->sc_dev, "DMA in use\n"); return; } left = min(BCM_SDHCI_BUFFER_SIZE, slot->curcmd->data->len - slot->offset); KASSERT((left & 3) == 0, ("%s: len = %d, not word-aligned", __func__, left)); if (bus_dmamap_load(sc->sc_dma_tag, sc->sc_dma_map, (uint8_t *)slot->curcmd->data->data + slot->offset, left, bcm_sdhci_dmacb, sc, BUS_DMA_NOWAIT) != 0 || sc->dmamap_status != 0) { slot->curcmd->error = MMC_ERR_NO_MEMORY; return; } /* DMA start */ bcm_sdhci_start_dma_seg(sc); } static void bcm_sdhci_write_dma(device_t dev, struct sdhci_slot *slot) { struct bcm_sdhci_softc *sc = device_get_softc(slot->bus); size_t left; if (sc->dmamap_seg_count != 0) { device_printf(sc->sc_dev, "DMA in use\n"); return; } left = min(BCM_SDHCI_BUFFER_SIZE, slot->curcmd->data->len - slot->offset); KASSERT((left & 3) == 0, ("%s: len = %d, not word-aligned", __func__, left)); if (bus_dmamap_load(sc->sc_dma_tag, sc->sc_dma_map, (uint8_t *)slot->curcmd->data->data + slot->offset, left, bcm_sdhci_dmacb, sc, BUS_DMA_NOWAIT) != 0 || sc->dmamap_status != 0) { slot->curcmd->error = MMC_ERR_NO_MEMORY; return; } /* DMA start */ bcm_sdhci_start_dma_seg(sc); } static int bcm_sdhci_will_handle_transfer(device_t dev, struct sdhci_slot *slot) { size_t left; /* * Do not use DMA for transfers less than block size or with a length * that is not a multiple of four. */ left = min(BCM_DMA_BLOCK_SIZE, slot->curcmd->data->len - slot->offset); if (left < BCM_DMA_BLOCK_SIZE) return (0); if (left & 0x03) return (0); return (1); } static void bcm_sdhci_start_transfer(device_t dev, struct sdhci_slot *slot, uint32_t *intmask) { /* DMA transfer FIFO 1KB */ if (slot->curcmd->data->flags & MMC_DATA_READ) bcm_sdhci_read_dma(dev, slot); else bcm_sdhci_write_dma(dev, slot); } static void bcm_sdhci_finish_transfer(device_t dev, struct sdhci_slot *slot) { sdhci_finish_data(slot); } static device_method_t bcm_sdhci_methods[] = { /* Device interface */ DEVMETHOD(device_probe, bcm_sdhci_probe), DEVMETHOD(device_attach, bcm_sdhci_attach), DEVMETHOD(device_detach, bcm_sdhci_detach), /* Bus interface */ DEVMETHOD(bus_read_ivar, sdhci_generic_read_ivar), DEVMETHOD(bus_write_ivar, sdhci_generic_write_ivar), DEVMETHOD(bus_print_child, bus_generic_print_child), /* MMC bridge interface */ DEVMETHOD(mmcbr_update_ios, sdhci_generic_update_ios), DEVMETHOD(mmcbr_request, sdhci_generic_request), DEVMETHOD(mmcbr_get_ro, bcm_sdhci_get_ro), DEVMETHOD(mmcbr_acquire_host, sdhci_generic_acquire_host), DEVMETHOD(mmcbr_release_host, sdhci_generic_release_host), /* Platform transfer methods */ DEVMETHOD(sdhci_platform_will_handle, bcm_sdhci_will_handle_transfer), DEVMETHOD(sdhci_platform_start_transfer, bcm_sdhci_start_transfer), DEVMETHOD(sdhci_platform_finish_transfer, bcm_sdhci_finish_transfer), /* SDHCI registers accessors */ DEVMETHOD(sdhci_read_1, bcm_sdhci_read_1), DEVMETHOD(sdhci_read_2, bcm_sdhci_read_2), DEVMETHOD(sdhci_read_4, bcm_sdhci_read_4), DEVMETHOD(sdhci_read_multi_4, bcm_sdhci_read_multi_4), DEVMETHOD(sdhci_write_1, bcm_sdhci_write_1), DEVMETHOD(sdhci_write_2, bcm_sdhci_write_2), DEVMETHOD(sdhci_write_4, bcm_sdhci_write_4), DEVMETHOD(sdhci_write_multi_4, bcm_sdhci_write_multi_4), { 0, 0 } }; static devclass_t bcm_sdhci_devclass; static driver_t bcm_sdhci_driver = { "sdhci_bcm", bcm_sdhci_methods, sizeof(struct bcm_sdhci_softc), }; DRIVER_MODULE(sdhci_bcm, simplebus, bcm_sdhci_driver, bcm_sdhci_devclass, 0, 0); MODULE_DEPEND(sdhci_bcm, sdhci, 1, 1, 1);