/* * Copyright (c) 1997, 1998, 1999, 2000 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ /* * CATC USB-EL1210A USB to ethernet driver. Used in the CATC Netmate * adapters and others. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The CATC USB-EL1210A provides USB ethernet support at 10Mbps. The * RX filter uses a 512-bit multicast hash table, single perfect entry * for the station address, and promiscuous mode. Unlike the ADMtek * and KLSI chips, the CATC ASIC supports read and write combining * mode where multiple packets can be transfered using a single bulk * transaction, which helps performance a great deal. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef lint static const char rcsid[] = "$FreeBSD$"; #endif /* * Various supported device vendors/products. */ Static struct cue_type cue_devs[] = { { USB_VENDOR_CATC, USB_PRODUCT_CATC_NETMATE }, { USB_VENDOR_CATC, USB_PRODUCT_CATC_NETMATE2 }, { USB_VENDOR_SMARTBRIDGES, USB_PRODUCT_SMARTBRIDGES_SMARTLINK }, { 0, 0 } }; Static struct usb_qdat cue_qdat; Static int cue_match(device_ptr_t); Static int cue_attach(device_ptr_t); Static int cue_detach(device_ptr_t); Static int cue_tx_list_init(struct cue_softc *); Static int cue_rx_list_init(struct cue_softc *); Static int cue_newbuf(struct cue_softc *, struct cue_chain *, struct mbuf *); Static int cue_encap(struct cue_softc *, struct mbuf *, int); Static void cue_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status); Static void cue_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status); Static void cue_tick(void *); Static void cue_rxstart(struct ifnet *); Static void cue_start(struct ifnet *); Static int cue_ioctl(struct ifnet *, u_long, caddr_t); Static void cue_init(void *); Static void cue_stop(struct cue_softc *); Static void cue_watchdog(struct ifnet *); Static void cue_shutdown(device_ptr_t); Static void cue_setmulti(struct cue_softc *); Static u_int32_t cue_crc(caddr_t); Static void cue_reset(struct cue_softc *); Static int csr_read_1(struct cue_softc *, int); Static int csr_write_1(struct cue_softc *, int, int); Static int csr_read_2(struct cue_softc *, int); #ifdef notdef Static int csr_write_2(struct cue_softc *, int, int); #endif Static int cue_mem(struct cue_softc *, int, int, void *, int); Static int cue_getmac(struct cue_softc *, void *); Static device_method_t cue_methods[] = { /* Device interface */ DEVMETHOD(device_probe, cue_match), DEVMETHOD(device_attach, cue_attach), DEVMETHOD(device_detach, cue_detach), DEVMETHOD(device_shutdown, cue_shutdown), { 0, 0 } }; Static driver_t cue_driver = { "cue", cue_methods, sizeof(struct cue_softc) }; Static devclass_t cue_devclass; DRIVER_MODULE(if_cue, uhub, cue_driver, cue_devclass, usbd_driver_load, 0); MODULE_DEPEND(if_cue, usb, 1, 1, 1); #define CUE_SETBIT(sc, reg, x) \ csr_write_1(sc, reg, csr_read_1(sc, reg) | (x)) #define CUE_CLRBIT(sc, reg, x) \ csr_write_1(sc, reg, csr_read_1(sc, reg) & ~(x)) Static int csr_read_1(struct cue_softc *sc, int reg) { usb_device_request_t req; usbd_status err; u_int8_t val = 0; if (sc->cue_gone) return(0); CUE_LOCK(sc); req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = CUE_CMD_READREG; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, 1); err = usbd_do_request_flags(sc->cue_udev, &req, &val, USBD_NO_TSLEEP, NULL); CUE_UNLOCK(sc); if (err) return(0); return(val); } Static int csr_read_2(struct cue_softc *sc, int reg) { usb_device_request_t req; usbd_status err; u_int16_t val = 0; if (sc->cue_gone) return(0); CUE_LOCK(sc); req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = CUE_CMD_READREG; USETW(req.wValue, 0); USETW(req.wIndex, reg); USETW(req.wLength, 2); err = usbd_do_request_flags(sc->cue_udev, &req, &val, USBD_NO_TSLEEP, NULL); CUE_UNLOCK(sc); if (err) return(0); return(val); } Static int csr_write_1(struct cue_softc *sc, int reg, int val) { usb_device_request_t req; usbd_status err; if (sc->cue_gone) return(0); CUE_LOCK(sc); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = CUE_CMD_WRITEREG; USETW(req.wValue, val); USETW(req.wIndex, reg); USETW(req.wLength, 0); err = usbd_do_request_flags(sc->cue_udev, &req, &val, USBD_NO_TSLEEP, NULL); CUE_UNLOCK(sc); if (err) return(-1); return(0); } #ifdef notdef Static int csr_write_2(struct cue_softc *sc, int reg, int val) { usb_device_request_t req; usbd_status err; if (sc->cue_gone) return(0); CUE_LOCK(sc); req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = CUE_CMD_WRITEREG; USETW(req.wValue, val); USETW(req.wIndex, reg); USETW(req.wLength, 0); err = usbd_do_request_flags(sc->cue_udev, &req, &val, USBD_NO_TSLEEP, NULL); CUE_UNLOCK(sc); if (err) return(-1); return(0); } #endif Static int cue_mem(struct cue_softc *sc, int cmd, int addr, void *buf, int len) { usb_device_request_t req; usbd_status err; if (sc->cue_gone) return(0); CUE_LOCK(sc); if (cmd == CUE_CMD_READSRAM) req.bmRequestType = UT_READ_VENDOR_DEVICE; else req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = cmd; USETW(req.wValue, 0); USETW(req.wIndex, addr); USETW(req.wLength, len); err = usbd_do_request_flags(sc->cue_udev, &req, &buf, USBD_NO_TSLEEP, NULL); CUE_UNLOCK(sc); if (err) return(-1); return(0); } Static int cue_getmac(struct cue_softc *sc, void *buf) { usb_device_request_t req; usbd_status err; if (sc->cue_gone) return(0); CUE_LOCK(sc); req.bmRequestType = UT_READ_VENDOR_DEVICE; req.bRequest = CUE_CMD_GET_MACADDR; USETW(req.wValue, 0); USETW(req.wIndex, 0); USETW(req.wLength, ETHER_ADDR_LEN); err = usbd_do_request_flags(sc->cue_udev, &req, buf, USBD_NO_TSLEEP, NULL); CUE_UNLOCK(sc); if (err) { printf("cue%d: read MAC address failed\n", sc->cue_unit); return(-1); } return(0); } #define CUE_POLY 0xEDB88320 #define CUE_BITS 9 Static u_int32_t cue_crc(caddr_t addr) { u_int32_t idx, bit, data, crc; /* Compute CRC for the address value. */ crc = 0xFFFFFFFF; /* initial value */ for (idx = 0; idx < 6; idx++) { for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) crc = (crc >> 1) ^ (((crc ^ data) & 1) ? CUE_POLY : 0); } return (crc & ((1 << CUE_BITS) - 1)); } Static void cue_setmulti(struct cue_softc *sc) { struct ifnet *ifp; struct ifmultiaddr *ifma; u_int32_t h = 0, i; ifp = &sc->arpcom.ac_if; if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { for (i = 0; i < CUE_MCAST_TABLE_LEN; i++) sc->cue_mctab[i] = 0xFF; cue_mem(sc, CUE_CMD_WRITESRAM, CUE_MCAST_TABLE_ADDR, &sc->cue_mctab, CUE_MCAST_TABLE_LEN); return; } /* first, zot all the existing hash bits */ for (i = 0; i < CUE_MCAST_TABLE_LEN; i++) sc->cue_mctab[i] = 0; /* now program new ones */ TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = cue_crc(LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); sc->cue_mctab[h >> 3] |= 1 << (h & 0x7); } /* * Also include the broadcast address in the filter * so we can receive broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) { h = cue_crc(etherbroadcastaddr); sc->cue_mctab[h >> 3] |= 1 << (h & 0x7); } cue_mem(sc, CUE_CMD_WRITESRAM, CUE_MCAST_TABLE_ADDR, &sc->cue_mctab, CUE_MCAST_TABLE_LEN); return; } Static void cue_reset(struct cue_softc *sc) { usb_device_request_t req; usbd_status err; if (sc->cue_gone) return; req.bmRequestType = UT_WRITE_VENDOR_DEVICE; req.bRequest = CUE_CMD_RESET; USETW(req.wValue, 0); USETW(req.wIndex, 0); USETW(req.wLength, 0); err = usbd_do_request_flags(sc->cue_udev, &req, NULL, USBD_NO_TSLEEP, NULL); if (err) printf("cue%d: reset failed\n", sc->cue_unit); /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); return; } /* * Probe for a Pegasus chip. */ USB_MATCH(cue) { USB_MATCH_START(cue, uaa); struct cue_type *t; if (!uaa->iface) return(UMATCH_NONE); t = cue_devs; while(t->cue_vid) { if (uaa->vendor == t->cue_vid && uaa->product == t->cue_did) { return(UMATCH_VENDOR_PRODUCT); } t++; } return(UMATCH_NONE); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ USB_ATTACH(cue) { USB_ATTACH_START(cue, sc, uaa); char devinfo[1024]; u_char eaddr[ETHER_ADDR_LEN]; struct ifnet *ifp; usb_interface_descriptor_t *id; usb_endpoint_descriptor_t *ed; int i; bzero(sc, sizeof(struct cue_softc)); sc->cue_iface = uaa->iface; sc->cue_udev = uaa->device; sc->cue_unit = device_get_unit(self); if (usbd_set_config_no(sc->cue_udev, CUE_CONFIG_NO, 0)) { printf("cue%d: getting interface handle failed\n", sc->cue_unit); USB_ATTACH_ERROR_RETURN; } id = usbd_get_interface_descriptor(uaa->iface); usbd_devinfo(uaa->device, 0, devinfo); device_set_desc_copy(self, devinfo); printf("%s: %s\n", USBDEVNAME(self), devinfo); /* Find endpoints. */ for (i = 0; i < id->bNumEndpoints; i++) { ed = usbd_interface2endpoint_descriptor(uaa->iface, i); if (!ed) { printf("cue%d: couldn't get ep %d\n", sc->cue_unit, i); USB_ATTACH_ERROR_RETURN; } if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && (ed->bmAttributes & UE_XFERTYPE) == UE_BULK) { sc->cue_ed[CUE_ENDPT_RX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT && (ed->bmAttributes & UE_XFERTYPE) == UE_BULK) { sc->cue_ed[CUE_ENDPT_TX] = ed->bEndpointAddress; } else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN && (ed->bmAttributes & UE_XFERTYPE) == UE_INTERRUPT) { sc->cue_ed[CUE_ENDPT_INTR] = ed->bEndpointAddress; } } mtx_init(&sc->cue_mtx, device_get_nameunit(self), MTX_NETWORK_LOCK, MTX_DEF | MTX_RECURSE); CUE_LOCK(sc); #ifdef notdef /* Reset the adapter. */ cue_reset(sc); #endif /* * Get station address. */ cue_getmac(sc, &eaddr); /* * A CATC chip was detected. Inform the world. */ printf("cue%d: Ethernet address: %6D\n", sc->cue_unit, eaddr, ":"); bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; ifp->if_unit = sc->cue_unit; ifp->if_name = "cue"; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = cue_ioctl; ifp->if_output = ether_output; ifp->if_start = cue_start; ifp->if_watchdog = cue_watchdog; ifp->if_init = cue_init; ifp->if_baudrate = 10000000; ifp->if_snd.ifq_maxlen = IFQ_MAXLEN; cue_qdat.ifp = ifp; cue_qdat.if_rxstart = cue_rxstart; /* * Call MI attach routine. */ ether_ifattach(ifp, ETHER_BPF_SUPPORTED); callout_handle_init(&sc->cue_stat_ch); usb_register_netisr(); sc->cue_gone = 0; CUE_UNLOCK(sc); USB_ATTACH_SUCCESS_RETURN; } Static int cue_detach(device_ptr_t dev) { struct cue_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); CUE_LOCK(sc); ifp = &sc->arpcom.ac_if; sc->cue_gone = 1; untimeout(cue_tick, sc, sc->cue_stat_ch); ether_ifdetach(ifp, ETHER_BPF_SUPPORTED); if (sc->cue_ep[CUE_ENDPT_TX] != NULL) usbd_abort_pipe(sc->cue_ep[CUE_ENDPT_TX]); if (sc->cue_ep[CUE_ENDPT_RX] != NULL) usbd_abort_pipe(sc->cue_ep[CUE_ENDPT_RX]); if (sc->cue_ep[CUE_ENDPT_INTR] != NULL) usbd_abort_pipe(sc->cue_ep[CUE_ENDPT_INTR]); CUE_UNLOCK(sc); mtx_destroy(&sc->cue_mtx); return(0); } /* * Initialize an RX descriptor and attach an MBUF cluster. */ Static int cue_newbuf(struct cue_softc *sc, struct cue_chain *c, struct mbuf *m) { struct mbuf *m_new = NULL; if (m == NULL) { MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { printf("cue%d: no memory for rx list " "-- packet dropped!\n", sc->cue_unit); return(ENOBUFS); } MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { printf("cue%d: no memory for rx list " "-- packet dropped!\n", sc->cue_unit); m_freem(m_new); return(ENOBUFS); } m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; } else { m_new = m; m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; m_new->m_data = m_new->m_ext.ext_buf; } m_adj(m_new, ETHER_ALIGN); c->cue_mbuf = m_new; return(0); } Static int cue_rx_list_init(struct cue_softc *sc) { struct cue_cdata *cd; struct cue_chain *c; int i; cd = &sc->cue_cdata; for (i = 0; i < CUE_RX_LIST_CNT; i++) { c = &cd->cue_rx_chain[i]; c->cue_sc = sc; c->cue_idx = i; if (cue_newbuf(sc, c, NULL) == ENOBUFS) return(ENOBUFS); if (c->cue_xfer == NULL) { c->cue_xfer = usbd_alloc_xfer(sc->cue_udev); if (c->cue_xfer == NULL) return(ENOBUFS); } } return(0); } Static int cue_tx_list_init(struct cue_softc *sc) { struct cue_cdata *cd; struct cue_chain *c; int i; cd = &sc->cue_cdata; for (i = 0; i < CUE_TX_LIST_CNT; i++) { c = &cd->cue_tx_chain[i]; c->cue_sc = sc; c->cue_idx = i; c->cue_mbuf = NULL; if (c->cue_xfer == NULL) { c->cue_xfer = usbd_alloc_xfer(sc->cue_udev); if (c->cue_xfer == NULL) return(ENOBUFS); } c->cue_buf = malloc(CUE_BUFSZ, M_USBDEV, M_NOWAIT); if (c->cue_buf == NULL) return(ENOBUFS); } return(0); } Static void cue_rxstart(struct ifnet *ifp) { struct cue_softc *sc; struct cue_chain *c; sc = ifp->if_softc; CUE_LOCK(sc); c = &sc->cue_cdata.cue_rx_chain[sc->cue_cdata.cue_rx_prod]; if (cue_newbuf(sc, c, NULL) == ENOBUFS) { ifp->if_ierrors++; CUE_UNLOCK(sc); return; } /* Setup new transfer. */ usbd_setup_xfer(c->cue_xfer, sc->cue_ep[CUE_ENDPT_RX], c, mtod(c->cue_mbuf, char *), CUE_BUFSZ, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, cue_rxeof); usbd_transfer(c->cue_xfer); CUE_UNLOCK(sc); return; } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ Static void cue_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct cue_softc *sc; struct cue_chain *c; struct mbuf *m; struct ifnet *ifp; int total_len = 0; u_int16_t len; c = priv; sc = c->cue_sc; CUE_LOCK(sc); ifp = &sc->arpcom.ac_if; if (!(ifp->if_flags & IFF_RUNNING)) { CUE_UNLOCK(sc); return; } if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) { CUE_UNLOCK(sc); return; } printf("cue%d: usb error on rx: %s\n", sc->cue_unit, usbd_errstr(status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall(sc->cue_ep[CUE_ENDPT_RX]); goto done; } usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL); m = c->cue_mbuf; len = *mtod(m, u_int16_t *); /* No errors; receive the packet. */ total_len = len; if (len < sizeof(struct ether_header)) { ifp->if_ierrors++; goto done; } ifp->if_ipackets++; m_adj(m, sizeof(u_int16_t)); m->m_pkthdr.rcvif = (struct ifnet *)&cue_qdat; m->m_pkthdr.len = m->m_len = total_len; /* Put the packet on the special USB input queue. */ usb_ether_input(m); CUE_UNLOCK(sc); return; done: /* Setup new transfer. */ usbd_setup_xfer(c->cue_xfer, sc->cue_ep[CUE_ENDPT_RX], c, mtod(c->cue_mbuf, char *), CUE_BUFSZ, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, cue_rxeof); usbd_transfer(c->cue_xfer); CUE_UNLOCK(sc); return; } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ Static void cue_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status) { struct cue_softc *sc; struct cue_chain *c; struct ifnet *ifp; usbd_status err; c = priv; sc = c->cue_sc; CUE_LOCK(sc); ifp = &sc->arpcom.ac_if; if (status != USBD_NORMAL_COMPLETION) { if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) { CUE_UNLOCK(sc); return; } printf("cue%d: usb error on tx: %s\n", sc->cue_unit, usbd_errstr(status)); if (status == USBD_STALLED) usbd_clear_endpoint_stall(sc->cue_ep[CUE_ENDPT_TX]); CUE_UNLOCK(sc); return; } ifp->if_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; usbd_get_xfer_status(c->cue_xfer, NULL, NULL, NULL, &err); if (c->cue_mbuf != NULL) { c->cue_mbuf->m_pkthdr.rcvif = ifp; usb_tx_done(c->cue_mbuf); c->cue_mbuf = NULL; } if (err) ifp->if_oerrors++; else ifp->if_opackets++; CUE_UNLOCK(sc); return; } Static void cue_tick(void *xsc) { struct cue_softc *sc; struct ifnet *ifp; sc = xsc; if (sc == NULL) return; CUE_LOCK(sc); ifp = &sc->arpcom.ac_if; ifp->if_collisions += csr_read_2(sc, CUE_TX_SINGLECOLL); ifp->if_collisions += csr_read_2(sc, CUE_TX_MULTICOLL); ifp->if_collisions += csr_read_2(sc, CUE_TX_EXCESSCOLL); if (csr_read_2(sc, CUE_RX_FRAMEERR)) ifp->if_ierrors++; sc->cue_stat_ch = timeout(cue_tick, sc, hz); CUE_UNLOCK(sc); return; } Static int cue_encap(struct cue_softc *sc, struct mbuf *m, int idx) { int total_len; struct cue_chain *c; usbd_status err; c = &sc->cue_cdata.cue_tx_chain[idx]; /* * Copy the mbuf data into a contiguous buffer, leaving two * bytes at the beginning to hold the frame length. */ m_copydata(m, 0, m->m_pkthdr.len, c->cue_buf + 2); c->cue_mbuf = m; total_len = m->m_pkthdr.len + 2; /* The first two bytes are the frame length */ c->cue_buf[0] = (u_int8_t)m->m_pkthdr.len; c->cue_buf[1] = (u_int8_t)(m->m_pkthdr.len >> 8); usbd_setup_xfer(c->cue_xfer, sc->cue_ep[CUE_ENDPT_TX], c, c->cue_buf, total_len, 0, 10000, cue_txeof); /* Transmit */ err = usbd_transfer(c->cue_xfer); if (err != USBD_IN_PROGRESS) { cue_stop(sc); return(EIO); } sc->cue_cdata.cue_tx_cnt++; return(0); } Static void cue_start(struct ifnet *ifp) { struct cue_softc *sc; struct mbuf *m_head = NULL; sc = ifp->if_softc; CUE_LOCK(sc); if (ifp->if_flags & IFF_OACTIVE) { CUE_UNLOCK(sc); return; } IF_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) { CUE_UNLOCK(sc); return; } if (cue_encap(sc, m_head, 0)) { IF_PREPEND(&ifp->if_snd, m_head); ifp->if_flags |= IFF_OACTIVE; CUE_UNLOCK(sc); return; } /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf) bpf_mtap(ifp, m_head); ifp->if_flags |= IFF_OACTIVE; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; CUE_UNLOCK(sc); return; } Static void cue_init(void *xsc) { struct cue_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; struct cue_chain *c; usbd_status err; int i; if (ifp->if_flags & IFF_RUNNING) return; CUE_LOCK(sc); /* * Cancel pending I/O and free all RX/TX buffers. */ #ifdef foo cue_reset(sc); #endif /* Set MAC address */ for (i = 0; i < ETHER_ADDR_LEN; i++) csr_write_1(sc, CUE_PAR0 - i, sc->arpcom.ac_enaddr[i]); /* Enable RX logic. */ csr_write_1(sc, CUE_ETHCTL, CUE_ETHCTL_RX_ON|CUE_ETHCTL_MCAST_ON); /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) { CUE_SETBIT(sc, CUE_ETHCTL, CUE_ETHCTL_PROMISC); } else { CUE_CLRBIT(sc, CUE_ETHCTL, CUE_ETHCTL_PROMISC); } /* Init TX ring. */ if (cue_tx_list_init(sc) == ENOBUFS) { printf("cue%d: tx list init failed\n", sc->cue_unit); CUE_UNLOCK(sc); return; } /* Init RX ring. */ if (cue_rx_list_init(sc) == ENOBUFS) { printf("cue%d: rx list init failed\n", sc->cue_unit); CUE_UNLOCK(sc); return; } /* Load the multicast filter. */ cue_setmulti(sc); /* * Set the number of RX and TX buffers that we want * to reserve inside the ASIC. */ csr_write_1(sc, CUE_RX_BUFPKTS, CUE_RX_FRAMES); csr_write_1(sc, CUE_TX_BUFPKTS, CUE_TX_FRAMES); /* Set advanced operation modes. */ csr_write_1(sc, CUE_ADVANCED_OPMODES, CUE_AOP_EMBED_RXLEN|0x01); /* 1 wait state */ /* Program the LED operation. */ csr_write_1(sc, CUE_LEDCTL, CUE_LEDCTL_FOLLOW_LINK); /* Open RX and TX pipes. */ err = usbd_open_pipe(sc->cue_iface, sc->cue_ed[CUE_ENDPT_RX], USBD_EXCLUSIVE_USE, &sc->cue_ep[CUE_ENDPT_RX]); if (err) { printf("cue%d: open rx pipe failed: %s\n", sc->cue_unit, usbd_errstr(err)); CUE_UNLOCK(sc); return; } err = usbd_open_pipe(sc->cue_iface, sc->cue_ed[CUE_ENDPT_TX], USBD_EXCLUSIVE_USE, &sc->cue_ep[CUE_ENDPT_TX]); if (err) { printf("cue%d: open tx pipe failed: %s\n", sc->cue_unit, usbd_errstr(err)); CUE_UNLOCK(sc); return; } /* Start up the receive pipe. */ for (i = 0; i < CUE_RX_LIST_CNT; i++) { c = &sc->cue_cdata.cue_rx_chain[i]; usbd_setup_xfer(c->cue_xfer, sc->cue_ep[CUE_ENDPT_RX], c, mtod(c->cue_mbuf, char *), CUE_BUFSZ, USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, cue_rxeof); usbd_transfer(c->cue_xfer); } ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; CUE_UNLOCK(sc); sc->cue_stat_ch = timeout(cue_tick, sc, hz); return; } Static int cue_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct cue_softc *sc = ifp->if_softc; int error = 0; CUE_LOCK(sc); switch(command) { case SIOCSIFADDR: case SIOCGIFADDR: case SIOCSIFMTU: error = ether_ioctl(ifp, command, data); break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->cue_if_flags & IFF_PROMISC)) { CUE_SETBIT(sc, CUE_ETHCTL, CUE_ETHCTL_PROMISC); cue_setmulti(sc); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->cue_if_flags & IFF_PROMISC) { CUE_CLRBIT(sc, CUE_ETHCTL, CUE_ETHCTL_PROMISC); cue_setmulti(sc); } else if (!(ifp->if_flags & IFF_RUNNING)) cue_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) cue_stop(sc); } sc->cue_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: cue_setmulti(sc); error = 0; break; default: error = EINVAL; break; } CUE_UNLOCK(sc); return(error); } Static void cue_watchdog(struct ifnet *ifp) { struct cue_softc *sc; struct cue_chain *c; usbd_status stat; sc = ifp->if_softc; CUE_LOCK(sc); ifp->if_oerrors++; printf("cue%d: watchdog timeout\n", sc->cue_unit); c = &sc->cue_cdata.cue_tx_chain[0]; usbd_get_xfer_status(c->cue_xfer, NULL, NULL, NULL, &stat); cue_txeof(c->cue_xfer, c, stat); if (ifp->if_snd.ifq_head != NULL) cue_start(ifp); CUE_UNLOCK(sc); return; } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ Static void cue_stop(struct cue_softc *sc) { usbd_status err; struct ifnet *ifp; int i; CUE_LOCK(sc); ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; csr_write_1(sc, CUE_ETHCTL, 0); cue_reset(sc); untimeout(cue_tick, sc, sc->cue_stat_ch); /* Stop transfers. */ if (sc->cue_ep[CUE_ENDPT_RX] != NULL) { err = usbd_abort_pipe(sc->cue_ep[CUE_ENDPT_RX]); if (err) { printf("cue%d: abort rx pipe failed: %s\n", sc->cue_unit, usbd_errstr(err)); } err = usbd_close_pipe(sc->cue_ep[CUE_ENDPT_RX]); if (err) { printf("cue%d: close rx pipe failed: %s\n", sc->cue_unit, usbd_errstr(err)); } sc->cue_ep[CUE_ENDPT_RX] = NULL; } if (sc->cue_ep[CUE_ENDPT_TX] != NULL) { err = usbd_abort_pipe(sc->cue_ep[CUE_ENDPT_TX]); if (err) { printf("cue%d: abort tx pipe failed: %s\n", sc->cue_unit, usbd_errstr(err)); } err = usbd_close_pipe(sc->cue_ep[CUE_ENDPT_TX]); if (err) { printf("cue%d: close tx pipe failed: %s\n", sc->cue_unit, usbd_errstr(err)); } sc->cue_ep[CUE_ENDPT_TX] = NULL; } if (sc->cue_ep[CUE_ENDPT_INTR] != NULL) { err = usbd_abort_pipe(sc->cue_ep[CUE_ENDPT_INTR]); if (err) { printf("cue%d: abort intr pipe failed: %s\n", sc->cue_unit, usbd_errstr(err)); } err = usbd_close_pipe(sc->cue_ep[CUE_ENDPT_INTR]); if (err) { printf("cue%d: close intr pipe failed: %s\n", sc->cue_unit, usbd_errstr(err)); } sc->cue_ep[CUE_ENDPT_INTR] = NULL; } /* Free RX resources. */ for (i = 0; i < CUE_RX_LIST_CNT; i++) { if (sc->cue_cdata.cue_rx_chain[i].cue_buf != NULL) { free(sc->cue_cdata.cue_rx_chain[i].cue_buf, M_USBDEV); sc->cue_cdata.cue_rx_chain[i].cue_buf = NULL; } if (sc->cue_cdata.cue_rx_chain[i].cue_mbuf != NULL) { m_freem(sc->cue_cdata.cue_rx_chain[i].cue_mbuf); sc->cue_cdata.cue_rx_chain[i].cue_mbuf = NULL; } if (sc->cue_cdata.cue_rx_chain[i].cue_xfer != NULL) { usbd_free_xfer(sc->cue_cdata.cue_rx_chain[i].cue_xfer); sc->cue_cdata.cue_rx_chain[i].cue_xfer = NULL; } } /* Free TX resources. */ for (i = 0; i < CUE_TX_LIST_CNT; i++) { if (sc->cue_cdata.cue_tx_chain[i].cue_buf != NULL) { free(sc->cue_cdata.cue_tx_chain[i].cue_buf, M_USBDEV); sc->cue_cdata.cue_tx_chain[i].cue_buf = NULL; } if (sc->cue_cdata.cue_tx_chain[i].cue_mbuf != NULL) { m_freem(sc->cue_cdata.cue_tx_chain[i].cue_mbuf); sc->cue_cdata.cue_tx_chain[i].cue_mbuf = NULL; } if (sc->cue_cdata.cue_tx_chain[i].cue_xfer != NULL) { usbd_free_xfer(sc->cue_cdata.cue_tx_chain[i].cue_xfer); sc->cue_cdata.cue_tx_chain[i].cue_xfer = NULL; } } ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); CUE_UNLOCK(sc); return; } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ Static void cue_shutdown(device_ptr_t dev) { struct cue_softc *sc; sc = device_get_softc(dev); CUE_LOCK(sc); cue_reset(sc); cue_stop(sc); CUE_UNLOCK(sc); return; }