/* * Copyright (c) 2003 Peter Wemm. * Copyright (c) 1991 Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department and William Jolitz of UUNET Technologies Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Derived from hp300 version by Mike Hibler, this version by William * Jolitz uses a recursive map [a pde points to the page directory] to * map the page tables using the pagetables themselves. This is done to * reduce the impact on kernel virtual memory for lots of sparse address * space, and to reduce the cost of memory to each process. * * from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90 * from: @(#)pmap.h 7.4 (Berkeley) 5/12/91 * $FreeBSD$ */ #ifndef _MACHINE_PMAP_H_ #define _MACHINE_PMAP_H_ /* * Page-directory and page-table entires follow this format, with a few * of the fields not present here and there, depending on a lot of things. */ /* ---- Intel Nomenclature ---- */ #define PG_V 0x001 /* P Valid */ #define PG_RW 0x002 /* R/W Read/Write */ #define PG_U 0x004 /* U/S User/Supervisor */ #define PG_NC_PWT 0x008 /* PWT Write through */ #define PG_NC_PCD 0x010 /* PCD Cache disable */ #define PG_A 0x020 /* A Accessed */ #define PG_M 0x040 /* D Dirty */ #define PG_PS 0x080 /* PS Page size (0=4k,1=4M) */ #define PG_G 0x100 /* G Global */ #define PG_AVAIL1 0x200 /* / Available for system */ #define PG_AVAIL2 0x400 /* < programmers use */ #define PG_AVAIL3 0x800 /* \ */ /* Our various interpretations of the above */ #define PG_W PG_AVAIL1 /* "Wired" pseudoflag */ #define PG_MANAGED PG_AVAIL2 #define PG_FRAME (~((vm_paddr_t)PAGE_MASK)) #define PG_PROT (PG_RW|PG_U) /* all protection bits . */ #define PG_N (PG_NC_PWT|PG_NC_PCD) /* Non-cacheable */ /* * Page Protection Exception bits */ #define PGEX_P 0x01 /* Protection violation vs. not present */ #define PGEX_W 0x02 /* during a Write cycle */ #define PGEX_U 0x04 /* access from User mode (UPL) */ /* * Pte related macros. This is complicated by having to deal with * the sign extension of the 48th bit. */ #define KVADDR(l4, l3, l2, l1) ( \ ((unsigned long)-1 << 47) | \ ((unsigned long)(l4) << PML4SHIFT) | \ ((unsigned long)(l3) << PDPSHIFT) | \ ((unsigned long)(l2) << PDRSHIFT) | \ ((unsigned long)(l1) << PAGE_SHIFT)) #define UVADDR(l4, l3, l2, l1) ( \ ((unsigned long)(l4) << PML4SHIFT) | \ ((unsigned long)(l3) << PDPSHIFT) | \ ((unsigned long)(l2) << PDRSHIFT) | \ ((unsigned long)(l1) << PAGE_SHIFT)) #ifndef NKPT #define NKPT 120 /* initial number of kernel page tables */ #endif #define NKPML4E 1 /* number of kernel PML4 slots */ #define NKPDPE 1 /* number of kernel PDP slots */ #define NKPDE (NKPDPE*NPDEPG) /* number of kernel PD slots */ #define NUPML4E (NPML4EPG/2) /* number of userland PML4 pages */ #define NUPDPE (NUPML4E*NPDPEPG)/* number of userland PDP pages */ #define NUPDE (NUPDPE*NPDEPG) /* number of userland PD entries */ #define NDMPML4E 1 /* number of dmap PML4 slots */ /* * The *PDI values control the layout of virtual memory */ #define PML4PML4I (NPML4EPG/2) /* Index of recursive pml4 mapping */ #define KPML4I (NPML4EPG-1) /* Top 512GB for KVM */ #define DMPML4I (KPML4I-1) /* Next 512GB down for direct map */ #define KPDPI (NPDPEPG-2) /* kernbase at -2GB */ /* * XXX doesn't really belong here I guess... */ #define ISA_HOLE_START 0xa0000 #define ISA_HOLE_LENGTH (0x100000-ISA_HOLE_START) #ifndef LOCORE #include typedef u_int64_t pd_entry_t; typedef u_int64_t pt_entry_t; typedef u_int64_t pdp_entry_t; typedef u_int64_t pml4_entry_t; #define PML4ESHIFT (3) #define PDPESHIFT (3) #define PTESHIFT (3) #define PDESHIFT (3) /* * Address of current and alternate address space page table maps * and directories. * XXX it might be saner to just direct map all of physical memory * into the kernel using 2MB pages. We have enough space to do * it (2^47 bits of KVM, while current max physical addressability * is 2^40 physical bits). Then we can get rid of the evil hole * in the page tables and the evil overlapping. */ #ifdef _KERNEL #define addr_PTmap (KVADDR(PML4PML4I, 0, 0, 0)) #define addr_PDmap (KVADDR(PML4PML4I, PML4PML4I, 0, 0)) #define addr_PDPmap (KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, 0)) #define addr_PML4map (KVADDR(PML4PML4I, PML4PML4I, PML4PML4I, PML4PML4I)) #define addr_PML4pml4e (addr_PML4map + (PML4PML4I * sizeof(pml4_entry_t))) #define PTmap ((pt_entry_t *)(addr_PTmap)) #define PDmap ((pd_entry_t *)(addr_PDmap)) #define PDPmap ((pd_entry_t *)(addr_PDPmap)) #define PML4map ((pd_entry_t *)(addr_PML4map)) #define PML4pml4e ((pd_entry_t *)(addr_PML4pml4e)) extern u_int64_t KPML4phys; /* physical address of kernel level 4 */ #endif #ifdef _KERNEL /* * virtual address to page table entry and * to physical address. Likewise for alternate address space. * Note: these work recursively, thus vtopte of a pte will give * the corresponding pde that in turn maps it. */ pt_entry_t *vtopte(vm_offset_t); vm_paddr_t pmap_kextract(vm_offset_t); #define vtophys(va) pmap_kextract(((vm_offset_t) (va))) static __inline pt_entry_t pte_load(pt_entry_t *ptep) { pt_entry_t r; r = *ptep; return (r); } static __inline pt_entry_t pte_load_store(pt_entry_t *ptep, pt_entry_t pte) { pt_entry_t r; r = *ptep; *ptep = pte; return (r); } #define pte_load_clear(pte) atomic_readandclear_long(pte) #define pte_clear(ptep) pte_load_store((ptep), (pt_entry_t)0ULL) #define pte_store(ptep, pte) pte_load_store((ptep), (pt_entry_t)pte) #define pde_store(pdep, pde) pte_store((pdep), (pde)) #endif /* _KERNEL */ /* * Pmap stuff */ struct pv_entry; struct md_page { int pv_list_count; TAILQ_HEAD(,pv_entry) pv_list; }; struct pmap { pml4_entry_t *pm_pml4; /* KVA of level 4 page table */ TAILQ_HEAD(,pv_entry) pm_pvlist; /* list of mappings in pmap */ u_int pm_active; /* active on cpus */ /* spare u_int here due to padding */ struct pmap_statistics pm_stats; /* pmap statistics */ LIST_ENTRY(pmap) pm_list; /* List of all pmaps */ }; #define pmap_page_is_mapped(m) (!TAILQ_EMPTY(&(m)->md.pv_list)) typedef struct pmap *pmap_t; #ifdef _KERNEL extern struct pmap kernel_pmap_store; #define kernel_pmap (&kernel_pmap_store) #endif /* * For each vm_page_t, there is a list of all currently valid virtual * mappings of that page. An entry is a pv_entry_t, the list is pv_table. */ typedef struct pv_entry { pmap_t pv_pmap; /* pmap where mapping lies */ vm_offset_t pv_va; /* virtual address for mapping */ TAILQ_ENTRY(pv_entry) pv_list; TAILQ_ENTRY(pv_entry) pv_plist; vm_page_t pv_ptem; /* VM page for pte */ } *pv_entry_t; #ifdef _KERNEL #define NPPROVMTRR 8 #define PPRO_VMTRRphysBase0 0x200 #define PPRO_VMTRRphysMask0 0x201 struct ppro_vmtrr { u_int64_t base, mask; }; extern struct ppro_vmtrr PPro_vmtrr[NPPROVMTRR]; extern caddr_t CADDR1; extern pt_entry_t *CMAP1; extern vm_paddr_t avail_end; extern vm_paddr_t phys_avail[]; extern vm_offset_t virtual_avail; extern vm_offset_t virtual_end; void pmap_bootstrap(vm_paddr_t *); void pmap_kenter(vm_offset_t va, vm_paddr_t pa); void *pmap_kenter_temporary(vm_offset_t pa, int i); void pmap_kremove(vm_offset_t); void *pmap_mapdev(vm_paddr_t, vm_size_t); void pmap_unmapdev(vm_offset_t, vm_size_t); pt_entry_t *pmap_pte_quick(pmap_t, vm_offset_t) __pure2; void pmap_invalidate_page(pmap_t, vm_offset_t); void pmap_invalidate_range(pmap_t, vm_offset_t, vm_offset_t); void pmap_invalidate_all(pmap_t); #endif /* _KERNEL */ #endif /* !LOCORE */ #endif /* !_MACHINE_PMAP_H_ */