/*- * Copyright (c) 1994-1998 Mark Brinicombe. * Copyright (c) 1994 Brini. * All rights reserved. * * This code is derived from software written for Brini by Mark Brinicombe * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Brini. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * RiscBSD kernel project * * machdep.c * * Machine dependant functions for kernel setup * * This file needs a lot of work. * * Created : 17/09/94 */ #include __FBSDID("$FreeBSD$"); #define _ARM32_BUS_DMA_PRIVATE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Page table for mapping proc0 zero page */ #define KERNEL_PT_SYS 0 #define KERNEL_PT_KERN 1 #define KERNEL_PT_KERN_NUM 22 /* L2 table for mapping after kernel */ #define KERNEL_PT_AFKERNEL KERNEL_PT_KERN + KERNEL_PT_KERN_NUM #define KERNEL_PT_AFKERNEL_NUM 5 /* this should be evenly divisable by PAGE_SIZE / L2_TABLE_SIZE_REAL (or 4) */ #define NUM_KERNEL_PTS (KERNEL_PT_AFKERNEL + KERNEL_PT_AFKERNEL_NUM) extern u_int data_abort_handler_address; extern u_int prefetch_abort_handler_address; extern u_int undefined_handler_address; struct pv_addr kernel_pt_table[NUM_KERNEL_PTS]; /* Physical and virtual addresses for some global pages */ vm_paddr_t phys_avail[10]; vm_paddr_t dump_avail[4]; struct pv_addr systempage; struct pv_addr msgbufpv; struct pv_addr irqstack; struct pv_addr undstack; struct pv_addr abtstack; struct pv_addr kernelstack; /* Static device mappings. */ const struct pmap_devmap at91_devmap[] = { /* * Map the on-board devices VA == PA so that we can access them * with the MMU on or off. */ { /* * This at least maps the interrupt controller, the UART * and the timer. Other devices should use newbus to * map their memory anyway. */ 0xdff00000, 0xfff00000, 0x00100000, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, /* * We can't just map the OHCI registers VA == PA, because * AT91xx_xxx_BASE belongs to the userland address space. * We could just choose a different virtual address, but a better * solution would probably be to just use pmap_mapdev() to allocate * KVA, as we don't need the OHCI controller before the vm * initialization is done. However, the AT91 resource allocation * system doesn't know how to use pmap_mapdev() yet. * Care must be taken to ensure PA and VM address do not overlap * between entries. */ { /* * Add the ohci controller, and anything else that might be * on this chip select for a VA/PA mapping. */ /* Internal Memory 1MB */ AT91RM92_OHCI_BASE, AT91RM92_OHCI_PA_BASE, 0x00100000, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { /* CompactFlash controller. Portion of EBI CS4 1MB */ AT91RM92_CF_BASE, AT91RM92_CF_PA_BASE, 0x00100000, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, /* * The next two should be good for the 9260, 9261 and 9G20 since * addresses mapping is the same. */ { /* Internal Memory 1MB */ AT91SAM9G20_OHCI_BASE, AT91SAM9G20_OHCI_PA_BASE, 0x00100000, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { /* EBI CS3 256MB */ AT91SAM9G20_NAND_BASE, AT91SAM9G20_NAND_PA_BASE, AT91SAM9G20_NAND_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, /* * The next should be good for the 9G45. */ { /* Internal Memory 1MB */ AT91SAM9G45_OHCI_BASE, AT91SAM9G45_OHCI_PA_BASE, 0x00100000, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { 0, 0, 0, 0, 0, } }; #ifdef LINUX_BOOT_ABI extern int membanks; extern int memstart[]; extern int memsize[]; #endif long at91_ramsize(void) { uint32_t cr, mdr, mr, *SDRAMC; int banks, rows, cols, bw; #ifdef LINUX_BOOT_ABI /* * If we found any ATAGs that were for memory, return the first bank. */ if (membanks > 0) return (memsize[0]); #endif if (at91_is_rm92()) { SDRAMC = (uint32_t *)(AT91_BASE + AT91RM92_SDRAMC_BASE); cr = SDRAMC[AT91RM92_SDRAMC_CR / 4]; mr = SDRAMC[AT91RM92_SDRAMC_MR / 4]; banks = (cr & AT91RM92_SDRAMC_CR_NB_4) ? 2 : 1; rows = ((cr & AT91RM92_SDRAMC_CR_NR_MASK) >> 2) + 11; cols = (cr & AT91RM92_SDRAMC_CR_NC_MASK) + 8; bw = (mr & AT91RM92_SDRAMC_MR_DBW_16) ? 1 : 2; } else if (at91_cpu_is(AT91_T_SAM9G45)) { SDRAMC = (uint32_t *)(AT91_BASE + AT91SAM9G45_DDRSDRC0_BASE); cr = SDRAMC[AT91SAM9G45_DDRSDRC_CR / 4]; mdr = SDRAMC[AT91SAM9G45_DDRSDRC_MDR / 4]; banks = 0; rows = ((cr & AT91SAM9G45_DDRSDRC_CR_NR_MASK) >> 2) + 11; cols = (cr & AT91SAM9G45_DDRSDRC_CR_NC_MASK) + 8; bw = (mdr & AT91SAM9G45_DDRSDRC_MDR_DBW_16) ? 1 : 2; /* Fix the calculation for DDR memory */ mdr &= AT91SAM9G45_DDRSDRC_MDR_MASK; if (mdr & AT91SAM9G45_DDRSDRC_MDR_LPDDR1 || mdr & AT91SAM9G45_DDRSDRC_MDR_DDR2) { /* The cols value is 1 higher for DDR */ cols += 1; /* DDR has 4 internal banks. */ banks = 2; } } else { /* * This should be good for the 9260, 9261, 9G20, 9G35 and 9X25 * as addresses and registers are the same. */ SDRAMC = (uint32_t *)(AT91_BASE + AT91SAM9G20_SDRAMC_BASE); cr = SDRAMC[AT91SAM9G20_SDRAMC_CR / 4]; mr = SDRAMC[AT91SAM9G20_SDRAMC_MR / 4]; banks = (cr & AT91SAM9G20_SDRAMC_CR_NB_4) ? 2 : 1; rows = ((cr & AT91SAM9G20_SDRAMC_CR_NR_MASK) >> 2) + 11; cols = (cr & AT91SAM9G20_SDRAMC_CR_NC_MASK) + 8; bw = (cr & AT91SAM9G20_SDRAMC_CR_DBW_16) ? 1 : 2; } return (1 << (cols + rows + banks + bw)); } static const char *soc_type_name[] = { [AT91_T_CAP9] = "at91cap9", [AT91_T_RM9200] = "at91rm9200", [AT91_T_SAM9260] = "at91sam9260", [AT91_T_SAM9261] = "at91sam9261", [AT91_T_SAM9263] = "at91sam9263", [AT91_T_SAM9G10] = "at91sam9g10", [AT91_T_SAM9G20] = "at91sam9g20", [AT91_T_SAM9G45] = "at91sam9g45", [AT91_T_SAM9N12] = "at91sam9n12", [AT91_T_SAM9RL] = "at91sam9rl", [AT91_T_SAM9X5] = "at91sam9x5", [AT91_T_NONE] = "UNKNOWN" }; static const char *soc_subtype_name[] = { [AT91_ST_NONE] = "UNKNOWN", [AT91_ST_RM9200_BGA] = "at91rm9200_bga", [AT91_ST_RM9200_PQFP] = "at91rm9200_pqfp", [AT91_ST_SAM9XE] = "at91sam9xe", [AT91_ST_SAM9G45] = "at91sam9g45", [AT91_ST_SAM9M10] = "at91sam9m10", [AT91_ST_SAM9G46] = "at91sam9g46", [AT91_ST_SAM9M11] = "at91sam9m11", [AT91_ST_SAM9G15] = "at91sam9g15", [AT91_ST_SAM9G25] = "at91sam9g25", [AT91_ST_SAM9G35] = "at91sam9g35", [AT91_ST_SAM9X25] = "at91sam9x25", [AT91_ST_SAM9X35] = "at91sam9x35", }; struct at91_soc_info soc_info; /* * Read the SoC ID from the CIDR register and try to match it against the * values we know. If we find a good one, we return true. If not, we * return false. When we find a good one, we also find the subtype * and CPU family. */ static int at91_try_id(uint32_t dbgu_base) { uint32_t socid; soc_info.cidr = *(volatile uint32_t *)(AT91_BASE + dbgu_base + DBGU_C1R); socid = soc_info.cidr & ~AT91_CPU_VERSION_MASK; soc_info.type = AT91_T_NONE; soc_info.subtype = AT91_ST_NONE; soc_info.family = (soc_info.cidr & AT91_CPU_FAMILY_MASK) >> 20; soc_info.exid = *(volatile uint32_t *)(AT91_BASE + dbgu_base + DBGU_C2R); switch (socid) { case AT91_CPU_CAP9: soc_info.type = AT91_T_CAP9; break; case AT91_CPU_RM9200: soc_info.type = AT91_T_RM9200; break; case AT91_CPU_SAM9XE128: case AT91_CPU_SAM9XE256: case AT91_CPU_SAM9XE512: case AT91_CPU_SAM9260: soc_info.type = AT91_T_SAM9260; if (soc_info.family == AT91_FAMILY_SAM9XE) soc_info.subtype = AT91_ST_SAM9XE; break; case AT91_CPU_SAM9261: soc_info.type = AT91_T_SAM9261; break; case AT91_CPU_SAM9263: soc_info.type = AT91_T_SAM9263; break; case AT91_CPU_SAM9G10: soc_info.type = AT91_T_SAM9G10; break; case AT91_CPU_SAM9G20: soc_info.type = AT91_T_SAM9G20; break; case AT91_CPU_SAM9G45: soc_info.type = AT91_T_SAM9G45; break; case AT91_CPU_SAM9N12: soc_info.type = AT91_T_SAM9N12; break; case AT91_CPU_SAM9RL64: soc_info.type = AT91_T_SAM9RL; break; case AT91_CPU_SAM9X5: soc_info.type = AT91_T_SAM9X5; break; default: return (0); } switch (soc_info.type) { case AT91_T_SAM9G45: switch (soc_info.exid) { case AT91_EXID_SAM9G45: soc_info.subtype = AT91_ST_SAM9G45; break; case AT91_EXID_SAM9G46: soc_info.subtype = AT91_ST_SAM9G46; break; case AT91_EXID_SAM9M10: soc_info.subtype = AT91_ST_SAM9M10; break; case AT91_EXID_SAM9M11: soc_info.subtype = AT91_ST_SAM9M11; break; } break; case AT91_T_SAM9X5: switch (soc_info.exid) { case AT91_EXID_SAM9G15: soc_info.subtype = AT91_ST_SAM9G15; break; case AT91_EXID_SAM9G25: soc_info.subtype = AT91_ST_SAM9G25; break; case AT91_EXID_SAM9G35: soc_info.subtype = AT91_ST_SAM9G35; break; case AT91_EXID_SAM9X25: soc_info.subtype = AT91_ST_SAM9X25; break; case AT91_EXID_SAM9X35: soc_info.subtype = AT91_ST_SAM9X35; break; } break; default: break; } /* * Disable interrupts in the DBGU unit... */ *(volatile uint32_t *)(AT91_BASE + dbgu_base + USART_IDR) = 0xffffffff; /* * Save the name for later... */ snprintf(soc_info.name, sizeof(soc_info.name), "%s%s%s", soc_type_name[soc_info.type], soc_info.subtype == AT91_ST_NONE ? "" : " subtype ", soc_info.subtype == AT91_ST_NONE ? "" : soc_subtype_name[soc_info.subtype]); /* * try to get the matching CPU support. */ soc_info.soc_data = at91_match_soc(soc_info.type, soc_info.subtype); soc_info.dbgu_base = AT91_BASE + dbgu_base; return (1); } static void at91_soc_id(void) { if (!at91_try_id(AT91_DBGU0)) at91_try_id(AT91_DBGU1); } #ifdef ARM_MANY_BOARD /* likely belongs in arm/arm/machdep.c, but since board_init is still at91 only... */ SET_DECLARE(arm_board_set, const struct arm_board); /* Not yet fully functional, but enough to build ATMEL config */ static long board_init(void) { return -1; } #endif void * initarm(struct arm_boot_params *abp) { struct pv_addr kernel_l1pt; struct pv_addr dpcpu; int loop, i; u_int l1pagetable; vm_offset_t freemempos; vm_offset_t afterkern; uint32_t memsize; vm_offset_t lastaddr; lastaddr = parse_boot_param(abp); set_cpufuncs(); pcpu0_init(); /* Do basic tuning, hz etc */ init_param1(); freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK; /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_va, (np)); \ (var).pv_pa = (var).pv_va + (KERNPHYSADDR - KERNVIRTADDR); #define alloc_pages(var, np) \ (var) = freemempos; \ freemempos += (np * PAGE_SIZE); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0) freemempos += PAGE_SIZE; valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) { valloc_pages(kernel_pt_table[loop], L2_TABLE_SIZE / PAGE_SIZE); } else { kernel_pt_table[loop].pv_va = freemempos - (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) * L2_TABLE_SIZE_REAL; kernel_pt_table[loop].pv_pa = kernel_pt_table[loop].pv_va - KERNVIRTADDR + KERNPHYSADDR; } } /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ valloc_pages(systempage, 1); /* Allocate dynamic per-cpu area. */ valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE); dpcpu_init((void *)dpcpu.pv_va, 0); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, KSTACK_PAGES); valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE); /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_va; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH, &kernel_pt_table[KERNEL_PT_SYS]); for (i = 0; i < KERNEL_PT_KERN_NUM; i++) pmap_link_l2pt(l1pagetable, KERNBASE + i * L1_S_SIZE, &kernel_pt_table[KERNEL_PT_KERN + i]); pmap_map_chunk(l1pagetable, KERNBASE, PHYSADDR, (((uint32_t)lastaddr - KERNBASE) + PAGE_SIZE) & ~(PAGE_SIZE - 1), VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); afterkern = round_page((lastaddr + L1_S_SIZE) & ~(L1_S_SIZE - 1)); for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) { pmap_link_l2pt(l1pagetable, afterkern + i * L1_S_SIZE, &kernel_pt_table[KERNEL_PT_AFKERNEL + i]); } /* Map the vector page. */ pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map the DPCPU pages */ pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa, DPCPU_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, KSTACK_PAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); pmap_map_chunk(l1pagetable, msgbufpv.pv_va, msgbufpv.pv_pa, msgbufsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } pmap_devmap_bootstrap(l1pagetable, at91_devmap); cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); setttb(kernel_l1pt.pv_pa); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); at91_soc_id(); /* Initialize all the clocks, so that the console can work */ at91_pmc_init_clock(); cninit(); if (soc_info.soc_data == NULL) printf("Warning: No soc support for %s found.\n", soc_info.name); memsize = board_init(); physmem = memsize / PAGE_SIZE; /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE); set_stackptrs(0); /* * We must now clean the cache again.... * Cleaning may be done by reading new data to displace any * dirty data in the cache. This will have happened in setttb() * but since we are boot strapping the addresses used for the read * may have just been remapped and thus the cache could be out * of sync. A re-clean after the switch will cure this. * After booting there are no gross relocations of the kernel thus * this problem will not occur after initarm(). */ cpu_idcache_wbinv_all(); /* Set stack for exception handlers */ data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; undefined_init(); init_proc0(kernelstack.pv_va); arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); pmap_curmaxkvaddr = afterkern + L1_S_SIZE * (KERNEL_PT_KERN_NUM - 1); arm_dump_avail_init(memsize, sizeof(dump_avail)/sizeof(dump_avail[0])); pmap_bootstrap(freemempos, KERNVIRTADDR + 3 * memsize, &kernel_l1pt); msgbufp = (void*)msgbufpv.pv_va; msgbufinit(msgbufp, msgbufsize); mutex_init(); i = 0; #if PHYSADDR != KERNPHYSADDR phys_avail[i++] = PHYSADDR; phys_avail[i++] = KERNPHYSADDR; #endif phys_avail[i++] = virtual_avail - KERNVIRTADDR + KERNPHYSADDR; phys_avail[i++] = PHYSADDR + memsize; phys_avail[i++] = 0; phys_avail[i++] = 0; init_param2(physmem); kdb_init(); return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP - sizeof(struct pcb))); } /* * These functions are handled elsewhere, so make them nops here. */ void cpu_startprofclock(void) { } void cpu_stopprofclock(void) { } void cpu_initclocks(void) { } void DELAY(int n) { if (soc_info.soc_data) soc_info.soc_data->soc_delay(n); } void cpu_reset(void) { if (soc_info.soc_data) soc_info.soc_data->soc_reset(); while (1) continue; }