/* * Copyright (c) 1991 Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Systems Programming Group of the University of Utah Computer * Science Department and William Jolitz of UUNET Technologies Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Derived from hp300 version by Mike Hibler, this version by William * Jolitz uses a recursive map [a pde points to the page directory] to * map the page tables using the pagetables themselves. This is done to * reduce the impact on kernel virtual memory for lots of sparse address * space, and to reduce the cost of memory to each process. * * from: hp300: @(#)pmap.h 7.2 (Berkeley) 12/16/90 * from: @(#)pmap.h 7.4 (Berkeley) 5/12/91 * from: i386 pmap.h,v 1.54 1997/11/20 19:30:35 bde Exp * $FreeBSD$ */ #ifndef _MACHINE_PMAP_H_ #define _MACHINE_PMAP_H_ #include #include #ifdef _KERNEL #ifndef NKPT #define NKPT 30 /* initial number of kernel page tables */ #endif #define MAXKPT (PAGE_SIZE/sizeof(vm_offset_t)) /* * Routine: pmap_kextract * Function: * Extract the physical page address associated * kernel virtual address. */ #define pmap_kextract ia64_tpa #define vtophys(va) pmap_kextract(((vm_offset_t) (va))) #endif /* _KERNEL */ /* * Pmap stuff */ struct pv_entry; struct md_page { int pv_list_count; TAILQ_HEAD(,pv_entry) pv_list; }; struct pmap { TAILQ_HEAD(,pv_entry) pm_pvlist; /* list of mappings in pmap */ u_int32_t pm_rid[5]; /* base RID for pmap */ int pm_flags; /* pmap flags */ int pm_active; /* active flag */ struct pmap_statistics pm_stats; /* pmap statistics */ struct vm_page *pm_ptphint; /* pmap ptp hint */ }; #define pmap_page_is_mapped(m) (!TAILQ_EMPTY(&(m)->md.pv_list)) #define pmap_resident_count(pmap) (pmap)->pm_stats.resident_count #define PM_FLAG_LOCKED 0x1 #define PM_FLAG_WANTED 0x2 typedef struct pmap *pmap_t; #ifdef _KERNEL extern struct pmap kernel_pmap_store; #define kernel_pmap (&kernel_pmap_store) #endif /* * For each vm_page_t, there is a list of all currently valid virtual * mappings of that page. An entry is a pv_entry_t, the list is pv_table. */ typedef struct pv_entry { pmap_t pv_pmap; /* pmap where mapping lies */ vm_offset_t pv_va; /* virtual address for mapping */ TAILQ_ENTRY(pv_entry) pv_list; TAILQ_ENTRY(pv_entry) pv_plist; } *pv_entry_t; #ifdef _KERNEL extern vm_offset_t avail_end; extern vm_offset_t avail_start; extern vm_offset_t clean_eva; extern vm_offset_t clean_sva; extern vm_offset_t phys_avail[]; extern vm_offset_t virtual_avail; extern vm_offset_t virtual_end; vm_offset_t pmap_steal_memory(vm_size_t); void pmap_bootstrap(void); void pmap_setdevram(unsigned long long basea, vm_offset_t sizea); int pmap_uses_prom_console(void); void *pmap_mapdev(vm_offset_t, vm_size_t); void pmap_unmapdev(vm_offset_t, vm_size_t); unsigned *pmap_pte(pmap_t, vm_offset_t) __pure2; void pmap_set_opt (unsigned *); void pmap_set_opt_bsp (void); struct pmap *pmap_install(struct pmap *pmap); #endif /* _KERNEL */ #endif /* !_MACHINE_PMAP_H_ */