/* Low level interface to ptrace, for the remote server for GDB. Copyright (C) 1995 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "defs.h" #include #include "frame.h" #include "inferior.h" #include #include #include #include #include #include #include #include /***************Begin MY defs*********************/ int quit_flag = 0; char registers[REGISTER_BYTES]; /* Index within `registers' of the first byte of the space for register N. */ char buf2[MAX_REGISTER_RAW_SIZE]; /***************End MY defs*********************/ #include #include extern char **environ; extern int inferior_pid; void quit (), perror_with_name (); int query (); /* Start an inferior process and returns its pid. ALLARGS is a vector of program-name and args. ENV is the environment vector to pass. */ int create_inferior (program, allargs) char *program; char **allargs; { int pid; pid = fork (); if (pid < 0) perror_with_name ("fork"); if (pid == 0) { ptrace (PT_TRACE_ME, 0, 0, 0); execv (program, allargs); fprintf (stderr, "Cannot exec %s: %s.\n", program, strerror(errno)); fflush (stderr); _exit (0177); } return pid; } /* Kill the inferior process. Make us have no inferior. */ void kill_inferior () { if (inferior_pid == 0) return; ptrace (PT_KILL, inferior_pid, 0, 0); wait (0); /*************inferior_died ();****VK**************/ } /* Return nonzero if the given thread is still alive. */ int mythread_alive (pid) int pid; { return 1; } /* Wait for process, returns status */ unsigned char mywait (status) char *status; { int pid; int w; pid = wait (&w); if (pid != inferior_pid) perror_with_name ("wait"); if (WIFEXITED (w)) { fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w)); *status = 'W'; return ((unsigned char) WEXITSTATUS (w)); } else if (!WIFSTOPPED (w)) { fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w)); *status = 'X'; return ((unsigned char) WTERMSIG (w)); } fetch_inferior_registers (0); *status = 'T'; return ((unsigned char) WSTOPSIG (w)); } /* Resume execution of the inferior process. If STEP is nonzero, single-step it. If SIGNAL is nonzero, give it that signal. */ void myresume (step, signal) int step; int signal; { errno = 0; ptrace (step ? PT_STEP : PT_CONTINUE, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal); if (errno) perror_with_name ("ptrace"); } #if !defined (offsetof) #define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER) #endif /* U_REGS_OFFSET is the offset of the registers within the u area. */ #if !defined (U_REGS_OFFSET) #define U_REGS_OFFSET \ ptrace (PT_READ_U, inferior_pid, \ (PTRACE_ARG3_TYPE) (offsetof (struct user, u_ar0)), 0) \ - KERNEL_U_ADDR #endif unsigned int register_addr (regno, blockend) int regno; int blockend; { int addr; if (regno < 0 || regno >= ARCH_NUM_REGS) error ("Invalid register number %d.", regno); REGISTER_U_ADDR (addr, blockend, regno); return addr; } /* Fetch one register. */ static void fetch_register (regno) int regno; { register unsigned int regaddr; char buf[MAX_REGISTER_RAW_SIZE]; register int i; /* Offset of registers within the u area. */ unsigned int offset; offset = U_REGS_OFFSET; regaddr = register_addr (regno, offset); for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int)) { errno = 0; *(int *) ®isters[ regno * sizeof(int) + i] = ptrace (PT_READ_U, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, 0); regaddr += sizeof (int); if (errno != 0) { /* Warning, not error, in case we are attached; sometimes the kernel doesn't let us at the registers. */ char *err = strerror (errno); char *msg = alloca (strlen (err) + 128); sprintf (msg, "reading register %d: %s", regno, err); error (msg); goto error_exit; } } error_exit:; } /* Fetch all registers, or just one, from the child process. */ void fetch_inferior_registers (regno) int regno; { if (regno == -1 || regno == 0) for (regno = 0; regno < NUM_REGS; regno++) fetch_register (regno); else fetch_register (regno); } /* Store our register values back into the inferior. If REGNO is -1, do this for all registers. Otherwise, REGNO specifies which register (so we can save time). */ void store_inferior_registers (regno) int regno; { register unsigned int regaddr; char buf[80]; extern char registers[]; register int i; unsigned int offset = U_REGS_OFFSET; int scratch; if (regno >= 0) { regaddr = register_addr (regno, offset); errno = 0; for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(int)) { errno = 0; ptrace (PT_WRITE_U, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, *(int *) ®isters[REGISTER_BYTE (regno) + i]); if (errno != 0) { /* Warning, not error, in case we are attached; sometimes the kernel doesn't let us at the registers. */ char *err = strerror (errno); char *msg = alloca (strlen (err) + 128); sprintf (msg, "writing register %d: %s", regno, err); error (msg); return; } regaddr += sizeof(int); } } else for (regno = 0; regno < NUM_REGS; regno++) store_inferior_registers (regno); } /* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory in the NEW_SUN_PTRACE case. It ought to be straightforward. But it appears that writing did not write the data that I specified. I cannot understand where it got the data that it actually did write. */ /* Copy LEN bytes from inferior's memory starting at MEMADDR to debugger memory starting at MYADDR. */ read_inferior_memory (memaddr, myaddr, len) CORE_ADDR memaddr; char *myaddr; int len; { register int i; /* Round starting address down to longword boundary. */ register CORE_ADDR addr = memaddr & -sizeof (int); /* Round ending address up; get number of longwords that makes. */ register int count = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int); /* Allocate buffer of that many longwords. */ register int *buffer = (int *) alloca (count * sizeof (int)); /* Read all the longwords */ for (i = 0; i < count; i++, addr += sizeof (int)) { buffer[i] = ptrace (PT_READ_I, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0); } /* Copy appropriate bytes out of the buffer. */ memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len); } /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's memory at MEMADDR. On failure (cannot write the inferior) returns the value of errno. */ int write_inferior_memory (memaddr, myaddr, len) CORE_ADDR memaddr; char *myaddr; int len; { register int i; /* Round starting address down to longword boundary. */ register CORE_ADDR addr = memaddr & -sizeof (int); /* Round ending address up; get number of longwords that makes. */ register int count = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int); /* Allocate buffer of that many longwords. */ register int *buffer = (int *) alloca (count * sizeof (int)); extern int errno; /* Fill start and end extra bytes of buffer with existing memory data. */ buffer[0] = ptrace (PT_READ_I, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0); if (count > 1) { buffer[count - 1] = ptrace (PT_READ_I, inferior_pid, (PTRACE_ARG3_TYPE) addr + (count - 1) * sizeof (int), 0); } /* Copy data to be written over corresponding part of buffer */ memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len); /* Write the entire buffer. */ for (i = 0; i < count; i++, addr += sizeof (int)) { errno = 0; ptrace (PT_WRITE_I, inferior_pid, (PTRACE_ARG3_TYPE) addr, buffer[i]); if (errno) return errno; } return 0; } void initialize () { inferior_pid = 0; } int have_inferior_p () { return inferior_pid != 0; } /* Some systems don't provide all the registers on a trap. Use SS as a default if so. */ #ifndef tDS #define tDS tSS #endif #ifndef tES #define tES tSS #endif #ifndef tFS #define tFS tSS #endif #ifndef tGS #define tGS tSS #endif /* These tables map between the registers on a trap frame, and the register order used by the rest of GDB. */ /* this table must line up with REGISTER_NAMES in tm-i386.h */ /* symbols like 'tEAX' come from */ static int tregmap[] = { tEAX, tECX, tEDX, tEBX, tESP, tEBP, tESI, tEDI, tEIP, tEFLAGS, tCS, tSS, tDS, tES, tFS, tGS }; #ifdef sEAX static int sregmap[] = { sEAX, sECX, sEDX, sEBX, sESP, sEBP, sESI, sEDI, sEIP, sEFLAGS, sCS, sSS }; #else /* No sEAX */ /* FreeBSD has decided to collapse the s* and t* symbols. So if the s* ones aren't around, use the t* ones for sregmap too. */ static int sregmap[] = { tEAX, tECX, tEDX, tEBX, tESP, tEBP, tESI, tEDI, tEIP, tEFLAGS, tCS, tSS, tDS, tES, tFS, tGS }; #endif /* No sEAX */ /* blockend is the value of u.u_ar0, and points to the place where ES is stored. */ int i386_register_u_addr (blockend, regnum) int blockend; int regnum; { /* The following condition is a kludge to get at the proper register map depending upon the state of pcb_flag. The proper condition would be if (u.u_pcb.pcb_flag & FM_TRAP) but that would require a ptrace call here and wouldn't work for corefiles. */ if (blockend < 0x1fcc) return (blockend + 4 * tregmap[regnum]); else return (blockend + 4 * sregmap[regnum]); }