/* * Copyright (c) 1982, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if_ethersubr.c 8.1 (Berkeley) 6/10/93 * $FreeBSD$ */ #include "opt_atalk.h" #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipx.h" #include "opt_bdg.h" #include "opt_mac.h" #include "opt_netgraph.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #include #include #include #include #endif #ifdef INET6 #include #endif #ifdef IPX #include #include int (*ef_inputp)(struct ifnet*, struct ether_header *eh, struct mbuf *m); int (*ef_outputp)(struct ifnet *ifp, struct mbuf **mp, struct sockaddr *dst, short *tp, int *hlen); #endif #ifdef NS #include #include ushort ns_nettype; int ether_outputdebug = 0; int ether_inputdebug = 0; #endif #ifdef NETATALK #include #include #include #define llc_snap_org_code llc_un.type_snap.org_code #define llc_snap_ether_type llc_un.type_snap.ether_type extern u_char at_org_code[3]; extern u_char aarp_org_code[3]; #endif /* NETATALK */ /* netgraph node hooks for ng_ether(4) */ void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp, struct ether_header *eh); void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh); int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp); void (*ng_ether_attach_p)(struct ifnet *ifp); void (*ng_ether_detach_p)(struct ifnet *ifp); int (*vlan_input_p)(struct ether_header *eh, struct mbuf *m); int (*vlan_input_tag_p)(struct ether_header *eh, struct mbuf *m, u_int16_t t); /* bridge support */ int do_bridge; bridge_in_t *bridge_in_ptr; bdg_forward_t *bdg_forward_ptr; bdgtakeifaces_t *bdgtakeifaces_ptr; struct bdg_softc *ifp2sc; static int ether_resolvemulti(struct ifnet *, struct sockaddr **, struct sockaddr *); u_char etherbroadcastaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; #define senderr(e) do { error = (e); goto bad;} while (0) #define IFP2AC(IFP) ((struct arpcom *)IFP) int ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, struct ip_fw **rule, struct ether_header *eh, int shared); static int ether_ipfw; /* * Ethernet output routine. * Encapsulate a packet of type family for the local net. * Use trailer local net encapsulation if enough data in first * packet leaves a multiple of 512 bytes of data in remainder. * Assumes that ifp is actually pointer to arpcom structure. */ int ether_output(ifp, m, dst, rt0) register struct ifnet *ifp; struct mbuf *m; struct sockaddr *dst; struct rtentry *rt0; { short type; int error = 0, hdrcmplt = 0; u_char esrc[6], edst[6]; register struct rtentry *rt; register struct ether_header *eh; int loop_copy = 0; int hlen; /* link layer header lenght */ struct arpcom *ac = IFP2AC(ifp); #ifdef MAC error = mac_check_ifnet_transmit(ifp, m); if (error) senderr(error); #endif if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING)) senderr(ENETDOWN); rt = rt0; if (rt) { if ((rt->rt_flags & RTF_UP) == 0) { rt0 = rt = rtalloc1(dst, 1, 0UL); if (rt0) rt->rt_refcnt--; else senderr(EHOSTUNREACH); } if (rt->rt_flags & RTF_GATEWAY) { if (rt->rt_gwroute == 0) goto lookup; if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) { rtfree(rt); rt = rt0; lookup: rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1, 0UL); if ((rt = rt->rt_gwroute) == 0) senderr(EHOSTUNREACH); } } if (rt->rt_flags & RTF_REJECT) if (rt->rt_rmx.rmx_expire == 0 || time_second < rt->rt_rmx.rmx_expire) senderr(rt == rt0 ? EHOSTDOWN : EHOSTUNREACH); } hlen = ETHER_HDR_LEN; switch (dst->sa_family) { #ifdef INET case AF_INET: if (!arpresolve(ifp, rt, m, dst, edst, rt0)) return (0); /* if not yet resolved */ type = htons(ETHERTYPE_IP); break; #endif #ifdef INET6 case AF_INET6: if (!nd6_storelladdr(&ac->ac_if, rt, m, dst, (u_char *)edst)) { /* Something bad happened */ return(0); } type = htons(ETHERTYPE_IPV6); break; #endif #ifdef IPX case AF_IPX: if (ef_outputp) { error = ef_outputp(ifp, &m, dst, &type, &hlen); if (error) goto bad; } else type = htons(ETHERTYPE_IPX); bcopy((caddr_t)&(((struct sockaddr_ipx *)dst)->sipx_addr.x_host), (caddr_t)edst, sizeof (edst)); break; #endif #ifdef NETATALK case AF_APPLETALK: { struct at_ifaddr *aa; if ((aa = at_ifawithnet((struct sockaddr_at *)dst)) == NULL) { goto bad; } if (!aarpresolve(ac, m, (struct sockaddr_at *)dst, edst)) return (0); /* * In the phase 2 case, need to prepend an mbuf for the llc header. * Since we must preserve the value of m, which is passed to us by * value, we m_copy() the first mbuf, and use it for our llc header. */ if ( aa->aa_flags & AFA_PHASE2 ) { struct llc llc; M_PREPEND(m, sizeof(struct llc), M_TRYWAIT); llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP; llc.llc_control = LLC_UI; bcopy(at_org_code, llc.llc_snap_org_code, sizeof(at_org_code)); llc.llc_snap_ether_type = htons( ETHERTYPE_AT ); bcopy(&llc, mtod(m, caddr_t), sizeof(struct llc)); type = htons(m->m_pkthdr.len); hlen = sizeof(struct llc) + ETHER_HDR_LEN; } else { type = htons(ETHERTYPE_AT); } break; } #endif /* NETATALK */ #ifdef NS case AF_NS: switch(ns_nettype){ default: case 0x8137: /* Novell Ethernet_II Ethernet TYPE II */ type = 0x8137; break; case 0x0: /* Novell 802.3 */ type = htons( m->m_pkthdr.len); break; case 0xe0e0: /* Novell 802.2 and Token-Ring */ M_PREPEND(m, 3, M_TRYWAIT); type = htons( m->m_pkthdr.len); cp = mtod(m, u_char *); *cp++ = 0xE0; *cp++ = 0xE0; *cp++ = 0x03; break; } bcopy((caddr_t)&(((struct sockaddr_ns *)dst)->sns_addr.x_host), (caddr_t)edst, sizeof (edst)); /* * XXX if ns_thishost is the same as the node's ethernet * address then just the default code will catch this anyhow. * So I'm not sure if this next clause should be here at all? * [JRE] */ if (!bcmp((caddr_t)edst, (caddr_t)&ns_thishost, sizeof(edst))){ m->m_pkthdr.rcvif = ifp; inq = &nsintrq; if (IF_HANDOFF(inq, m, NULL)) schednetisr(NETISR_NS); return (error); } if (!bcmp((caddr_t)edst, (caddr_t)&ns_broadhost, sizeof(edst))){ m->m_flags |= M_BCAST; } break; #endif /* NS */ case pseudo_AF_HDRCMPLT: hdrcmplt = 1; eh = (struct ether_header *)dst->sa_data; (void)memcpy(esrc, eh->ether_shost, sizeof (esrc)); /* FALLTHROUGH */ case AF_UNSPEC: loop_copy = -1; /* if this is for us, don't do it */ eh = (struct ether_header *)dst->sa_data; (void)memcpy(edst, eh->ether_dhost, sizeof (edst)); type = eh->ether_type; break; default: printf("%s%d: can't handle af%d\n", ifp->if_name, ifp->if_unit, dst->sa_family); senderr(EAFNOSUPPORT); } /* * Add local net header. If no space in first mbuf, * allocate another. */ M_PREPEND(m, sizeof (struct ether_header), M_DONTWAIT); if (m == 0) senderr(ENOBUFS); eh = mtod(m, struct ether_header *); (void)memcpy(&eh->ether_type, &type, sizeof(eh->ether_type)); (void)memcpy(eh->ether_dhost, edst, sizeof (edst)); if (hdrcmplt) (void)memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost)); else (void)memcpy(eh->ether_shost, ac->ac_enaddr, sizeof(eh->ether_shost)); /* * If a simplex interface, and the packet is being sent to our * Ethernet address or a broadcast address, loopback a copy. * XXX To make a simplex device behave exactly like a duplex * device, we should copy in the case of sending to our own * ethernet address (thus letting the original actually appear * on the wire). However, we don't do that here for security * reasons and compatibility with the original behavior. */ if ((ifp->if_flags & IFF_SIMPLEX) && (loop_copy != -1)) { int csum_flags = 0; if (m->m_pkthdr.csum_flags & CSUM_IP) csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID); if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR); if ((m->m_flags & M_BCAST) || (loop_copy > 0)) { struct mbuf *n = m_copy(m, 0, (int)M_COPYALL); n->m_pkthdr.csum_flags |= csum_flags; if (csum_flags & CSUM_DATA_VALID) n->m_pkthdr.csum_data = 0xffff; (void) if_simloop(ifp, n, dst->sa_family, hlen); } else if (bcmp(eh->ether_dhost, eh->ether_shost, ETHER_ADDR_LEN) == 0) { m->m_pkthdr.csum_flags |= csum_flags; if (csum_flags & CSUM_DATA_VALID) m->m_pkthdr.csum_data = 0xffff; (void) if_simloop(ifp, m, dst->sa_family, hlen); return (0); /* XXX */ } } /* Handle ng_ether(4) processing, if any */ if (ng_ether_output_p != NULL) { if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) { bad: if (m != NULL) m_freem(m); return (error); } if (m == NULL) return (0); } /* Continue with link-layer output */ return ether_output_frame(ifp, m); } /* * Ethernet link layer output routine to send a raw frame to the device. * * This assumes that the 14 byte Ethernet header is present and contiguous * in the first mbuf (if BRIDGE'ing). */ int ether_output_frame(ifp, m) struct ifnet *ifp; struct mbuf *m; { int error = 0; struct ip_fw *rule = NULL; /* Extract info from dummynet tag, ignore others */ for (; m->m_type == MT_TAG; m = m->m_next) if (m->m_flags == PACKET_TAG_DUMMYNET) rule = ((struct dn_pkt *)m)->rule; if (rule) /* packet was already bridged */ goto no_bridge; if (BDG_ACTIVE(ifp) ) { struct ether_header *eh; /* a ptr suffices */ m->m_pkthdr.rcvif = NULL; eh = mtod(m, struct ether_header *); m_adj(m, ETHER_HDR_LEN); m = bdg_forward_ptr(m, eh, ifp); if (m != NULL) m_freem(m); return (0); } no_bridge: if (IPFW_LOADED && ether_ipfw != 0) { struct ether_header save_eh, *eh; eh = mtod(m, struct ether_header *); save_eh = *eh; m_adj(m, ETHER_HDR_LEN); if (ether_ipfw_chk(&m, ifp, &rule, eh, 0) == 0) { if (m) { m_freem(m); return ENOBUFS; /* pkt dropped */ } else return 0; /* consumed e.g. in a pipe */ } /* packet was ok, restore the ethernet header */ if ( (void *)(eh + 1) == (void *)m->m_data) { m->m_data -= ETHER_HDR_LEN ; m->m_len += ETHER_HDR_LEN ; m->m_pkthdr.len += ETHER_HDR_LEN ; } else { M_PREPEND(m, ETHER_HDR_LEN, M_DONTWAIT); if (m == NULL) /* nope... */ return ENOBUFS; bcopy(&save_eh, mtod(m, struct ether_header *), ETHER_HDR_LEN); } } /* * Queue message on interface, update output statistics if * successful, and start output if interface not yet active. */ if (! IF_HANDOFF(&ifp->if_snd, m, ifp)) return (ENOBUFS); return (error); } /* * ipfw processing for ethernet packets (in and out). * The second parameter is NULL from ether_demux, and ifp from * ether_output_frame. This section of code could be used from * bridge.c as well as long as we use some extra info * to distinguish that case from ether_output_frame(); */ int ether_ipfw_chk(struct mbuf **m0, struct ifnet *dst, struct ip_fw **rule, struct ether_header *eh, int shared) { struct ether_header save_eh = *eh; /* might be a ptr in m */ int i; struct ip_fw_args args; if (*rule != NULL /*&& fw_one_pass*/) /* HACK! need to obey fw_one_pass */ return 1; /* dummynet packet, already partially processed */ /* * I need some amt of data to be contiguous, and in case others need * the packet (shared==1) also better be in the first mbuf. */ i = min( (*m0)->m_pkthdr.len, max_protohdr); if ( shared || (*m0)->m_len < i) { *m0 = m_pullup(*m0, i); if (*m0 == NULL) return 0; } args.m = *m0; /* the packet we are looking at */ args.oif = dst; /* destination, if any */ args.divert_rule = 0; /* we do not support divert yet */ args.rule = *rule; /* matching rule to restart */ args.next_hop = NULL; /* we do not support forward yet */ args.eh = &save_eh; /* MAC header for bridged/MAC packets */ i = ip_fw_chk_ptr(&args); *m0 = args.m; *rule = args.rule; if ( (i & IP_FW_PORT_DENY_FLAG) || *m0 == NULL) /* drop */ return 0; if (i == 0) /* a PASS rule. */ return 1; if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG)) { /* * Pass the pkt to dummynet, which consumes it. * If shared, make a copy and keep the original. */ struct mbuf *m ; if (shared) { m = m_copypacket(*m0, M_DONTWAIT); if (m == NULL) return 0; } else { m = *m0 ; /* pass the original to dummynet */ *m0 = NULL ; /* and nothing back to the caller */ } /* * Prepend the header, optimize for the common case of * eh pointing into the mbuf. */ if ( (void *)(eh + 1) == (void *)m->m_data) { m->m_data -= ETHER_HDR_LEN ; m->m_len += ETHER_HDR_LEN ; m->m_pkthdr.len += ETHER_HDR_LEN ; } else { M_PREPEND(m, ETHER_HDR_LEN, M_DONTWAIT); if (m == NULL) /* nope... */ return 0; bcopy(&save_eh, mtod(m, struct ether_header *), ETHER_HDR_LEN); } ip_dn_io_ptr(m, (i & 0xffff), dst ? DN_TO_ETH_OUT: DN_TO_ETH_DEMUX, &args); return 0; } /* * XXX at some point add support for divert/forward actions. * If none of the above matches, we have to drop the pkt. */ return 0; } /* * Process a received Ethernet packet. We have two different interfaces: * one (conventional) assumes the packet in the mbuf, with the ethernet * header provided separately in *eh. The second one (new) has everything * in the mbuf, and we can tell it because eh == NULL. * The caller MUST MAKE SURE that there are at least * sizeof(struct ether_header) bytes in the first mbuf. * * This allows us to concentrate in one place a bunch of code which * is replicated in all device drivers. Also, many functions called * from ether_input() try to put the eh back into the mbuf, so we * can later propagate the 'contiguous packet' interface to them, * and handle the old interface just here. * * NOTA BENE: for many drivers "eh" is a pointer into the first mbuf or * cluster, right before m_data. So be very careful when working on m, * as you could destroy *eh !! * * First we perform any link layer operations, then continue * to the upper layers with ether_demux(). */ void ether_input(struct ifnet *ifp, struct ether_header *eh, struct mbuf *m) { struct ether_header save_eh; if (eh == NULL) { if (m->m_len < sizeof(struct ether_header)) { /* XXX error in the caller. */ m_freem(m); return; } if (ifp->if_bpf != NULL) bpf_mtap(ifp, m); m->m_pkthdr.rcvif = ifp; eh = mtod(m, struct ether_header *); m->m_data += sizeof(struct ether_header); m->m_len -= sizeof(struct ether_header); m->m_pkthdr.len = m->m_len; } else if (ifp->if_bpf != NULL) { struct m_hdr mh; /* This kludge is OK; BPF treats the "mbuf" as read-only */ mh.mh_next = m; mh.mh_data = (char *)eh; mh.mh_len = ETHER_HDR_LEN; bpf_mtap(ifp, (struct mbuf *)&mh); } #ifdef MAC mac_create_mbuf_from_ifnet(ifp, m); #endif ifp->if_ibytes += m->m_pkthdr.len + sizeof (*eh); /* Handle ng_ether(4) processing, if any */ if (ng_ether_input_p != NULL) { (*ng_ether_input_p)(ifp, &m, eh); if (m == NULL) return; } /* Check for bridging mode */ if (BDG_ACTIVE(ifp) ) { struct ifnet *bif; /* Check with bridging code */ if ((bif = bridge_in_ptr(ifp, eh)) == BDG_DROP) { m_freem(m); return; } if (bif != BDG_LOCAL) { struct mbuf *oldm = m ; save_eh = *eh ; /* because it might change */ m = bdg_forward_ptr(m, eh, bif); /* needs forwarding */ /* * Do not continue if bdg_forward_ptr() processed our * packet (and cleared the mbuf pointer m) or if * it dropped (m_free'd) the packet itself. */ if (m == NULL) { if (bif == BDG_BCAST || bif == BDG_MCAST) printf("bdg_forward drop MULTICAST PKT\n"); return; } if (m != oldm) /* m changed! */ eh = &save_eh ; } if (bif == BDG_LOCAL || bif == BDG_BCAST || bif == BDG_MCAST) goto recvLocal; /* receive locally */ /* If not local and not multicast, just drop it */ if (m != NULL) m_freem(m); return; } recvLocal: /* Continue with upper layer processing */ ether_demux(ifp, eh, m); /* First chunk of an mbuf contains good entropy */ if (harvest.ethernet) random_harvest(m, 16, 3, 0, RANDOM_NET); } /* * Upper layer processing for a received Ethernet packet. */ void ether_demux(ifp, eh, m) struct ifnet *ifp; struct ether_header *eh; struct mbuf *m; { struct ifqueue *inq; u_short ether_type; #if defined(NETATALK) register struct llc *l; #endif struct ip_fw *rule = NULL; /* Extract info from dummynet tag, ignore others */ for (;m->m_type == MT_TAG; m = m->m_next) if (m->m_flags == PACKET_TAG_DUMMYNET) { rule = ((struct dn_pkt *)m)->rule; ifp = m->m_next->m_pkthdr.rcvif; } if (rule) /* packet was already bridged */ goto post_stats; if (! (BDG_ACTIVE(ifp) ) ) /* Discard packet if upper layers shouldn't see it because it was unicast to a different Ethernet address. If the driver is working properly, then this situation can only happen when the interface is in promiscuous mode. */ if ((ifp->if_flags & IFF_PROMISC) != 0 && (eh->ether_dhost[0] & 1) == 0 && bcmp(eh->ether_dhost, IFP2AC(ifp)->ac_enaddr, ETHER_ADDR_LEN) != 0 && (ifp->if_flags & IFF_PPROMISC) == 0) { m_freem(m); return; } /* Discard packet if interface is not up */ if ((ifp->if_flags & IFF_UP) == 0) { m_freem(m); return; } if (eh->ether_dhost[0] & 1) { if (bcmp((caddr_t)etherbroadcastaddr, (caddr_t)eh->ether_dhost, sizeof(etherbroadcastaddr)) == 0) m->m_flags |= M_BCAST; else m->m_flags |= M_MCAST; } if (m->m_flags & (M_BCAST|M_MCAST)) ifp->if_imcasts++; post_stats: if (IPFW_LOADED && ether_ipfw != 0) { if (ether_ipfw_chk(&m, NULL, &rule, eh, 0 ) == 0) { if (m) m_freem(m); return; } } ether_type = ntohs(eh->ether_type); switch (ether_type) { #ifdef INET case ETHERTYPE_IP: if (ipflow_fastforward(m)) return; schednetisr(NETISR_IP); inq = &ipintrq; break; case ETHERTYPE_ARP: if (ifp->if_flags & IFF_NOARP) { /* Discard packet if ARP is disabled on interface */ m_freem(m); return; } schednetisr(NETISR_ARP); inq = &arpintrq; break; #endif #ifdef IPX case ETHERTYPE_IPX: if (ef_inputp && ef_inputp(ifp, eh, m) == 0) return; schednetisr(NETISR_IPX); inq = &ipxintrq; break; #endif #ifdef INET6 case ETHERTYPE_IPV6: schednetisr(NETISR_IPV6); inq = &ip6intrq; break; #endif #ifdef NS case 0x8137: /* Novell Ethernet_II Ethernet TYPE II */ schednetisr(NETISR_NS); inq = &nsintrq; break; #endif /* NS */ #ifdef NETATALK case ETHERTYPE_AT: schednetisr(NETISR_ATALK); inq = &atintrq1; break; case ETHERTYPE_AARP: /* probably this should be done with a NETISR as well */ aarpinput(IFP2AC(ifp), m); /* XXX */ return; #endif /* NETATALK */ case ETHERTYPE_VLAN: /* XXX lock ? */ if (vlan_input_p != NULL) (*vlan_input_p)(eh, m); else { m->m_pkthdr.rcvif->if_noproto++; m_freem(m); } /* XXX unlock ? */ return; default: #ifdef IPX if (ef_inputp && ef_inputp(ifp, eh, m) == 0) return; #endif /* IPX */ #ifdef NS checksum = mtod(m, ushort *); /* Novell 802.3 */ if ((ether_type <= ETHERMTU) && ((*checksum == 0xffff) || (*checksum == 0xE0E0))){ if(*checksum == 0xE0E0) { m->m_pkthdr.len -= 3; m->m_len -= 3; m->m_data += 3; } schednetisr(NETISR_NS); inq = &nsintrq; break; } #endif /* NS */ #if defined(NETATALK) if (ether_type > ETHERMTU) goto dropanyway; l = mtod(m, struct llc *); switch (l->llc_dsap) { case LLC_SNAP_LSAP: switch (l->llc_control) { case LLC_UI: if (l->llc_ssap != LLC_SNAP_LSAP) goto dropanyway; if (Bcmp(&(l->llc_snap_org_code)[0], at_org_code, sizeof(at_org_code)) == 0 && ntohs(l->llc_snap_ether_type) == ETHERTYPE_AT) { inq = &atintrq2; m_adj( m, sizeof( struct llc )); schednetisr(NETISR_ATALK); break; } if (Bcmp(&(l->llc_snap_org_code)[0], aarp_org_code, sizeof(aarp_org_code)) == 0 && ntohs(l->llc_snap_ether_type) == ETHERTYPE_AARP) { m_adj( m, sizeof( struct llc )); aarpinput(IFP2AC(ifp), m); /* XXX */ return; } default: goto dropanyway; } break; dropanyway: default: if (ng_ether_input_orphan_p != NULL) (*ng_ether_input_orphan_p)(ifp, m, eh); else m_freem(m); return; } #else /* NETATALK */ if (ng_ether_input_orphan_p != NULL) (*ng_ether_input_orphan_p)(ifp, m, eh); else m_freem(m); return; #endif /* NETATALK */ } (void) IF_HANDOFF(inq, m, NULL); } /* * Perform common duties while attaching to interface list */ void ether_ifattach(ifp, bpf) register struct ifnet *ifp; int bpf; { register struct ifaddr *ifa; register struct sockaddr_dl *sdl; ifp->if_type = IFT_ETHER; ifp->if_addrlen = 6; ifp->if_hdrlen = 14; if_attach(ifp); ifp->if_mtu = ETHERMTU; ifp->if_resolvemulti = ether_resolvemulti; if (ifp->if_baudrate == 0) ifp->if_baudrate = 10000000; ifp->if_broadcastaddr = etherbroadcastaddr; ifa = ifaddr_byindex(ifp->if_index); KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__)); sdl = (struct sockaddr_dl *)ifa->ifa_addr; sdl->sdl_type = IFT_ETHER; sdl->sdl_alen = ifp->if_addrlen; bcopy((IFP2AC(ifp))->ac_enaddr, LLADDR(sdl), ifp->if_addrlen); if (bpf) bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header)); if (ng_ether_attach_p != NULL) (*ng_ether_attach_p)(ifp); if (BDG_LOADED) bdgtakeifaces_ptr(); } /* * Perform common duties while detaching an Ethernet interface */ void ether_ifdetach(ifp, bpf) struct ifnet *ifp; int bpf; { if (ng_ether_detach_p != NULL) (*ng_ether_detach_p)(ifp); if (bpf) bpfdetach(ifp); if_detach(ifp); if (BDG_LOADED) bdgtakeifaces_ptr(); } SYSCTL_DECL(_net_link); SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW, 0, "Ethernet"); SYSCTL_INT(_net_link_ether, OID_AUTO, ipfw, CTLFLAG_RW, ðer_ipfw,0,"Pass ether pkts through firewall"); int ether_ioctl(ifp, command, data) struct ifnet *ifp; int command; caddr_t data; { struct ifaddr *ifa = (struct ifaddr *) data; struct ifreq *ifr = (struct ifreq *) data; int error = 0; switch (command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: ifp->if_init(ifp->if_softc); /* before arpwhohas */ arp_ifinit(ifp, ifa); break; #endif #ifdef IPX /* * XXX - This code is probably wrong */ case AF_IPX: { register struct ipx_addr *ina = &(IA_SIPX(ifa)->sipx_addr); struct arpcom *ac = IFP2AC(ifp); if (ipx_nullhost(*ina)) ina->x_host = *(union ipx_host *) ac->ac_enaddr; else { bcopy((caddr_t) ina->x_host.c_host, (caddr_t) ac->ac_enaddr, sizeof(ac->ac_enaddr)); } /* * Set new address */ ifp->if_init(ifp->if_softc); break; } #endif #ifdef NS /* * XXX - This code is probably wrong */ case AF_NS: { register struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr); struct arpcom *ac = IFP2AC(ifp); if (ns_nullhost(*ina)) ina->x_host = *(union ns_host *) (ac->ac_enaddr); else { bcopy((caddr_t) ina->x_host.c_host, (caddr_t) ac->ac_enaddr, sizeof(ac->ac_enaddr)); } /* * Set new address */ ifp->if_init(ifp->if_softc); break; } #endif default: ifp->if_init(ifp->if_softc); break; } break; case SIOCGIFADDR: { struct sockaddr *sa; sa = (struct sockaddr *) & ifr->ifr_data; bcopy(IFP2AC(ifp)->ac_enaddr, (caddr_t) sa->sa_data, ETHER_ADDR_LEN); } break; case SIOCSIFMTU: /* * Set the interface MTU. */ if (ifr->ifr_mtu > ETHERMTU) { error = EINVAL; } else { ifp->if_mtu = ifr->ifr_mtu; } break; } return (error); } int ether_resolvemulti(ifp, llsa, sa) struct ifnet *ifp; struct sockaddr **llsa; struct sockaddr *sa; { struct sockaddr_dl *sdl; struct sockaddr_in *sin; #ifdef INET6 struct sockaddr_in6 *sin6; #endif u_char *e_addr; switch(sa->sa_family) { case AF_LINK: /* * No mapping needed. Just check that it's a valid MC address. */ sdl = (struct sockaddr_dl *)sa; e_addr = LLADDR(sdl); if ((e_addr[0] & 1) != 1) return EADDRNOTAVAIL; *llsa = 0; return 0; #ifdef INET case AF_INET: sin = (struct sockaddr_in *)sa; if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) return EADDRNOTAVAIL; MALLOC(sdl, struct sockaddr_dl *, sizeof *sdl, M_IFMADDR, M_WAITOK|M_ZERO); sdl->sdl_len = sizeof *sdl; sdl->sdl_family = AF_LINK; sdl->sdl_index = ifp->if_index; sdl->sdl_type = IFT_ETHER; sdl->sdl_alen = ETHER_ADDR_LEN; e_addr = LLADDR(sdl); ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr); *llsa = (struct sockaddr *)sdl; return 0; #endif #ifdef INET6 case AF_INET6: sin6 = (struct sockaddr_in6 *)sa; if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { /* * An IP6 address of 0 means listen to all * of the Ethernet multicast address used for IP6. * (This is used for multicast routers.) */ ifp->if_flags |= IFF_ALLMULTI; *llsa = 0; return 0; } if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) return EADDRNOTAVAIL; MALLOC(sdl, struct sockaddr_dl *, sizeof *sdl, M_IFMADDR, M_WAITOK|M_ZERO); sdl->sdl_len = sizeof *sdl; sdl->sdl_family = AF_LINK; sdl->sdl_index = ifp->if_index; sdl->sdl_type = IFT_ETHER; sdl->sdl_alen = ETHER_ADDR_LEN; e_addr = LLADDR(sdl); ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr); *llsa = (struct sockaddr *)sdl; return 0; #endif default: /* * Well, the text isn't quite right, but it's the name * that counts... */ return EAFNOSUPPORT; } }