/*- * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ffs_inode.c 8.13 (Berkeley) 4/21/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_quota.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int ffs_indirtrunc(struct inode *, ufs2_daddr_t, ufs2_daddr_t, ufs2_daddr_t, int, ufs2_daddr_t *); /* * Update the access, modified, and inode change times as specified by the * IN_ACCESS, IN_UPDATE, and IN_CHANGE flags respectively. Write the inode * to disk if the IN_MODIFIED flag is set (it may be set initially, or by * the timestamp update). The IN_LAZYMOD flag is set to force a write * later if not now. If we write now, then clear both IN_MODIFIED and * IN_LAZYMOD to reflect the presumably successful write, and if waitfor is * set, then wait for the write to complete. */ int ffs_update(vp, waitfor) struct vnode *vp; int waitfor; { struct fs *fs; struct buf *bp; struct inode *ip; int error; ASSERT_VOP_LOCKED(vp, "ffs_update"); ufs_itimes(vp); ip = VTOI(vp); if ((ip->i_flag & IN_MODIFIED) == 0 && waitfor == 0) return (0); ip->i_flag &= ~(IN_LAZYMOD | IN_MODIFIED); fs = ip->i_fs; if (fs->fs_ronly) return (0); /* * Ensure that uid and gid are correct. This is a temporary * fix until fsck has been changed to do the update. */ if (fs->fs_magic == FS_UFS1_MAGIC && /* XXX */ fs->fs_old_inodefmt < FS_44INODEFMT) { /* XXX */ ip->i_din1->di_ouid = ip->i_uid; /* XXX */ ip->i_din1->di_ogid = ip->i_gid; /* XXX */ } /* XXX */ error = bread(ip->i_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), (int)fs->fs_bsize, NOCRED, &bp); if (error) { brelse(bp); return (error); } if (DOINGSOFTDEP(vp)) softdep_update_inodeblock(ip, bp, waitfor); else if (ip->i_effnlink != ip->i_nlink) panic("ffs_update: bad link cnt"); if (ip->i_ump->um_fstype == UFS1) *((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; else *((struct ufs2_dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; if (waitfor && !DOINGASYNC(vp)) { return (bwrite(bp)); } else if (vm_page_count_severe() || buf_dirty_count_severe()) { return (bwrite(bp)); } else { if (bp->b_bufsize == fs->fs_bsize) bp->b_flags |= B_CLUSTEROK; bdwrite(bp); return (0); } } #define SINGLE 0 /* index of single indirect block */ #define DOUBLE 1 /* index of double indirect block */ #define TRIPLE 2 /* index of triple indirect block */ /* * Truncate the inode oip to at most length size, freeing the * disk blocks. */ int ffs_truncate(vp, length, flags, cred, td) struct vnode *vp; off_t length; int flags; struct ucred *cred; struct thread *td; { struct vnode *ovp = vp; struct inode *oip; ufs2_daddr_t bn, lbn, lastblock, lastiblock[NIADDR], indir_lbn[NIADDR]; ufs2_daddr_t oldblks[NDADDR + NIADDR], newblks[NDADDR + NIADDR]; ufs2_daddr_t count, blocksreleased = 0, datablocks; struct fs *fs; struct buf *bp; struct ufsmount *ump; int needextclean, softdepslowdown, extblocks; int offset, size, level, nblocks; int i, error, allerror; off_t osize; oip = VTOI(ovp); fs = oip->i_fs; ump = oip->i_ump; ASSERT_VOP_LOCKED(vp, "ffs_truncate"); if (length < 0) return (EINVAL); /* * Historically clients did not have to specify which data * they were truncating. So, if not specified, we assume * traditional behavior, e.g., just the normal data. */ if ((flags & (IO_EXT | IO_NORMAL)) == 0) flags |= IO_NORMAL; /* * If we are truncating the extended-attributes, and cannot * do it with soft updates, then do it slowly here. If we are * truncating both the extended attributes and the file contents * (e.g., the file is being unlinked), then pick it off with * soft updates below. */ needextclean = 0; softdepslowdown = DOINGSOFTDEP(ovp) && softdep_slowdown(ovp); extblocks = 0; datablocks = DIP(oip, i_blocks); if (fs->fs_magic == FS_UFS2_MAGIC && oip->i_din2->di_extsize > 0) { extblocks = btodb(fragroundup(fs, oip->i_din2->di_extsize)); datablocks -= extblocks; } if ((flags & IO_EXT) && extblocks > 0) { if (DOINGSOFTDEP(ovp) && softdepslowdown == 0 && length == 0) { if ((flags & IO_NORMAL) == 0) { softdep_setup_freeblocks(oip, length, IO_EXT); return (0); } needextclean = 1; } else { if (length != 0) panic("ffs_truncate: partial trunc of extdata"); if ((error = ffs_syncvnode(ovp, MNT_WAIT)) != 0) return (error); osize = oip->i_din2->di_extsize; oip->i_din2->di_blocks -= extblocks; #ifdef QUOTA (void) chkdq(oip, -extblocks, NOCRED, 0); #endif vinvalbuf(ovp, V_ALT, td, 0, 0); oip->i_din2->di_extsize = 0; for (i = 0; i < NXADDR; i++) { oldblks[i] = oip->i_din2->di_extb[i]; oip->i_din2->di_extb[i] = 0; } oip->i_flag |= IN_CHANGE | IN_UPDATE; if ((error = ffs_update(ovp, 1))) return (error); for (i = 0; i < NXADDR; i++) { if (oldblks[i] == 0) continue; ffs_blkfree(ump, fs, oip->i_devvp, oldblks[i], sblksize(fs, osize, i), oip->i_number); } } } if ((flags & IO_NORMAL) == 0) return (0); if (length > fs->fs_maxfilesize) return (EFBIG); if (ovp->v_type == VLNK && (oip->i_size < ovp->v_mount->mnt_maxsymlinklen || datablocks == 0)) { #ifdef DIAGNOSTIC if (length != 0) panic("ffs_truncate: partial truncate of symlink"); #endif bzero(SHORTLINK(oip), (u_int)oip->i_size); oip->i_size = 0; DIP_SET(oip, i_size, 0); oip->i_flag |= IN_CHANGE | IN_UPDATE; if (needextclean) softdep_setup_freeblocks(oip, length, IO_EXT); return (ffs_update(ovp, 1)); } if (oip->i_size == length) { oip->i_flag |= IN_CHANGE | IN_UPDATE; if (needextclean) softdep_setup_freeblocks(oip, length, IO_EXT); return (ffs_update(ovp, 0)); } if (fs->fs_ronly) panic("ffs_truncate: read-only filesystem"); #ifdef QUOTA error = getinoquota(oip); if (error) return (error); #endif if ((oip->i_flags & SF_SNAPSHOT) != 0) ffs_snapremove(ovp); ovp->v_lasta = ovp->v_clen = ovp->v_cstart = ovp->v_lastw = 0; if (DOINGSOFTDEP(ovp)) { if (length > 0 || softdepslowdown) { /* * If a file is only partially truncated, then * we have to clean up the data structures * describing the allocation past the truncation * point. Finding and deallocating those structures * is a lot of work. Since partial truncation occurs * rarely, we solve the problem by syncing the file * so that it will have no data structures left. */ if ((error = ffs_syncvnode(ovp, MNT_WAIT)) != 0) return (error); UFS_LOCK(ump); if (oip->i_flag & IN_SPACECOUNTED) fs->fs_pendingblocks -= datablocks; UFS_UNLOCK(ump); } else { #ifdef QUOTA (void) chkdq(oip, -datablocks, NOCRED, 0); #endif softdep_setup_freeblocks(oip, length, needextclean ? IO_EXT | IO_NORMAL : IO_NORMAL); ASSERT_VOP_LOCKED(vp, "ffs_truncate1"); vinvalbuf(ovp, needextclean ? 0 : V_NORMAL, td, 0, 0); vnode_pager_setsize(vp, 0); oip->i_flag |= IN_CHANGE | IN_UPDATE; return (ffs_update(ovp, 0)); } } osize = oip->i_size; /* * Lengthen the size of the file. We must ensure that the * last byte of the file is allocated. Since the smallest * value of osize is 0, length will be at least 1. */ if (osize < length) { vnode_pager_setsize(ovp, length); flags |= BA_CLRBUF; error = UFS_BALLOC(ovp, length - 1, 1, cred, flags, &bp); if (error) return (error); oip->i_size = length; DIP_SET(oip, i_size, length); if (bp->b_bufsize == fs->fs_bsize) bp->b_flags |= B_CLUSTEROK; if (flags & IO_SYNC) bwrite(bp); else bawrite(bp); oip->i_flag |= IN_CHANGE | IN_UPDATE; return (ffs_update(ovp, 1)); } /* * Shorten the size of the file. If the file is not being * truncated to a block boundary, the contents of the * partial block following the end of the file must be * zero'ed in case it ever becomes accessible again because * of subsequent file growth. Directories however are not * zero'ed as they should grow back initialized to empty. */ offset = blkoff(fs, length); if (offset == 0) { oip->i_size = length; DIP_SET(oip, i_size, length); } else { lbn = lblkno(fs, length); flags |= BA_CLRBUF; error = UFS_BALLOC(ovp, length - 1, 1, cred, flags, &bp); if (error) { return (error); } /* * When we are doing soft updates and the UFS_BALLOC * above fills in a direct block hole with a full sized * block that will be truncated down to a fragment below, * we must flush out the block dependency with an FSYNC * so that we do not get a soft updates inconsistency * when we create the fragment below. */ if (DOINGSOFTDEP(ovp) && lbn < NDADDR && fragroundup(fs, blkoff(fs, length)) < fs->fs_bsize && (error = ffs_syncvnode(ovp, MNT_WAIT)) != 0) return (error); oip->i_size = length; DIP_SET(oip, i_size, length); size = blksize(fs, oip, lbn); if (ovp->v_type != VDIR) bzero((char *)bp->b_data + offset, (u_int)(size - offset)); /* Kirk's code has reallocbuf(bp, size, 1) here */ allocbuf(bp, size); if (bp->b_bufsize == fs->fs_bsize) bp->b_flags |= B_CLUSTEROK; if (flags & IO_SYNC) bwrite(bp); else bawrite(bp); } /* * Calculate index into inode's block list of * last direct and indirect blocks (if any) * which we want to keep. Lastblock is -1 when * the file is truncated to 0. */ lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1; lastiblock[SINGLE] = lastblock - NDADDR; lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs); lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs); nblocks = btodb(fs->fs_bsize); /* * Update file and block pointers on disk before we start freeing * blocks. If we crash before free'ing blocks below, the blocks * will be returned to the free list. lastiblock values are also * normalized to -1 for calls to ffs_indirtrunc below. */ for (level = TRIPLE; level >= SINGLE; level--) { oldblks[NDADDR + level] = DIP(oip, i_ib[level]); if (lastiblock[level] < 0) { DIP_SET(oip, i_ib[level], 0); lastiblock[level] = -1; } } for (i = 0; i < NDADDR; i++) { oldblks[i] = DIP(oip, i_db[i]); if (i > lastblock) DIP_SET(oip, i_db[i], 0); } oip->i_flag |= IN_CHANGE | IN_UPDATE; allerror = ffs_update(ovp, 1); /* * Having written the new inode to disk, save its new configuration * and put back the old block pointers long enough to process them. * Note that we save the new block configuration so we can check it * when we are done. */ for (i = 0; i < NDADDR; i++) { newblks[i] = DIP(oip, i_db[i]); DIP_SET(oip, i_db[i], oldblks[i]); } for (i = 0; i < NIADDR; i++) { newblks[NDADDR + i] = DIP(oip, i_ib[i]); DIP_SET(oip, i_ib[i], oldblks[NDADDR + i]); } oip->i_size = osize; DIP_SET(oip, i_size, osize); error = vtruncbuf(ovp, cred, td, length, fs->fs_bsize); if (error && (allerror == 0)) allerror = error; /* * Indirect blocks first. */ indir_lbn[SINGLE] = -NDADDR; indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1; indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1; for (level = TRIPLE; level >= SINGLE; level--) { bn = DIP(oip, i_ib[level]); if (bn != 0) { error = ffs_indirtrunc(oip, indir_lbn[level], fsbtodb(fs, bn), lastiblock[level], level, &count); if (error) allerror = error; blocksreleased += count; if (lastiblock[level] < 0) { DIP_SET(oip, i_ib[level], 0); ffs_blkfree(ump, fs, oip->i_devvp, bn, fs->fs_bsize, oip->i_number); blocksreleased += nblocks; } } if (lastiblock[level] >= 0) goto done; } /* * All whole direct blocks or frags. */ for (i = NDADDR - 1; i > lastblock; i--) { long bsize; bn = DIP(oip, i_db[i]); if (bn == 0) continue; DIP_SET(oip, i_db[i], 0); bsize = blksize(fs, oip, i); ffs_blkfree(ump, fs, oip->i_devvp, bn, bsize, oip->i_number); blocksreleased += btodb(bsize); } if (lastblock < 0) goto done; /* * Finally, look for a change in size of the * last direct block; release any frags. */ bn = DIP(oip, i_db[lastblock]); if (bn != 0) { long oldspace, newspace; /* * Calculate amount of space we're giving * back as old block size minus new block size. */ oldspace = blksize(fs, oip, lastblock); oip->i_size = length; DIP_SET(oip, i_size, length); newspace = blksize(fs, oip, lastblock); if (newspace == 0) panic("ffs_truncate: newspace"); if (oldspace - newspace > 0) { /* * Block number of space to be free'd is * the old block # plus the number of frags * required for the storage we're keeping. */ bn += numfrags(fs, newspace); ffs_blkfree(ump, fs, oip->i_devvp, bn, oldspace - newspace, oip->i_number); blocksreleased += btodb(oldspace - newspace); } } done: #ifdef DIAGNOSTIC for (level = SINGLE; level <= TRIPLE; level++) if (newblks[NDADDR + level] != DIP(oip, i_ib[level])) panic("ffs_truncate1"); for (i = 0; i < NDADDR; i++) if (newblks[i] != DIP(oip, i_db[i])) panic("ffs_truncate2"); VI_LOCK(ovp); if (length == 0 && (fs->fs_magic != FS_UFS2_MAGIC || oip->i_din2->di_extsize == 0) && (vp->v_bufobj.bo_dirty.bv_cnt > 0 || vp->v_bufobj.bo_clean.bv_cnt > 0)) panic("ffs_truncate3"); VI_UNLOCK(ovp); #endif /* DIAGNOSTIC */ /* * Put back the real size. */ oip->i_size = length; DIP_SET(oip, i_size, length); DIP_SET(oip, i_blocks, DIP(oip, i_blocks) - blocksreleased); if (DIP(oip, i_blocks) < 0) /* sanity */ DIP_SET(oip, i_blocks, 0); oip->i_flag |= IN_CHANGE; #ifdef QUOTA (void) chkdq(oip, -blocksreleased, NOCRED, 0); #endif return (allerror); } /* * Release blocks associated with the inode ip and stored in the indirect * block bn. Blocks are free'd in LIFO order up to (but not including) * lastbn. If level is greater than SINGLE, the block is an indirect block * and recursive calls to indirtrunc must be used to cleanse other indirect * blocks. */ static int ffs_indirtrunc(ip, lbn, dbn, lastbn, level, countp) struct inode *ip; ufs2_daddr_t lbn, lastbn; ufs2_daddr_t dbn; int level; ufs2_daddr_t *countp; { struct buf *bp; struct fs *fs = ip->i_fs; struct vnode *vp; caddr_t copy = NULL; int i, nblocks, error = 0, allerror = 0; ufs2_daddr_t nb, nlbn, last; ufs2_daddr_t blkcount, factor, blocksreleased = 0; ufs1_daddr_t *bap1 = NULL; ufs2_daddr_t *bap2 = NULL; # define BAP(ip, i) (((ip)->i_ump->um_fstype == UFS1) ? bap1[i] : bap2[i]) /* * Calculate index in current block of last * block to be kept. -1 indicates the entire * block so we need not calculate the index. */ factor = 1; for (i = SINGLE; i < level; i++) factor *= NINDIR(fs); last = lastbn; if (lastbn > 0) last /= factor; nblocks = btodb(fs->fs_bsize); /* * Get buffer of block pointers, zero those entries corresponding * to blocks to be free'd, and update on disk copy first. Since * double(triple) indirect before single(double) indirect, calls * to bmap on these blocks will fail. However, we already have * the on disk address, so we have to set the b_blkno field * explicitly instead of letting bread do everything for us. */ vp = ITOV(ip); bp = getblk(vp, lbn, (int)fs->fs_bsize, 0, 0, 0); if ((bp->b_flags & B_CACHE) == 0) { curproc->p_stats->p_ru.ru_inblock++; /* pay for read */ bp->b_iocmd = BIO_READ; bp->b_flags &= ~B_INVAL; bp->b_ioflags &= ~BIO_ERROR; if (bp->b_bcount > bp->b_bufsize) panic("ffs_indirtrunc: bad buffer size"); bp->b_blkno = dbn; vfs_busy_pages(bp, 0); bp->b_iooffset = dbtob(bp->b_blkno); bstrategy(bp); error = bufwait(bp); } if (error) { brelse(bp); *countp = 0; return (error); } if (ip->i_ump->um_fstype == UFS1) bap1 = (ufs1_daddr_t *)bp->b_data; else bap2 = (ufs2_daddr_t *)bp->b_data; if (lastbn != -1) { MALLOC(copy, caddr_t, fs->fs_bsize, M_TEMP, M_WAITOK); bcopy((caddr_t)bp->b_data, copy, (u_int)fs->fs_bsize); for (i = last + 1; i < NINDIR(fs); i++) if (ip->i_ump->um_fstype == UFS1) bap1[i] = 0; else bap2[i] = 0; if (DOINGASYNC(vp)) { bawrite(bp); } else { error = bwrite(bp); if (error) allerror = error; } if (ip->i_ump->um_fstype == UFS1) bap1 = (ufs1_daddr_t *)copy; else bap2 = (ufs2_daddr_t *)copy; } /* * Recursively free totally unused blocks. */ for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last; i--, nlbn += factor) { nb = BAP(ip, i); if (nb == 0) continue; if (level > SINGLE) { if ((error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb), (ufs2_daddr_t)-1, level - 1, &blkcount)) != 0) allerror = error; blocksreleased += blkcount; } ffs_blkfree(ip->i_ump, fs, ip->i_devvp, nb, fs->fs_bsize, ip->i_number); blocksreleased += nblocks; } /* * Recursively free last partial block. */ if (level > SINGLE && lastbn >= 0) { last = lastbn % factor; nb = BAP(ip, i); if (nb != 0) { error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb), last, level - 1, &blkcount); if (error) allerror = error; blocksreleased += blkcount; } } if (copy != NULL) { FREE(copy, M_TEMP); } else { bp->b_flags |= B_INVAL | B_NOCACHE; brelse(bp); } *countp = blocksreleased; return (allerror); }