/* * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94 * $FreeBSD$ */ #include "opt_mac.h" #include "opt_swap.h" #include "opt_vm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Indirect driver for multi-controller paging. */ typedef int32_t swblk_t; /* swap offset */ #ifndef NSWAPDEV #define NSWAPDEV 4 #endif static struct swdevt should_be_malloced[NSWAPDEV]; struct swdevt *swdevt = should_be_malloced; static int nswap; /* first block after the interleaved devs */ int nswdev = NSWAPDEV; int vm_swap_size; static int swdev_syscall_active = 0; /* serialize swap(on|off) */ static int swapdev_strategy(struct vop_strategy_args *ap); struct vnode *swapdev_vp; /* * swapdev_strategy: * * VOP_STRATEGY() for swapdev_vp. * Perform swap strategy interleave device selection. * * The bp is expected to be locked and *not* B_DONE on call. */ static int swapdev_strategy(ap) struct vop_strategy_args /* { struct vnode *a_vp; struct buf *a_bp; } */ *ap; { int s, sz, off, seg, index; struct swdevt *sp; struct vnode *vp; struct buf *bp; bp = ap->a_bp; sz = howmany(bp->b_bcount, PAGE_SIZE); /* * Convert interleaved swap into per-device swap. Note that * the block size is left in PAGE_SIZE'd chunks (for the newswap) * here. */ if (nswdev > 1) { off = bp->b_blkno % dmmax; if (off + sz > dmmax) { bp->b_error = EINVAL; bp->b_ioflags |= BIO_ERROR; bufdone(bp); return 0; } seg = bp->b_blkno / dmmax; index = seg % nswdev; seg /= nswdev; bp->b_blkno = seg * dmmax + off; } else { index = 0; } sp = &swdevt[index]; if (bp->b_blkno + sz > sp->sw_nblks) { bp->b_error = EINVAL; bp->b_ioflags |= BIO_ERROR; bufdone(bp); return 0; } bp->b_dev = sp->sw_device; if (sp->sw_vp == NULL) { bp->b_error = ENODEV; bp->b_ioflags |= BIO_ERROR; bufdone(bp); return 0; } /* * Convert from PAGE_SIZE'd to DEV_BSIZE'd chunks for the actual I/O */ bp->b_blkno = ctodb(bp->b_blkno); vhold(sp->sw_vp); s = splvm(); if (bp->b_iocmd == BIO_WRITE) { vp = bp->b_vp; if (vp) { VI_LOCK(vp); vp->v_numoutput--; if ((vp->v_iflag & VI_BWAIT) && vp->v_numoutput <= 0) { vp->v_iflag &= ~VI_BWAIT; wakeup(&vp->v_numoutput); } VI_UNLOCK(vp); } VI_LOCK(sp->sw_vp); sp->sw_vp->v_numoutput++; VI_UNLOCK(sp->sw_vp); } bp->b_vp = sp->sw_vp; splx(s); VOP_SPECSTRATEGY(bp->b_vp, bp); return 0; } /* * Create a special vnode op vector for swapdev_vp - we only use * VOP_STRATEGY() and reclaim; everything else returns an error. */ vop_t **swapdev_vnodeop_p; static struct vnodeopv_entry_desc swapdev_vnodeop_entries[] = { { &vop_default_desc, (vop_t *) vop_defaultop }, { &vop_reclaim_desc, (vop_t *) vop_null }, { &vop_strategy_desc, (vop_t *) swapdev_strategy }, { NULL, NULL } }; static struct vnodeopv_desc swapdev_vnodeop_opv_desc = { &swapdev_vnodeop_p, swapdev_vnodeop_entries }; VNODEOP_SET(swapdev_vnodeop_opv_desc); /* * System call swapon(name) enables swapping on device name, * which must be in the swdevsw. Return EBUSY * if already swapping on this device. */ #ifndef _SYS_SYSPROTO_H_ struct swapon_args { char *name; }; #endif /* * MPSAFE */ /* ARGSUSED */ int swapon(td, uap) struct thread *td; struct swapon_args *uap; { struct vattr attr; struct vnode *vp; struct nameidata nd; int error; mtx_lock(&Giant); error = suser(td); if (error) goto done2; while (swdev_syscall_active) tsleep(&swdev_syscall_active, PUSER - 1, "swpon", 0); swdev_syscall_active = 1; /* * Swap metadata may not fit in the KVM if we have physical * memory of >1GB. */ if (swap_zone == NULL) { error = ENOMEM; goto done; } NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, uap->name, td); error = namei(&nd); if (error) goto done; NDFREE(&nd, NDF_ONLY_PNBUF); vp = nd.ni_vp; if (vn_isdisk(vp, &error)) error = swaponvp(td, vp, vp->v_rdev, 0); else if (vp->v_type == VREG && (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && (error = VOP_GETATTR(vp, &attr, td->td_ucred, td)) == 0) { /* * Allow direct swapping to NFS regular files in the same * way that nfs_mountroot() sets up diskless swapping. */ error = swaponvp(td, vp, NODEV, attr.va_size / DEV_BSIZE); } if (error) vrele(vp); done: swdev_syscall_active = 0; wakeup_one(&swdev_syscall_active); done2: mtx_unlock(&Giant); return (error); } /* * Swfree(index) frees the index'th portion of the swap map. * Each of the nswdev devices provides 1/nswdev'th of the swap * space, which is laid out with blocks of dmmax pages circularly * among the devices. * * The new swap code uses page-sized blocks. The old swap code used * DEV_BSIZE'd chunks. */ int swaponvp(td, vp, dev, nblks) struct thread *td; struct vnode *vp; dev_t dev; u_long nblks; { int index; struct swdevt *sp; swblk_t vsbase; long blk; swblk_t dvbase; int error; u_long aligned_nblks; if (!swapdev_vp) { error = getnewvnode("none", NULL, swapdev_vnodeop_p, &swapdev_vp); if (error) panic("Cannot get vnode for swapdev"); swapdev_vp->v_type = VNON; /* Untyped */ } ASSERT_VOP_UNLOCKED(vp, "swaponvp"); for (sp = swdevt, index = 0 ; index < nswdev; index++, sp++) { if (sp->sw_vp == vp) return EBUSY; if (!sp->sw_vp) goto found; } return EINVAL; found: (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td); #ifdef MAC error = mac_check_system_swapon(td->td_ucred, vp); if (error == 0) #endif error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td); (void) VOP_UNLOCK(vp, 0, td); if (error) return (error); if (nblks == 0 && dev != NODEV && (devsw(dev)->d_psize == 0 || (nblks = (*devsw(dev)->d_psize) (dev)) == -1)) { (void) VOP_CLOSE(vp, FREAD | FWRITE, td->td_ucred, td); return (ENXIO); } if (nblks == 0) { (void) VOP_CLOSE(vp, FREAD | FWRITE, td->td_ucred, td); return (ENXIO); } /* * If we go beyond this, we get overflows in the radix * tree bitmap code. */ if (nblks > 0x40000000 / BLIST_META_RADIX / nswdev) { printf("exceeded maximum of %d blocks per swap unit\n", 0x40000000 / BLIST_META_RADIX / nswdev); (void) VOP_CLOSE(vp, FREAD | FWRITE, td->td_ucred, td); return (ENXIO); } /* * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks. * First chop nblks off to page-align it, then convert. * * sw->sw_nblks is in page-sized chunks now too. */ nblks &= ~(ctodb(1) - 1); nblks = dbtoc(nblks); sp->sw_vp = vp; sp->sw_dev = dev2udev(dev); sp->sw_device = dev; sp->sw_flags = SW_FREED; sp->sw_nblks = nblks; sp->sw_used = 0; /* * nblks, nswap, and dmmax are PAGE_SIZE'd parameters now, not * DEV_BSIZE'd. aligned_nblks is used to calculate the * size of the swap bitmap, taking into account the stripe size. */ aligned_nblks = (nblks + (dmmax -1)) & ~(u_long)(dmmax -1); if (aligned_nblks * nswdev > nswap) nswap = aligned_nblks * nswdev; if (swapblist == NULL) swapblist = blist_create(nswap); else blist_resize(&swapblist, nswap, 0); for (dvbase = dmmax; dvbase < nblks; dvbase += dmmax) { blk = min(nblks - dvbase, dmmax); vsbase = index * dmmax + dvbase * nswdev; blist_free(swapblist, vsbase, blk); vm_swap_size += blk; } swap_pager_full = 0; return (0); } /* * SYSCALL: swapoff(devname) * * Disable swapping on the given device. */ #ifndef _SYS_SYSPROTO_H_ struct swapoff_args { char *name; }; #endif /* * MPSAFE */ /* ARGSUSED */ int swapoff(td, uap) struct thread *td; struct swapoff_args *uap; { struct vnode *vp; struct nameidata nd; struct swdevt *sp; swblk_t dvbase, vsbase; u_long nblks, aligned_nblks, blk; int error, index; mtx_lock(&Giant); error = suser(td); if (error) goto done2; while (swdev_syscall_active) tsleep(&swdev_syscall_active, PUSER - 1, "swpoff", 0); swdev_syscall_active = 1; NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, uap->name, td); error = namei(&nd); if (error) goto done; NDFREE(&nd, NDF_ONLY_PNBUF); vp = nd.ni_vp; for (sp = swdevt, index = 0 ; index < nswdev; index++, sp++) { if (sp->sw_vp == vp) goto found; } error = EINVAL; goto done; found: nblks = sp->sw_nblks; /* * We can turn off this swap device safely only if the * available virtual memory in the system will fit the amount * of data we will have to page back in, plus an epsilon so * the system doesn't become critically low on swap space. */ if (cnt.v_free_count + cnt.v_cache_count + vm_swap_size < nblks + nswap_lowat) { error = ENOMEM; goto done; } /* * Prevent further allocations on this device. */ sp->sw_flags |= SW_CLOSING; for (dvbase = dmmax; dvbase < nblks; dvbase += dmmax) { blk = min(nblks - dvbase, dmmax); vsbase = index * dmmax + dvbase * nswdev; vm_swap_size -= blist_fill(swapblist, vsbase, blk); } /* * Page in the contents of the device and close it. */ #ifndef NO_SWAPPING vm_proc_swapin_all(index); #endif /* !NO_SWAPPING */ swap_pager_swapoff(index, &sp->sw_used); VOP_CLOSE(vp, FREAD | FWRITE, td->td_ucred, td); vrele(vp); sp->sw_vp = NULL; /* * Resize the bitmap based on the new largest swap device, * or free the bitmap if there are no more devices. */ for (sp = swdevt, nblks = 0; sp < swdevt + nswdev; sp++) { if (sp->sw_vp == NULL) continue; nblks = max(nblks, sp->sw_nblks); } aligned_nblks = (nblks + (dmmax -1)) & ~(u_long)(dmmax -1); nswap = aligned_nblks * nswdev; if (nswap == 0) { blist_destroy(swapblist); swapblist = NULL; vrele(swapdev_vp); swapdev_vp = NULL; } else blist_resize(&swapblist, nswap, 0); done: swdev_syscall_active = 0; wakeup_one(&swdev_syscall_active); done2: mtx_unlock(&Giant); return (error); } static int sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS) { int *name = (int *)arg1; int error, i, n; struct xswdev xs; struct swdevt *sp; if (arg2 != 1) /* name length */ return (EINVAL); for (sp = swdevt, i = 0, n = 0 ; i < nswdev; i++, sp++) { if (sp->sw_vp) { if (n == *name) { xs.xsw_version = XSWDEV_VERSION; xs.xsw_dev = sp->sw_dev; xs.xsw_flags = sp->sw_flags; xs.xsw_nblks = sp->sw_nblks; xs.xsw_used = sp->sw_used; error = SYSCTL_OUT(req, &xs, sizeof(xs)); return (error); } n++; } } return (ENOENT); } SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswdev, 0, "Number of swap devices"); SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD, sysctl_vm_swap_info, "Swap statistics by device");