/***********************license start***************
* Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights
* reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Cavium Networks nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
* This Software, including technical data, may be subject to U.S. export control
* laws, including the U.S. Export Administration Act and its associated
* regulations, and may be subject to export or import regulations in other
* countries.
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
* AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
* WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
* THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
* DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
* SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
* MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
* VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
* CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
* PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
***********************license end**************************************/
/**
* cvmx-pow-defs.h
*
* Configuration and status register (CSR) type definitions for
* Octeon pow.
*
* This file is auto generated. Do not edit.
*
*
$Revision$
*
*/
#ifndef __CVMX_POW_TYPEDEFS_H__
#define __CVMX_POW_TYPEDEFS_H__
#define CVMX_POW_BIST_STAT (CVMX_ADD_IO_SEG(0x00016700000003F8ull))
#define CVMX_POW_DS_PC (CVMX_ADD_IO_SEG(0x0001670000000398ull))
#define CVMX_POW_ECC_ERR (CVMX_ADD_IO_SEG(0x0001670000000218ull))
#define CVMX_POW_INT_CTL (CVMX_ADD_IO_SEG(0x0001670000000220ull))
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_POW_IQ_CNTX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 7)))))
cvmx_warn("CVMX_POW_IQ_CNTX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001670000000340ull) + ((offset) & 7) * 8;
}
#else
#define CVMX_POW_IQ_CNTX(offset) (CVMX_ADD_IO_SEG(0x0001670000000340ull) + ((offset) & 7) * 8)
#endif
#define CVMX_POW_IQ_COM_CNT (CVMX_ADD_IO_SEG(0x0001670000000388ull))
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_POW_IQ_INT CVMX_POW_IQ_INT_FUNC()
static inline uint64_t CVMX_POW_IQ_INT_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN63XX)))
cvmx_warn("CVMX_POW_IQ_INT not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001670000000238ull);
}
#else
#define CVMX_POW_IQ_INT (CVMX_ADD_IO_SEG(0x0001670000000238ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_POW_IQ_INT_EN CVMX_POW_IQ_INT_EN_FUNC()
static inline uint64_t CVMX_POW_IQ_INT_EN_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN63XX)))
cvmx_warn("CVMX_POW_IQ_INT_EN not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001670000000240ull);
}
#else
#define CVMX_POW_IQ_INT_EN (CVMX_ADD_IO_SEG(0x0001670000000240ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_POW_IQ_THRX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 7)))))
cvmx_warn("CVMX_POW_IQ_THRX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x00016700000003A0ull) + ((offset) & 7) * 8;
}
#else
#define CVMX_POW_IQ_THRX(offset) (CVMX_ADD_IO_SEG(0x00016700000003A0ull) + ((offset) & 7) * 8)
#endif
#define CVMX_POW_NOS_CNT (CVMX_ADD_IO_SEG(0x0001670000000228ull))
#define CVMX_POW_NW_TIM (CVMX_ADD_IO_SEG(0x0001670000000210ull))
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_POW_PF_RST_MSK CVMX_POW_PF_RST_MSK_FUNC()
static inline uint64_t CVMX_POW_PF_RST_MSK_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN5XXX) || OCTEON_IS_MODEL(OCTEON_CN63XX)))
cvmx_warn("CVMX_POW_PF_RST_MSK not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001670000000230ull);
}
#else
#define CVMX_POW_PF_RST_MSK (CVMX_ADD_IO_SEG(0x0001670000000230ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_POW_PP_GRP_MSKX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset == 0))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 15))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 3))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 11))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 15))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 5)))))
cvmx_warn("CVMX_POW_PP_GRP_MSKX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001670000000000ull) + ((offset) & 15) * 8;
}
#else
#define CVMX_POW_PP_GRP_MSKX(offset) (CVMX_ADD_IO_SEG(0x0001670000000000ull) + ((offset) & 15) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_POW_QOS_RNDX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 7)))))
cvmx_warn("CVMX_POW_QOS_RNDX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x00016700000001C0ull) + ((offset) & 7) * 8;
}
#else
#define CVMX_POW_QOS_RNDX(offset) (CVMX_ADD_IO_SEG(0x00016700000001C0ull) + ((offset) & 7) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_POW_QOS_THRX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 7)))))
cvmx_warn("CVMX_POW_QOS_THRX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001670000000180ull) + ((offset) & 7) * 8;
}
#else
#define CVMX_POW_QOS_THRX(offset) (CVMX_ADD_IO_SEG(0x0001670000000180ull) + ((offset) & 7) * 8)
#endif
#define CVMX_POW_TS_PC (CVMX_ADD_IO_SEG(0x0001670000000390ull))
#define CVMX_POW_WA_COM_PC (CVMX_ADD_IO_SEG(0x0001670000000380ull))
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_POW_WA_PCX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 7)))))
cvmx_warn("CVMX_POW_WA_PCX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001670000000300ull) + ((offset) & 7) * 8;
}
#else
#define CVMX_POW_WA_PCX(offset) (CVMX_ADD_IO_SEG(0x0001670000000300ull) + ((offset) & 7) * 8)
#endif
#define CVMX_POW_WQ_INT (CVMX_ADD_IO_SEG(0x0001670000000200ull))
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_POW_WQ_INT_CNTX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 15))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 15))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 15))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 15))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 15))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 15))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 15))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 15)))))
cvmx_warn("CVMX_POW_WQ_INT_CNTX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001670000000100ull) + ((offset) & 15) * 8;
}
#else
#define CVMX_POW_WQ_INT_CNTX(offset) (CVMX_ADD_IO_SEG(0x0001670000000100ull) + ((offset) & 15) * 8)
#endif
#define CVMX_POW_WQ_INT_PC (CVMX_ADD_IO_SEG(0x0001670000000208ull))
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_POW_WQ_INT_THRX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 15))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 15))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 15))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 15))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 15))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 15))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 15))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 15)))))
cvmx_warn("CVMX_POW_WQ_INT_THRX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001670000000080ull) + ((offset) & 15) * 8;
}
#else
#define CVMX_POW_WQ_INT_THRX(offset) (CVMX_ADD_IO_SEG(0x0001670000000080ull) + ((offset) & 15) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_POW_WS_PCX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 15))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 15))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 15))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 15))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 15))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 15))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 15))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 15)))))
cvmx_warn("CVMX_POW_WS_PCX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001670000000280ull) + ((offset) & 15) * 8;
}
#else
#define CVMX_POW_WS_PCX(offset) (CVMX_ADD_IO_SEG(0x0001670000000280ull) + ((offset) & 15) * 8)
#endif
/**
* cvmx_pow_bist_stat
*
* POW_BIST_STAT = POW BIST Status Register
*
* Contains the BIST status for the POW memories ('0' = pass, '1' = fail).
*
* Also contains the BIST status for the PP's. Each bit in the PP field is the OR of all BIST
* results for the corresponding physical PP ('0' = pass, '1' = fail).
*/
union cvmx_pow_bist_stat
{
uint64_t u64;
struct cvmx_pow_bist_stat_s
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_32_63 : 32;
uint64_t pp : 16; /**< Physical PP BIST status */
uint64_t reserved_0_15 : 16;
#else
uint64_t reserved_0_15 : 16;
uint64_t pp : 16;
uint64_t reserved_32_63 : 32;
#endif
} s;
struct cvmx_pow_bist_stat_cn30xx
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_17_63 : 47;
uint64_t pp : 1; /**< Physical PP BIST status */
uint64_t reserved_9_15 : 7;
uint64_t cam : 1; /**< POW CAM BIST status */
uint64_t nbt1 : 1; /**< NCB transmitter memory 1 BIST status */
uint64_t nbt0 : 1; /**< NCB transmitter memory 0 BIST status */
uint64_t index : 1; /**< Index memory BIST status */
uint64_t fidx : 1; /**< Forward index memory BIST status */
uint64_t nbr1 : 1; /**< NCB receiver memory 1 BIST status */
uint64_t nbr0 : 1; /**< NCB receiver memory 0 BIST status */
uint64_t pend : 1; /**< Pending switch memory BIST status */
uint64_t adr : 1; /**< Address memory BIST status */
#else
uint64_t adr : 1;
uint64_t pend : 1;
uint64_t nbr0 : 1;
uint64_t nbr1 : 1;
uint64_t fidx : 1;
uint64_t index : 1;
uint64_t nbt0 : 1;
uint64_t nbt1 : 1;
uint64_t cam : 1;
uint64_t reserved_9_15 : 7;
uint64_t pp : 1;
uint64_t reserved_17_63 : 47;
#endif
} cn30xx;
struct cvmx_pow_bist_stat_cn31xx
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_18_63 : 46;
uint64_t pp : 2; /**< Physical PP BIST status */
uint64_t reserved_9_15 : 7;
uint64_t cam : 1; /**< POW CAM BIST status */
uint64_t nbt1 : 1; /**< NCB transmitter memory 1 BIST status */
uint64_t nbt0 : 1; /**< NCB transmitter memory 0 BIST status */
uint64_t index : 1; /**< Index memory BIST status */
uint64_t fidx : 1; /**< Forward index memory BIST status */
uint64_t nbr1 : 1; /**< NCB receiver memory 1 BIST status */
uint64_t nbr0 : 1; /**< NCB receiver memory 0 BIST status */
uint64_t pend : 1; /**< Pending switch memory BIST status */
uint64_t adr : 1; /**< Address memory BIST status */
#else
uint64_t adr : 1;
uint64_t pend : 1;
uint64_t nbr0 : 1;
uint64_t nbr1 : 1;
uint64_t fidx : 1;
uint64_t index : 1;
uint64_t nbt0 : 1;
uint64_t nbt1 : 1;
uint64_t cam : 1;
uint64_t reserved_9_15 : 7;
uint64_t pp : 2;
uint64_t reserved_18_63 : 46;
#endif
} cn31xx;
struct cvmx_pow_bist_stat_cn38xx
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_32_63 : 32;
uint64_t pp : 16; /**< Physical PP BIST status */
uint64_t reserved_10_15 : 6;
uint64_t cam : 1; /**< POW CAM BIST status */
uint64_t nbt : 1; /**< NCB transmitter memory BIST status */
uint64_t index : 1; /**< Index memory BIST status */
uint64_t fidx : 1; /**< Forward index memory BIST status */
uint64_t nbr1 : 1; /**< NCB receiver memory 1 BIST status */
uint64_t nbr0 : 1; /**< NCB receiver memory 0 BIST status */
uint64_t pend1 : 1; /**< Pending switch memory 1 BIST status */
uint64_t pend0 : 1; /**< Pending switch memory 0 BIST status */
uint64_t adr1 : 1; /**< Address memory 1 BIST status */
uint64_t adr0 : 1; /**< Address memory 0 BIST status */
#else
uint64_t adr0 : 1;
uint64_t adr1 : 1;
uint64_t pend0 : 1;
uint64_t pend1 : 1;
uint64_t nbr0 : 1;
uint64_t nbr1 : 1;
uint64_t fidx : 1;
uint64_t index : 1;
uint64_t nbt : 1;
uint64_t cam : 1;
uint64_t reserved_10_15 : 6;
uint64_t pp : 16;
uint64_t reserved_32_63 : 32;
#endif
} cn38xx;
struct cvmx_pow_bist_stat_cn38xx cn38xxp2;
struct cvmx_pow_bist_stat_cn31xx cn50xx;
struct cvmx_pow_bist_stat_cn52xx
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_20_63 : 44;
uint64_t pp : 4; /**< Physical PP BIST status */
uint64_t reserved_9_15 : 7;
uint64_t cam : 1; /**< POW CAM BIST status */
uint64_t nbt1 : 1; /**< NCB transmitter memory 1 BIST status */
uint64_t nbt0 : 1; /**< NCB transmitter memory 0 BIST status */
uint64_t index : 1; /**< Index memory BIST status */
uint64_t fidx : 1; /**< Forward index memory BIST status */
uint64_t nbr1 : 1; /**< NCB receiver memory 1 BIST status */
uint64_t nbr0 : 1; /**< NCB receiver memory 0 BIST status */
uint64_t pend : 1; /**< Pending switch memory BIST status */
uint64_t adr : 1; /**< Address memory BIST status */
#else
uint64_t adr : 1;
uint64_t pend : 1;
uint64_t nbr0 : 1;
uint64_t nbr1 : 1;
uint64_t fidx : 1;
uint64_t index : 1;
uint64_t nbt0 : 1;
uint64_t nbt1 : 1;
uint64_t cam : 1;
uint64_t reserved_9_15 : 7;
uint64_t pp : 4;
uint64_t reserved_20_63 : 44;
#endif
} cn52xx;
struct cvmx_pow_bist_stat_cn52xx cn52xxp1;
struct cvmx_pow_bist_stat_cn56xx
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_28_63 : 36;
uint64_t pp : 12; /**< Physical PP BIST status */
uint64_t reserved_10_15 : 6;
uint64_t cam : 1; /**< POW CAM BIST status */
uint64_t nbt : 1; /**< NCB transmitter memory BIST status */
uint64_t index : 1; /**< Index memory BIST status */
uint64_t fidx : 1; /**< Forward index memory BIST status */
uint64_t nbr1 : 1; /**< NCB receiver memory 1 BIST status */
uint64_t nbr0 : 1; /**< NCB receiver memory 0 BIST status */
uint64_t pend1 : 1; /**< Pending switch memory 1 BIST status */
uint64_t pend0 : 1; /**< Pending switch memory 0 BIST status */
uint64_t adr1 : 1; /**< Address memory 1 BIST status */
uint64_t adr0 : 1; /**< Address memory 0 BIST status */
#else
uint64_t adr0 : 1;
uint64_t adr1 : 1;
uint64_t pend0 : 1;
uint64_t pend1 : 1;
uint64_t nbr0 : 1;
uint64_t nbr1 : 1;
uint64_t fidx : 1;
uint64_t index : 1;
uint64_t nbt : 1;
uint64_t cam : 1;
uint64_t reserved_10_15 : 6;
uint64_t pp : 12;
uint64_t reserved_28_63 : 36;
#endif
} cn56xx;
struct cvmx_pow_bist_stat_cn56xx cn56xxp1;
struct cvmx_pow_bist_stat_cn38xx cn58xx;
struct cvmx_pow_bist_stat_cn38xx cn58xxp1;
struct cvmx_pow_bist_stat_cn63xx
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_22_63 : 42;
uint64_t pp : 6; /**< Physical PP BIST status */
uint64_t reserved_12_15 : 4;
uint64_t cam : 1; /**< POW CAM BIST status */
uint64_t nbr : 3; /**< NCB receiver memory BIST status */
uint64_t nbt : 4; /**< NCB transmitter memory BIST status */
uint64_t index : 1; /**< Index memory BIST status */
uint64_t fidx : 1; /**< Forward index memory BIST status */
uint64_t pend : 1; /**< Pending switch memory BIST status */
uint64_t adr : 1; /**< Address memory BIST status */
#else
uint64_t adr : 1;
uint64_t pend : 1;
uint64_t fidx : 1;
uint64_t index : 1;
uint64_t nbt : 4;
uint64_t nbr : 3;
uint64_t cam : 1;
uint64_t reserved_12_15 : 4;
uint64_t pp : 6;
uint64_t reserved_22_63 : 42;
#endif
} cn63xx;
struct cvmx_pow_bist_stat_cn63xx cn63xxp1;
};
typedef union cvmx_pow_bist_stat cvmx_pow_bist_stat_t;
/**
* cvmx_pow_ds_pc
*
* POW_DS_PC = POW De-Schedule Performance Counter
*
* Counts the number of de-schedule requests. Write to clear.
*/
union cvmx_pow_ds_pc
{
uint64_t u64;
struct cvmx_pow_ds_pc_s
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_32_63 : 32;
uint64_t ds_pc : 32; /**< De-schedule performance counter */
#else
uint64_t ds_pc : 32;
uint64_t reserved_32_63 : 32;
#endif
} s;
struct cvmx_pow_ds_pc_s cn30xx;
struct cvmx_pow_ds_pc_s cn31xx;
struct cvmx_pow_ds_pc_s cn38xx;
struct cvmx_pow_ds_pc_s cn38xxp2;
struct cvmx_pow_ds_pc_s cn50xx;
struct cvmx_pow_ds_pc_s cn52xx;
struct cvmx_pow_ds_pc_s cn52xxp1;
struct cvmx_pow_ds_pc_s cn56xx;
struct cvmx_pow_ds_pc_s cn56xxp1;
struct cvmx_pow_ds_pc_s cn58xx;
struct cvmx_pow_ds_pc_s cn58xxp1;
struct cvmx_pow_ds_pc_s cn63xx;
struct cvmx_pow_ds_pc_s cn63xxp1;
};
typedef union cvmx_pow_ds_pc cvmx_pow_ds_pc_t;
/**
* cvmx_pow_ecc_err
*
* POW_ECC_ERR = POW ECC Error Register
*
* Contains the single and double error bits and the corresponding interrupt enables for the ECC-
* protected POW index memory. Also contains the syndrome value in the event of an ECC error.
*
* Also contains the remote pointer error bit and interrupt enable. RPE is set when the POW detected
* corruption on one or more of the input queue lists in L2/DRAM (POW's local copy of the tail pointer
* for the L2/DRAM input queue did not match the last entry on the the list). This is caused by
* L2/DRAM corruption, and is generally a fatal error because it likely caused POW to load bad work
* queue entries.
*
* This register also contains the illegal operation error bits and the corresponding interrupt
* enables as follows:
*
* <0> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/DESCH/UPD_WQP from PP in NULL_NULL state
* <1> Received SWTAG/SWTAG_DESCH/DESCH/UPD_WQP from PP in NULL state
* <2> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/GET_WORK from PP with pending tag switch to ORDERED or ATOMIC
* <3> Received SWTAG/SWTAG_FULL/SWTAG_DESCH from PP with tag specified as NULL_NULL
* <4> Received SWTAG_FULL/SWTAG_DESCH from PP with tag specified as NULL
* <5> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/DESCH/UPD_WQP/GET_WORK/NULL_RD from PP with GET_WORK pending
* <6> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/DESCH/UPD_WQP/GET_WORK/NULL_RD from PP with NULL_RD pending
* <7> Received CLR_NSCHED from PP with SWTAG_DESCH/DESCH/CLR_NSCHED pending
* <8> Received SWTAG/SWTAG_FULL/SWTAG_DESCH/DESCH/UPD_WQP/GET_WORK/NULL_RD from PP with CLR_NSCHED pending
* <9> Received illegal opcode
* <10> Received ADD_WORK with tag specified as NULL_NULL
* <11> Received DBG load from PP with DBG load pending
* <12> Received CSR load from PP with CSR load pending
*/
union cvmx_pow_ecc_err
{
uint64_t u64;
struct cvmx_pow_ecc_err_s
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_45_63 : 19;
uint64_t iop_ie : 13; /**< Illegal operation interrupt enables */
uint64_t reserved_29_31 : 3;
uint64_t iop : 13; /**< Illegal operation errors */
uint64_t reserved_14_15 : 2;
uint64_t rpe_ie : 1; /**< Remote pointer error interrupt enable */
uint64_t rpe : 1; /**< Remote pointer error */
uint64_t reserved_9_11 : 3;
uint64_t syn : 5; /**< Syndrome value (only valid when DBE or SBE is set) */
uint64_t dbe_ie : 1; /**< Double bit error interrupt enable */
uint64_t sbe_ie : 1; /**< Single bit error interrupt enable */
uint64_t dbe : 1; /**< Double bit error */
uint64_t sbe : 1; /**< Single bit error */
#else
uint64_t sbe : 1;
uint64_t dbe : 1;
uint64_t sbe_ie : 1;
uint64_t dbe_ie : 1;
uint64_t syn : 5;
uint64_t reserved_9_11 : 3;
uint64_t rpe : 1;
uint64_t rpe_ie : 1;
uint64_t reserved_14_15 : 2;
uint64_t iop : 13;
uint64_t reserved_29_31 : 3;
uint64_t iop_ie : 13;
uint64_t reserved_45_63 : 19;
#endif
} s;
struct cvmx_pow_ecc_err_s cn30xx;
struct cvmx_pow_ecc_err_cn31xx
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_14_63 : 50;
uint64_t rpe_ie : 1; /**< Remote pointer error interrupt enable */
uint64_t rpe : 1; /**< Remote pointer error */
uint64_t reserved_9_11 : 3;
uint64_t syn : 5; /**< Syndrome value (only valid when DBE or SBE is set) */
uint64_t dbe_ie : 1; /**< Double bit error interrupt enable */
uint64_t sbe_ie : 1; /**< Single bit error interrupt enable */
uint64_t dbe : 1; /**< Double bit error */
uint64_t sbe : 1; /**< Single bit error */
#else
uint64_t sbe : 1;
uint64_t dbe : 1;
uint64_t sbe_ie : 1;
uint64_t dbe_ie : 1;
uint64_t syn : 5;
uint64_t reserved_9_11 : 3;
uint64_t rpe : 1;
uint64_t rpe_ie : 1;
uint64_t reserved_14_63 : 50;
#endif
} cn31xx;
struct cvmx_pow_ecc_err_s cn38xx;
struct cvmx_pow_ecc_err_cn31xx cn38xxp2;
struct cvmx_pow_ecc_err_s cn50xx;
struct cvmx_pow_ecc_err_s cn52xx;
struct cvmx_pow_ecc_err_s cn52xxp1;
struct cvmx_pow_ecc_err_s cn56xx;
struct cvmx_pow_ecc_err_s cn56xxp1;
struct cvmx_pow_ecc_err_s cn58xx;
struct cvmx_pow_ecc_err_s cn58xxp1;
struct cvmx_pow_ecc_err_s cn63xx;
struct cvmx_pow_ecc_err_s cn63xxp1;
};
typedef union cvmx_pow_ecc_err cvmx_pow_ecc_err_t;
/**
* cvmx_pow_int_ctl
*
* POW_INT_CTL = POW Internal Control Register
*
* Contains POW internal control values (for internal use, not typically for customer use):
*
* PFR_DIS = Disable high-performance pre-fetch reset mode.
*
* NBR_THR = Assert ncb__busy when the number of remaining coherent bus NBR credits equals is less
* than or equal to this value.
*/
union cvmx_pow_int_ctl
{
uint64_t u64;
struct cvmx_pow_int_ctl_s
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_6_63 : 58;
uint64_t pfr_dis : 1; /**< High-perf pre-fetch reset mode disable */
uint64_t nbr_thr : 5; /**< NBR busy threshold */
#else
uint64_t nbr_thr : 5;
uint64_t pfr_dis : 1;
uint64_t reserved_6_63 : 58;
#endif
} s;
struct cvmx_pow_int_ctl_s cn30xx;
struct cvmx_pow_int_ctl_s cn31xx;
struct cvmx_pow_int_ctl_s cn38xx;
struct cvmx_pow_int_ctl_s cn38xxp2;
struct cvmx_pow_int_ctl_s cn50xx;
struct cvmx_pow_int_ctl_s cn52xx;
struct cvmx_pow_int_ctl_s cn52xxp1;
struct cvmx_pow_int_ctl_s cn56xx;
struct cvmx_pow_int_ctl_s cn56xxp1;
struct cvmx_pow_int_ctl_s cn58xx;
struct cvmx_pow_int_ctl_s cn58xxp1;
struct cvmx_pow_int_ctl_s cn63xx;
struct cvmx_pow_int_ctl_s cn63xxp1;
};
typedef union cvmx_pow_int_ctl cvmx_pow_int_ctl_t;
/**
* cvmx_pow_iq_cnt#
*
* POW_IQ_CNTX = POW Input Queue Count Register (1 per QOS level)
*
* Contains a read-only count of the number of work queue entries for each QOS level.
*/
union cvmx_pow_iq_cntx
{
uint64_t u64;
struct cvmx_pow_iq_cntx_s
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_32_63 : 32;
uint64_t iq_cnt : 32; /**< Input queue count for QOS level X */
#else
uint64_t iq_cnt : 32;
uint64_t reserved_32_63 : 32;
#endif
} s;
struct cvmx_pow_iq_cntx_s cn30xx;
struct cvmx_pow_iq_cntx_s cn31xx;
struct cvmx_pow_iq_cntx_s cn38xx;
struct cvmx_pow_iq_cntx_s cn38xxp2;
struct cvmx_pow_iq_cntx_s cn50xx;
struct cvmx_pow_iq_cntx_s cn52xx;
struct cvmx_pow_iq_cntx_s cn52xxp1;
struct cvmx_pow_iq_cntx_s cn56xx;
struct cvmx_pow_iq_cntx_s cn56xxp1;
struct cvmx_pow_iq_cntx_s cn58xx;
struct cvmx_pow_iq_cntx_s cn58xxp1;
struct cvmx_pow_iq_cntx_s cn63xx;
struct cvmx_pow_iq_cntx_s cn63xxp1;
};
typedef union cvmx_pow_iq_cntx cvmx_pow_iq_cntx_t;
/**
* cvmx_pow_iq_com_cnt
*
* POW_IQ_COM_CNT = POW Input Queue Combined Count Register
*
* Contains a read-only count of the total number of work queue entries in all QOS levels.
*/
union cvmx_pow_iq_com_cnt
{
uint64_t u64;
struct cvmx_pow_iq_com_cnt_s
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_32_63 : 32;
uint64_t iq_cnt : 32; /**< Input queue combined count */
#else
uint64_t iq_cnt : 32;
uint64_t reserved_32_63 : 32;
#endif
} s;
struct cvmx_pow_iq_com_cnt_s cn30xx;
struct cvmx_pow_iq_com_cnt_s cn31xx;
struct cvmx_pow_iq_com_cnt_s cn38xx;
struct cvmx_pow_iq_com_cnt_s cn38xxp2;
struct cvmx_pow_iq_com_cnt_s cn50xx;
struct cvmx_pow_iq_com_cnt_s cn52xx;
struct cvmx_pow_iq_com_cnt_s cn52xxp1;
struct cvmx_pow_iq_com_cnt_s cn56xx;
struct cvmx_pow_iq_com_cnt_s cn56xxp1;
struct cvmx_pow_iq_com_cnt_s cn58xx;
struct cvmx_pow_iq_com_cnt_s cn58xxp1;
struct cvmx_pow_iq_com_cnt_s cn63xx;
struct cvmx_pow_iq_com_cnt_s cn63xxp1;
};
typedef union cvmx_pow_iq_com_cnt cvmx_pow_iq_com_cnt_t;
/**
* cvmx_pow_iq_int
*
* POW_IQ_INT = POW Input Queue Interrupt Register
*
* Contains the bits (1 per QOS level) that can trigger the input queue interrupt. An IQ_INT bit
* will be set if POW_IQ_CNT#QOS# changes and the resulting value is equal to POW_IQ_THR#QOS#.
*/
union cvmx_pow_iq_int
{
uint64_t u64;
struct cvmx_pow_iq_int_s
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_8_63 : 56;
uint64_t iq_int : 8; /**< Input queue interrupt bits */
#else
uint64_t iq_int : 8;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_pow_iq_int_s cn52xx;
struct cvmx_pow_iq_int_s cn52xxp1;
struct cvmx_pow_iq_int_s cn56xx;
struct cvmx_pow_iq_int_s cn56xxp1;
struct cvmx_pow_iq_int_s cn63xx;
struct cvmx_pow_iq_int_s cn63xxp1;
};
typedef union cvmx_pow_iq_int cvmx_pow_iq_int_t;
/**
* cvmx_pow_iq_int_en
*
* POW_IQ_INT_EN = POW Input Queue Interrupt Enable Register
*
* Contains the bits (1 per QOS level) that enable the input queue interrupt.
*/
union cvmx_pow_iq_int_en
{
uint64_t u64;
struct cvmx_pow_iq_int_en_s
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_8_63 : 56;
uint64_t int_en : 8; /**< Input queue interrupt enable bits */
#else
uint64_t int_en : 8;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_pow_iq_int_en_s cn52xx;
struct cvmx_pow_iq_int_en_s cn52xxp1;
struct cvmx_pow_iq_int_en_s cn56xx;
struct cvmx_pow_iq_int_en_s cn56xxp1;
struct cvmx_pow_iq_int_en_s cn63xx;
struct cvmx_pow_iq_int_en_s cn63xxp1;
};
typedef union cvmx_pow_iq_int_en cvmx_pow_iq_int_en_t;
/**
* cvmx_pow_iq_thr#
*
* POW_IQ_THRX = POW Input Queue Threshold Register (1 per QOS level)
*
* Threshold value for triggering input queue interrupts.
*/
union cvmx_pow_iq_thrx
{
uint64_t u64;
struct cvmx_pow_iq_thrx_s
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_32_63 : 32;
uint64_t iq_thr : 32; /**< Input queue threshold for QOS level X */
#else
uint64_t iq_thr : 32;
uint64_t reserved_32_63 : 32;
#endif
} s;
struct cvmx_pow_iq_thrx_s cn52xx;
struct cvmx_pow_iq_thrx_s cn52xxp1;
struct cvmx_pow_iq_thrx_s cn56xx;
struct cvmx_pow_iq_thrx_s cn56xxp1;
struct cvmx_pow_iq_thrx_s cn63xx;
struct cvmx_pow_iq_thrx_s cn63xxp1;
};
typedef union cvmx_pow_iq_thrx cvmx_pow_iq_thrx_t;
/**
* cvmx_pow_nos_cnt
*
* POW_NOS_CNT = POW No-schedule Count Register
*
* Contains the number of work queue entries on the no-schedule list.
*/
union cvmx_pow_nos_cnt
{
uint64_t u64;
struct cvmx_pow_nos_cnt_s
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_12_63 : 52;
uint64_t nos_cnt : 12; /**< # of work queue entries on the no-schedule list */
#else
uint64_t nos_cnt : 12;
uint64_t reserved_12_63 : 52;
#endif
} s;
struct cvmx_pow_nos_cnt_cn30xx
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_7_63 : 57;
uint64_t nos_cnt : 7; /**< # of work queue entries on the no-schedule list */
#else
uint64_t nos_cnt : 7;
uint64_t reserved_7_63 : 57;
#endif
} cn30xx;
struct cvmx_pow_nos_cnt_cn31xx
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_9_63 : 55;
uint64_t nos_cnt : 9; /**< # of work queue entries on the no-schedule list */
#else
uint64_t nos_cnt : 9;
uint64_t reserved_9_63 : 55;
#endif
} cn31xx;
struct cvmx_pow_nos_cnt_s cn38xx;
struct cvmx_pow_nos_cnt_s cn38xxp2;
struct cvmx_pow_nos_cnt_cn31xx cn50xx;
struct cvmx_pow_nos_cnt_cn52xx
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_10_63 : 54;
uint64_t nos_cnt : 10; /**< # of work queue entries on the no-schedule list */
#else
uint64_t nos_cnt : 10;
uint64_t reserved_10_63 : 54;
#endif
} cn52xx;
struct cvmx_pow_nos_cnt_cn52xx cn52xxp1;
struct cvmx_pow_nos_cnt_s cn56xx;
struct cvmx_pow_nos_cnt_s cn56xxp1;
struct cvmx_pow_nos_cnt_s cn58xx;
struct cvmx_pow_nos_cnt_s cn58xxp1;
struct cvmx_pow_nos_cnt_cn63xx
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_11_63 : 53;
uint64_t nos_cnt : 11; /**< # of work queue entries on the no-schedule list */
#else
uint64_t nos_cnt : 11;
uint64_t reserved_11_63 : 53;
#endif
} cn63xx;
struct cvmx_pow_nos_cnt_cn63xx cn63xxp1;
};
typedef union cvmx_pow_nos_cnt cvmx_pow_nos_cnt_t;
/**
* cvmx_pow_nw_tim
*
* POW_NW_TIM = POW New Work Timer Period Register
*
* Sets the minimum period for a new work request timeout. Period is specified in n-1 notation
* where the increment value is 1024 clock cycles. Thus, a value of 0x0 in this register translates
* to 1024 cycles, 0x1 translates to 2048 cycles, 0x2 translates to 3072 cycles, etc... Note: the
* maximum period for a new work request timeout is 2 times the minimum period. Note: the new work
* request timeout counter is reset when this register is written.
*
* There are two new work request timeout cases:
*
* - WAIT bit clear. The new work request can timeout if the timer expires before the pre-fetch
* engine has reached the end of all work queues. This can occur if the executable work queue
* entry is deep in the queue and the pre-fetch engine is subject to many resets (i.e. high switch,
* de-schedule, or new work load from other PP's). Thus, it is possible for a PP to receive a work
* response with the NO_WORK bit set even though there was at least one executable entry in the
* work queues. The other (and typical) scenario for receiving a NO_WORK response with the WAIT
* bit clear is that the pre-fetch engine has reached the end of all work queues without finding
* executable work.
*
* - WAIT bit set. The new work request can timeout if the timer expires before the pre-fetch
* engine has found executable work. In this case, the only scenario where the PP will receive a
* work response with the NO_WORK bit set is if the timer expires. Note: it is still possible for
* a PP to receive a NO_WORK response even though there was at least one executable entry in the
* work queues.
*
* In either case, it's important to note that switches and de-schedules are higher priority
* operations that can cause the pre-fetch engine to reset. Thus in a system with many switches or
* de-schedules occuring, it's possible for the new work timer to expire (resulting in NO_WORK
* responses) before the pre-fetch engine is able to get very deep into the work queues.
*/
union cvmx_pow_nw_tim
{
uint64_t u64;
struct cvmx_pow_nw_tim_s
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_10_63 : 54;
uint64_t nw_tim : 10; /**< New work timer period */
#else
uint64_t nw_tim : 10;
uint64_t reserved_10_63 : 54;
#endif
} s;
struct cvmx_pow_nw_tim_s cn30xx;
struct cvmx_pow_nw_tim_s cn31xx;
struct cvmx_pow_nw_tim_s cn38xx;
struct cvmx_pow_nw_tim_s cn38xxp2;
struct cvmx_pow_nw_tim_s cn50xx;
struct cvmx_pow_nw_tim_s cn52xx;
struct cvmx_pow_nw_tim_s cn52xxp1;
struct cvmx_pow_nw_tim_s cn56xx;
struct cvmx_pow_nw_tim_s cn56xxp1;
struct cvmx_pow_nw_tim_s cn58xx;
struct cvmx_pow_nw_tim_s cn58xxp1;
struct cvmx_pow_nw_tim_s cn63xx;
struct cvmx_pow_nw_tim_s cn63xxp1;
};
typedef union cvmx_pow_nw_tim cvmx_pow_nw_tim_t;
/**
* cvmx_pow_pf_rst_msk
*
* POW_PF_RST_MSK = POW Prefetch Reset Mask
*
* Resets the work prefetch engine when work is stored in an internal buffer (either when the add
* work arrives or when the work is reloaded from an external buffer) for an enabled QOS level
* (1 bit per QOS level).
*/
union cvmx_pow_pf_rst_msk
{
uint64_t u64;
struct cvmx_pow_pf_rst_msk_s
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_8_63 : 56;
uint64_t rst_msk : 8; /**< Prefetch engine reset mask */
#else
uint64_t rst_msk : 8;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_pow_pf_rst_msk_s cn50xx;
struct cvmx_pow_pf_rst_msk_s cn52xx;
struct cvmx_pow_pf_rst_msk_s cn52xxp1;
struct cvmx_pow_pf_rst_msk_s cn56xx;
struct cvmx_pow_pf_rst_msk_s cn56xxp1;
struct cvmx_pow_pf_rst_msk_s cn58xx;
struct cvmx_pow_pf_rst_msk_s cn58xxp1;
struct cvmx_pow_pf_rst_msk_s cn63xx;
struct cvmx_pow_pf_rst_msk_s cn63xxp1;
};
typedef union cvmx_pow_pf_rst_msk cvmx_pow_pf_rst_msk_t;
/**
* cvmx_pow_pp_grp_msk#
*
* POW_PP_GRP_MSKX = POW PP Group Mask Register (1 per PP)
*
* Selects which group(s) a PP belongs to. A '1' in any bit position sets the PP's membership in
* the corresponding group. A value of 0x0 will prevent the PP from receiving new work. Note:
* disabled or non-existent PP's should have this field set to 0xffff (the reset value) in order to
* maximize POW performance.
*
* Also contains the QOS level priorities for each PP. 0x0 is highest priority, and 0x7 the lowest.
* Setting the priority to 0xf will prevent that PP from receiving work from that QOS level.
* Priority values 0x8 through 0xe are reserved and should not be used. For a given PP, priorities
* should begin at 0x0 and remain contiguous throughout the range.
*/
union cvmx_pow_pp_grp_mskx
{
uint64_t u64;
struct cvmx_pow_pp_grp_mskx_s
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_48_63 : 16;
uint64_t qos7_pri : 4; /**< PPX priority for QOS level 7 */
uint64_t qos6_pri : 4; /**< PPX priority for QOS level 6 */
uint64_t qos5_pri : 4; /**< PPX priority for QOS level 5 */
uint64_t qos4_pri : 4; /**< PPX priority for QOS level 4 */
uint64_t qos3_pri : 4; /**< PPX priority for QOS level 3 */
uint64_t qos2_pri : 4; /**< PPX priority for QOS level 2 */
uint64_t qos1_pri : 4; /**< PPX priority for QOS level 1 */
uint64_t qos0_pri : 4; /**< PPX priority for QOS level 0 */
uint64_t grp_msk : 16; /**< PPX group mask */
#else
uint64_t grp_msk : 16;
uint64_t qos0_pri : 4;
uint64_t qos1_pri : 4;
uint64_t qos2_pri : 4;
uint64_t qos3_pri : 4;
uint64_t qos4_pri : 4;
uint64_t qos5_pri : 4;
uint64_t qos6_pri : 4;
uint64_t qos7_pri : 4;
uint64_t reserved_48_63 : 16;
#endif
} s;
struct cvmx_pow_pp_grp_mskx_cn30xx
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_16_63 : 48;
uint64_t grp_msk : 16; /**< PPX group mask */
#else
uint64_t grp_msk : 16;
uint64_t reserved_16_63 : 48;
#endif
} cn30xx;
struct cvmx_pow_pp_grp_mskx_cn30xx cn31xx;
struct cvmx_pow_pp_grp_mskx_cn30xx cn38xx;
struct cvmx_pow_pp_grp_mskx_cn30xx cn38xxp2;
struct cvmx_pow_pp_grp_mskx_s cn50xx;
struct cvmx_pow_pp_grp_mskx_s cn52xx;
struct cvmx_pow_pp_grp_mskx_s cn52xxp1;
struct cvmx_pow_pp_grp_mskx_s cn56xx;
struct cvmx_pow_pp_grp_mskx_s cn56xxp1;
struct cvmx_pow_pp_grp_mskx_s cn58xx;
struct cvmx_pow_pp_grp_mskx_s cn58xxp1;
struct cvmx_pow_pp_grp_mskx_s cn63xx;
struct cvmx_pow_pp_grp_mskx_s cn63xxp1;
};
typedef union cvmx_pow_pp_grp_mskx cvmx_pow_pp_grp_mskx_t;
/**
* cvmx_pow_qos_rnd#
*
* POW_QOS_RNDX = POW QOS Issue Round Register (4 rounds per register x 8 registers = 32 rounds)
*
* Contains the round definitions for issuing new work. Each round consists of 8 bits with each bit
* corresponding to a QOS level. There are 4 rounds contained in each register for a total of 32
* rounds. The issue logic traverses through the rounds sequentially (lowest round to highest round)
* in an attempt to find new work for each PP. Within each round, the issue logic traverses through
* the QOS levels sequentially (highest QOS to lowest QOS) skipping over each QOS level with a clear
* bit in the round mask. Note: setting a QOS level to all zeroes in all issue round registers will
* prevent work from being issued from that QOS level.
*/
union cvmx_pow_qos_rndx
{
uint64_t u64;
struct cvmx_pow_qos_rndx_s
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_32_63 : 32;
uint64_t rnd_p3 : 8; /**< Round mask for round Xx4+3 */
uint64_t rnd_p2 : 8; /**< Round mask for round Xx4+2 */
uint64_t rnd_p1 : 8; /**< Round mask for round Xx4+1 */
uint64_t rnd : 8; /**< Round mask for round Xx4 */
#else
uint64_t rnd : 8;
uint64_t rnd_p1 : 8;
uint64_t rnd_p2 : 8;
uint64_t rnd_p3 : 8;
uint64_t reserved_32_63 : 32;
#endif
} s;
struct cvmx_pow_qos_rndx_s cn30xx;
struct cvmx_pow_qos_rndx_s cn31xx;
struct cvmx_pow_qos_rndx_s cn38xx;
struct cvmx_pow_qos_rndx_s cn38xxp2;
struct cvmx_pow_qos_rndx_s cn50xx;
struct cvmx_pow_qos_rndx_s cn52xx;
struct cvmx_pow_qos_rndx_s cn52xxp1;
struct cvmx_pow_qos_rndx_s cn56xx;
struct cvmx_pow_qos_rndx_s cn56xxp1;
struct cvmx_pow_qos_rndx_s cn58xx;
struct cvmx_pow_qos_rndx_s cn58xxp1;
struct cvmx_pow_qos_rndx_s cn63xx;
struct cvmx_pow_qos_rndx_s cn63xxp1;
};
typedef union cvmx_pow_qos_rndx cvmx_pow_qos_rndx_t;
/**
* cvmx_pow_qos_thr#
*
* POW_QOS_THRX = POW QOS Threshold Register (1 per QOS level)
*
* Contains the thresholds for allocating POW internal storage buffers. If the number of remaining
* free buffers drops below the minimum threshold (MIN_THR) or the number of allocated buffers for
* this QOS level rises above the maximum threshold (MAX_THR), future incoming work queue entries
* will be buffered externally rather than internally. This register also contains a read-only count
* of the current number of free buffers (FREE_CNT), the number of internal buffers currently
* allocated to this QOS level (BUF_CNT), and the total number of buffers on the de-schedule list
* (DES_CNT) (which is not the same as the total number of de-scheduled buffers).
*/
union cvmx_pow_qos_thrx
{
uint64_t u64;
struct cvmx_pow_qos_thrx_s
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_60_63 : 4;
uint64_t des_cnt : 12; /**< # of buffers on de-schedule list */
uint64_t buf_cnt : 12; /**< # of internal buffers allocated to QOS level X */
uint64_t free_cnt : 12; /**< # of total free buffers */
uint64_t reserved_23_23 : 1;
uint64_t max_thr : 11; /**< Max threshold for QOS level X */
uint64_t reserved_11_11 : 1;
uint64_t min_thr : 11; /**< Min threshold for QOS level X */
#else
uint64_t min_thr : 11;
uint64_t reserved_11_11 : 1;
uint64_t max_thr : 11;
uint64_t reserved_23_23 : 1;
uint64_t free_cnt : 12;
uint64_t buf_cnt : 12;
uint64_t des_cnt : 12;
uint64_t reserved_60_63 : 4;
#endif
} s;
struct cvmx_pow_qos_thrx_cn30xx
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_55_63 : 9;
uint64_t des_cnt : 7; /**< # of buffers on de-schedule list */
uint64_t reserved_43_47 : 5;
uint64_t buf_cnt : 7; /**< # of internal buffers allocated to QOS level X */
uint64_t reserved_31_35 : 5;
uint64_t free_cnt : 7; /**< # of total free buffers */
uint64_t reserved_18_23 : 6;
uint64_t max_thr : 6; /**< Max threshold for QOS level X */
uint64_t reserved_6_11 : 6;
uint64_t min_thr : 6; /**< Min threshold for QOS level X */
#else
uint64_t min_thr : 6;
uint64_t reserved_6_11 : 6;
uint64_t max_thr : 6;
uint64_t reserved_18_23 : 6;
uint64_t free_cnt : 7;
uint64_t reserved_31_35 : 5;
uint64_t buf_cnt : 7;
uint64_t reserved_43_47 : 5;
uint64_t des_cnt : 7;
uint64_t reserved_55_63 : 9;
#endif
} cn30xx;
struct cvmx_pow_qos_thrx_cn31xx
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_57_63 : 7;
uint64_t des_cnt : 9; /**< # of buffers on de-schedule list */
uint64_t reserved_45_47 : 3;
uint64_t buf_cnt : 9; /**< # of internal buffers allocated to QOS level X */
uint64_t reserved_33_35 : 3;
uint64_t free_cnt : 9; /**< # of total free buffers */
uint64_t reserved_20_23 : 4;
uint64_t max_thr : 8; /**< Max threshold for QOS level X */
uint64_t reserved_8_11 : 4;
uint64_t min_thr : 8; /**< Min threshold for QOS level X */
#else
uint64_t min_thr : 8;
uint64_t reserved_8_11 : 4;
uint64_t max_thr : 8;
uint64_t reserved_20_23 : 4;
uint64_t free_cnt : 9;
uint64_t reserved_33_35 : 3;
uint64_t buf_cnt : 9;
uint64_t reserved_45_47 : 3;
uint64_t des_cnt : 9;
uint64_t reserved_57_63 : 7;
#endif
} cn31xx;
struct cvmx_pow_qos_thrx_s cn38xx;
struct cvmx_pow_qos_thrx_s cn38xxp2;
struct cvmx_pow_qos_thrx_cn31xx cn50xx;
struct cvmx_pow_qos_thrx_cn52xx
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_58_63 : 6;
uint64_t des_cnt : 10; /**< # of buffers on de-schedule list */
uint64_t reserved_46_47 : 2;
uint64_t buf_cnt : 10; /**< # of internal buffers allocated to QOS level X */
uint64_t reserved_34_35 : 2;
uint64_t free_cnt : 10; /**< # of total free buffers */
uint64_t reserved_21_23 : 3;
uint64_t max_thr : 9; /**< Max threshold for QOS level X */
uint64_t reserved_9_11 : 3;
uint64_t min_thr : 9; /**< Min threshold for QOS level X */
#else
uint64_t min_thr : 9;
uint64_t reserved_9_11 : 3;
uint64_t max_thr : 9;
uint64_t reserved_21_23 : 3;
uint64_t free_cnt : 10;
uint64_t reserved_34_35 : 2;
uint64_t buf_cnt : 10;
uint64_t reserved_46_47 : 2;
uint64_t des_cnt : 10;
uint64_t reserved_58_63 : 6;
#endif
} cn52xx;
struct cvmx_pow_qos_thrx_cn52xx cn52xxp1;
struct cvmx_pow_qos_thrx_s cn56xx;
struct cvmx_pow_qos_thrx_s cn56xxp1;
struct cvmx_pow_qos_thrx_s cn58xx;
struct cvmx_pow_qos_thrx_s cn58xxp1;
struct cvmx_pow_qos_thrx_cn63xx
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_59_63 : 5;
uint64_t des_cnt : 11; /**< # of buffers on de-schedule list */
uint64_t reserved_47_47 : 1;
uint64_t buf_cnt : 11; /**< # of internal buffers allocated to QOS level X */
uint64_t reserved_35_35 : 1;
uint64_t free_cnt : 11; /**< # of total free buffers */
uint64_t reserved_22_23 : 2;
uint64_t max_thr : 10; /**< Max threshold for QOS level X */
uint64_t reserved_10_11 : 2;
uint64_t min_thr : 10; /**< Min threshold for QOS level X */
#else
uint64_t min_thr : 10;
uint64_t reserved_10_11 : 2;
uint64_t max_thr : 10;
uint64_t reserved_22_23 : 2;
uint64_t free_cnt : 11;
uint64_t reserved_35_35 : 1;
uint64_t buf_cnt : 11;
uint64_t reserved_47_47 : 1;
uint64_t des_cnt : 11;
uint64_t reserved_59_63 : 5;
#endif
} cn63xx;
struct cvmx_pow_qos_thrx_cn63xx cn63xxp1;
};
typedef union cvmx_pow_qos_thrx cvmx_pow_qos_thrx_t;
/**
* cvmx_pow_ts_pc
*
* POW_TS_PC = POW Tag Switch Performance Counter
*
* Counts the number of tag switch requests. Write to clear.
*/
union cvmx_pow_ts_pc
{
uint64_t u64;
struct cvmx_pow_ts_pc_s
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_32_63 : 32;
uint64_t ts_pc : 32; /**< Tag switch performance counter */
#else
uint64_t ts_pc : 32;
uint64_t reserved_32_63 : 32;
#endif
} s;
struct cvmx_pow_ts_pc_s cn30xx;
struct cvmx_pow_ts_pc_s cn31xx;
struct cvmx_pow_ts_pc_s cn38xx;
struct cvmx_pow_ts_pc_s cn38xxp2;
struct cvmx_pow_ts_pc_s cn50xx;
struct cvmx_pow_ts_pc_s cn52xx;
struct cvmx_pow_ts_pc_s cn52xxp1;
struct cvmx_pow_ts_pc_s cn56xx;
struct cvmx_pow_ts_pc_s cn56xxp1;
struct cvmx_pow_ts_pc_s cn58xx;
struct cvmx_pow_ts_pc_s cn58xxp1;
struct cvmx_pow_ts_pc_s cn63xx;
struct cvmx_pow_ts_pc_s cn63xxp1;
};
typedef union cvmx_pow_ts_pc cvmx_pow_ts_pc_t;
/**
* cvmx_pow_wa_com_pc
*
* POW_WA_COM_PC = POW Work Add Combined Performance Counter
*
* Counts the number of add new work requests for all QOS levels. Write to clear.
*/
union cvmx_pow_wa_com_pc
{
uint64_t u64;
struct cvmx_pow_wa_com_pc_s
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_32_63 : 32;
uint64_t wa_pc : 32; /**< Work add combined performance counter */
#else
uint64_t wa_pc : 32;
uint64_t reserved_32_63 : 32;
#endif
} s;
struct cvmx_pow_wa_com_pc_s cn30xx;
struct cvmx_pow_wa_com_pc_s cn31xx;
struct cvmx_pow_wa_com_pc_s cn38xx;
struct cvmx_pow_wa_com_pc_s cn38xxp2;
struct cvmx_pow_wa_com_pc_s cn50xx;
struct cvmx_pow_wa_com_pc_s cn52xx;
struct cvmx_pow_wa_com_pc_s cn52xxp1;
struct cvmx_pow_wa_com_pc_s cn56xx;
struct cvmx_pow_wa_com_pc_s cn56xxp1;
struct cvmx_pow_wa_com_pc_s cn58xx;
struct cvmx_pow_wa_com_pc_s cn58xxp1;
struct cvmx_pow_wa_com_pc_s cn63xx;
struct cvmx_pow_wa_com_pc_s cn63xxp1;
};
typedef union cvmx_pow_wa_com_pc cvmx_pow_wa_com_pc_t;
/**
* cvmx_pow_wa_pc#
*
* POW_WA_PCX = POW Work Add Performance Counter (1 per QOS level)
*
* Counts the number of add new work requests for each QOS level. Write to clear.
*/
union cvmx_pow_wa_pcx
{
uint64_t u64;
struct cvmx_pow_wa_pcx_s
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_32_63 : 32;
uint64_t wa_pc : 32; /**< Work add performance counter for QOS level X */
#else
uint64_t wa_pc : 32;
uint64_t reserved_32_63 : 32;
#endif
} s;
struct cvmx_pow_wa_pcx_s cn30xx;
struct cvmx_pow_wa_pcx_s cn31xx;
struct cvmx_pow_wa_pcx_s cn38xx;
struct cvmx_pow_wa_pcx_s cn38xxp2;
struct cvmx_pow_wa_pcx_s cn50xx;
struct cvmx_pow_wa_pcx_s cn52xx;
struct cvmx_pow_wa_pcx_s cn52xxp1;
struct cvmx_pow_wa_pcx_s cn56xx;
struct cvmx_pow_wa_pcx_s cn56xxp1;
struct cvmx_pow_wa_pcx_s cn58xx;
struct cvmx_pow_wa_pcx_s cn58xxp1;
struct cvmx_pow_wa_pcx_s cn63xx;
struct cvmx_pow_wa_pcx_s cn63xxp1;
};
typedef union cvmx_pow_wa_pcx cvmx_pow_wa_pcx_t;
/**
* cvmx_pow_wq_int
*
* POW_WQ_INT = POW Work Queue Interrupt Register
*
* Contains the bits (1 per group) that set work queue interrupts and are used to clear these
* interrupts. Also contains the input queue interrupt temporary disable bits (1 per group). For
* more information regarding this register, see the interrupt section.
*/
union cvmx_pow_wq_int
{
uint64_t u64;
struct cvmx_pow_wq_int_s
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_32_63 : 32;
uint64_t iq_dis : 16; /**< Input queue interrupt temporary disable mask
Corresponding WQ_INT<*> bit cannot be set due to
IQ_CNT/IQ_THR check when this bit is set.
Corresponding IQ_DIS bit is cleared by HW whenever:
- POW_WQ_INT_CNT*[IQ_CNT] is zero, or
- POW_WQ_INT_CNT*[TC_CNT]==1 when periodic
counter POW_WQ_INT_PC[PC]==0 */
uint64_t wq_int : 16; /**< Work queue interrupt bits
Corresponding WQ_INT bit is set by HW whenever:
- POW_WQ_INT_CNT*[IQ_CNT] >=
POW_WQ_INT_THR*[IQ_THR] and the threshold
interrupt is not disabled.
IQ_DIS<*>==1 disables the interrupt.
POW_WQ_INT_THR*[IQ_THR]==0 disables the int.
- POW_WQ_INT_CNT*[DS_CNT] >=
POW_WQ_INT_THR*[DS_THR] and the threshold
interrupt is not disabled
POW_WQ_INT_THR*[DS_THR]==0 disables the int.
- POW_WQ_INT_CNT*[TC_CNT]==1 when periodic
counter POW_WQ_INT_PC[PC]==0 and
POW_WQ_INT_THR*[TC_EN]==1 and at least one of:
- POW_WQ_INT_CNT*[IQ_CNT] > 0
- POW_WQ_INT_CNT*[DS_CNT] > 0 */
#else
uint64_t wq_int : 16;
uint64_t iq_dis : 16;
uint64_t reserved_32_63 : 32;
#endif
} s;
struct cvmx_pow_wq_int_s cn30xx;
struct cvmx_pow_wq_int_s cn31xx;
struct cvmx_pow_wq_int_s cn38xx;
struct cvmx_pow_wq_int_s cn38xxp2;
struct cvmx_pow_wq_int_s cn50xx;
struct cvmx_pow_wq_int_s cn52xx;
struct cvmx_pow_wq_int_s cn52xxp1;
struct cvmx_pow_wq_int_s cn56xx;
struct cvmx_pow_wq_int_s cn56xxp1;
struct cvmx_pow_wq_int_s cn58xx;
struct cvmx_pow_wq_int_s cn58xxp1;
struct cvmx_pow_wq_int_s cn63xx;
struct cvmx_pow_wq_int_s cn63xxp1;
};
typedef union cvmx_pow_wq_int cvmx_pow_wq_int_t;
/**
* cvmx_pow_wq_int_cnt#
*
* POW_WQ_INT_CNTX = POW Work Queue Interrupt Count Register (1 per group)
*
* Contains a read-only copy of the counts used to trigger work queue interrupts. For more
* information regarding this register, see the interrupt section.
*/
union cvmx_pow_wq_int_cntx
{
uint64_t u64;
struct cvmx_pow_wq_int_cntx_s
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_28_63 : 36;
uint64_t tc_cnt : 4; /**< Time counter current value for group X
HW sets TC_CNT to POW_WQ_INT_THR*[TC_THR] whenever:
- corresponding POW_WQ_INT_CNT*[IQ_CNT]==0 and
corresponding POW_WQ_INT_CNT*[DS_CNT]==0
- corresponding POW_WQ_INT[WQ_INT<*>] is written
with a 1 by SW
- corresponding POW_WQ_INT[IQ_DIS<*>] is written
with a 1 by SW
- corresponding POW_WQ_INT_THR* is written by SW
- TC_CNT==1 and periodic counter
POW_WQ_INT_PC[PC]==0
Otherwise, HW decrements TC_CNT whenever the
periodic counter POW_WQ_INT_PC[PC]==0.
TC_CNT is 0 whenever POW_WQ_INT_THR*[TC_THR]==0. */
uint64_t ds_cnt : 12; /**< De-schedule executable count for group X */
uint64_t iq_cnt : 12; /**< Input queue executable count for group X */
#else
uint64_t iq_cnt : 12;
uint64_t ds_cnt : 12;
uint64_t tc_cnt : 4;
uint64_t reserved_28_63 : 36;
#endif
} s;
struct cvmx_pow_wq_int_cntx_cn30xx
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_28_63 : 36;
uint64_t tc_cnt : 4; /**< Time counter current value for group X
HW sets TC_CNT to POW_WQ_INT_THR*[TC_THR] whenever:
- corresponding POW_WQ_INT_CNT*[IQ_CNT]==0 and
corresponding POW_WQ_INT_CNT*[DS_CNT]==0
- corresponding POW_WQ_INT[WQ_INT<*>] is written
with a 1 by SW
- corresponding POW_WQ_INT[IQ_DIS<*>] is written
with a 1 by SW
- corresponding POW_WQ_INT_THR* is written by SW
- TC_CNT==1 and periodic counter
POW_WQ_INT_PC[PC]==0
Otherwise, HW decrements TC_CNT whenever the
periodic counter POW_WQ_INT_PC[PC]==0.
TC_CNT is 0 whenever POW_WQ_INT_THR*[TC_THR]==0. */
uint64_t reserved_19_23 : 5;
uint64_t ds_cnt : 7; /**< De-schedule executable count for group X */
uint64_t reserved_7_11 : 5;
uint64_t iq_cnt : 7; /**< Input queue executable count for group X */
#else
uint64_t iq_cnt : 7;
uint64_t reserved_7_11 : 5;
uint64_t ds_cnt : 7;
uint64_t reserved_19_23 : 5;
uint64_t tc_cnt : 4;
uint64_t reserved_28_63 : 36;
#endif
} cn30xx;
struct cvmx_pow_wq_int_cntx_cn31xx
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_28_63 : 36;
uint64_t tc_cnt : 4; /**< Time counter current value for group X
HW sets TC_CNT to POW_WQ_INT_THR*[TC_THR] whenever:
- corresponding POW_WQ_INT_CNT*[IQ_CNT]==0 and
corresponding POW_WQ_INT_CNT*[DS_CNT]==0
- corresponding POW_WQ_INT[WQ_INT<*>] is written
with a 1 by SW
- corresponding POW_WQ_INT[IQ_DIS<*>] is written
with a 1 by SW
- corresponding POW_WQ_INT_THR* is written by SW
- TC_CNT==1 and periodic counter
POW_WQ_INT_PC[PC]==0
Otherwise, HW decrements TC_CNT whenever the
periodic counter POW_WQ_INT_PC[PC]==0.
TC_CNT is 0 whenever POW_WQ_INT_THR*[TC_THR]==0. */
uint64_t reserved_21_23 : 3;
uint64_t ds_cnt : 9; /**< De-schedule executable count for group X */
uint64_t reserved_9_11 : 3;
uint64_t iq_cnt : 9; /**< Input queue executable count for group X */
#else
uint64_t iq_cnt : 9;
uint64_t reserved_9_11 : 3;
uint64_t ds_cnt : 9;
uint64_t reserved_21_23 : 3;
uint64_t tc_cnt : 4;
uint64_t reserved_28_63 : 36;
#endif
} cn31xx;
struct cvmx_pow_wq_int_cntx_s cn38xx;
struct cvmx_pow_wq_int_cntx_s cn38xxp2;
struct cvmx_pow_wq_int_cntx_cn31xx cn50xx;
struct cvmx_pow_wq_int_cntx_cn52xx
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_28_63 : 36;
uint64_t tc_cnt : 4; /**< Time counter current value for group X
HW sets TC_CNT to POW_WQ_INT_THR*[TC_THR] whenever:
- corresponding POW_WQ_INT_CNT*[IQ_CNT]==0 and
corresponding POW_WQ_INT_CNT*[DS_CNT]==0
- corresponding POW_WQ_INT[WQ_INT<*>] is written
with a 1 by SW
- corresponding POW_WQ_INT[IQ_DIS<*>] is written
with a 1 by SW
- corresponding POW_WQ_INT_THR* is written by SW
- TC_CNT==1 and periodic counter
POW_WQ_INT_PC[PC]==0
Otherwise, HW decrements TC_CNT whenever the
periodic counter POW_WQ_INT_PC[PC]==0.
TC_CNT is 0 whenever POW_WQ_INT_THR*[TC_THR]==0. */
uint64_t reserved_22_23 : 2;
uint64_t ds_cnt : 10; /**< De-schedule executable count for group X */
uint64_t reserved_10_11 : 2;
uint64_t iq_cnt : 10; /**< Input queue executable count for group X */
#else
uint64_t iq_cnt : 10;
uint64_t reserved_10_11 : 2;
uint64_t ds_cnt : 10;
uint64_t reserved_22_23 : 2;
uint64_t tc_cnt : 4;
uint64_t reserved_28_63 : 36;
#endif
} cn52xx;
struct cvmx_pow_wq_int_cntx_cn52xx cn52xxp1;
struct cvmx_pow_wq_int_cntx_s cn56xx;
struct cvmx_pow_wq_int_cntx_s cn56xxp1;
struct cvmx_pow_wq_int_cntx_s cn58xx;
struct cvmx_pow_wq_int_cntx_s cn58xxp1;
struct cvmx_pow_wq_int_cntx_cn63xx
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_28_63 : 36;
uint64_t tc_cnt : 4; /**< Time counter current value for group X
HW sets TC_CNT to POW_WQ_INT_THR*[TC_THR] whenever:
- corresponding POW_WQ_INT_CNT*[IQ_CNT]==0 and
corresponding POW_WQ_INT_CNT*[DS_CNT]==0
- corresponding POW_WQ_INT[WQ_INT<*>] is written
with a 1 by SW
- corresponding POW_WQ_INT[IQ_DIS<*>] is written
with a 1 by SW
- corresponding POW_WQ_INT_THR* is written by SW
- TC_CNT==1 and periodic counter
POW_WQ_INT_PC[PC]==0
Otherwise, HW decrements TC_CNT whenever the
periodic counter POW_WQ_INT_PC[PC]==0.
TC_CNT is 0 whenever POW_WQ_INT_THR*[TC_THR]==0. */
uint64_t reserved_23_23 : 1;
uint64_t ds_cnt : 11; /**< De-schedule executable count for group X */
uint64_t reserved_11_11 : 1;
uint64_t iq_cnt : 11; /**< Input queue executable count for group X */
#else
uint64_t iq_cnt : 11;
uint64_t reserved_11_11 : 1;
uint64_t ds_cnt : 11;
uint64_t reserved_23_23 : 1;
uint64_t tc_cnt : 4;
uint64_t reserved_28_63 : 36;
#endif
} cn63xx;
struct cvmx_pow_wq_int_cntx_cn63xx cn63xxp1;
};
typedef union cvmx_pow_wq_int_cntx cvmx_pow_wq_int_cntx_t;
/**
* cvmx_pow_wq_int_pc
*
* POW_WQ_INT_PC = POW Work Queue Interrupt Periodic Counter Register
*
* Contains the threshold value for the work queue interrupt periodic counter and also a read-only
* copy of the periodic counter. For more information regarding this register, see the interrupt
* section.
*/
union cvmx_pow_wq_int_pc
{
uint64_t u64;
struct cvmx_pow_wq_int_pc_s
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_60_63 : 4;
uint64_t pc : 28; /**< Work queue interrupt periodic counter */
uint64_t reserved_28_31 : 4;
uint64_t pc_thr : 20; /**< Work queue interrupt periodic counter threshold */
uint64_t reserved_0_7 : 8;
#else
uint64_t reserved_0_7 : 8;
uint64_t pc_thr : 20;
uint64_t reserved_28_31 : 4;
uint64_t pc : 28;
uint64_t reserved_60_63 : 4;
#endif
} s;
struct cvmx_pow_wq_int_pc_s cn30xx;
struct cvmx_pow_wq_int_pc_s cn31xx;
struct cvmx_pow_wq_int_pc_s cn38xx;
struct cvmx_pow_wq_int_pc_s cn38xxp2;
struct cvmx_pow_wq_int_pc_s cn50xx;
struct cvmx_pow_wq_int_pc_s cn52xx;
struct cvmx_pow_wq_int_pc_s cn52xxp1;
struct cvmx_pow_wq_int_pc_s cn56xx;
struct cvmx_pow_wq_int_pc_s cn56xxp1;
struct cvmx_pow_wq_int_pc_s cn58xx;
struct cvmx_pow_wq_int_pc_s cn58xxp1;
struct cvmx_pow_wq_int_pc_s cn63xx;
struct cvmx_pow_wq_int_pc_s cn63xxp1;
};
typedef union cvmx_pow_wq_int_pc cvmx_pow_wq_int_pc_t;
/**
* cvmx_pow_wq_int_thr#
*
* POW_WQ_INT_THRX = POW Work Queue Interrupt Threshold Register (1 per group)
*
* Contains the thresholds for enabling and setting work queue interrupts. For more information
* regarding this register, see the interrupt section.
*
* Note: Up to 8 of the POW's internal storage buffers can be allocated for hardware use and are
* therefore not available for incoming work queue entries. Additionally, any PP that is not in the
* NULL_NULL state consumes a buffer. Thus in a 6 PP system, it is not advisable to set either
* IQ_THR or DS_THR to greater than 1024 - 8 - 6 = 1010. Doing so may prevent the interrupt from
* ever triggering.
*/
union cvmx_pow_wq_int_thrx
{
uint64_t u64;
struct cvmx_pow_wq_int_thrx_s
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_29_63 : 35;
uint64_t tc_en : 1; /**< Time counter interrupt enable for group X
TC_EN must be zero when TC_THR==0 */
uint64_t tc_thr : 4; /**< Time counter interrupt threshold for group X
When TC_THR==0, POW_WQ_INT_CNT*[TC_CNT] is zero */
uint64_t reserved_23_23 : 1;
uint64_t ds_thr : 11; /**< De-schedule count threshold for group X
DS_THR==0 disables the threshold interrupt */
uint64_t reserved_11_11 : 1;
uint64_t iq_thr : 11; /**< Input queue count threshold for group X
IQ_THR==0 disables the threshold interrupt */
#else
uint64_t iq_thr : 11;
uint64_t reserved_11_11 : 1;
uint64_t ds_thr : 11;
uint64_t reserved_23_23 : 1;
uint64_t tc_thr : 4;
uint64_t tc_en : 1;
uint64_t reserved_29_63 : 35;
#endif
} s;
struct cvmx_pow_wq_int_thrx_cn30xx
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_29_63 : 35;
uint64_t tc_en : 1; /**< Time counter interrupt enable for group X
TC_EN must be zero when TC_THR==0 */
uint64_t tc_thr : 4; /**< Time counter interrupt threshold for group X
When TC_THR==0, POW_WQ_INT_CNT*[TC_CNT] is zero */
uint64_t reserved_18_23 : 6;
uint64_t ds_thr : 6; /**< De-schedule count threshold for group X
DS_THR==0 disables the threshold interrupt */
uint64_t reserved_6_11 : 6;
uint64_t iq_thr : 6; /**< Input queue count threshold for group X
IQ_THR==0 disables the threshold interrupt */
#else
uint64_t iq_thr : 6;
uint64_t reserved_6_11 : 6;
uint64_t ds_thr : 6;
uint64_t reserved_18_23 : 6;
uint64_t tc_thr : 4;
uint64_t tc_en : 1;
uint64_t reserved_29_63 : 35;
#endif
} cn30xx;
struct cvmx_pow_wq_int_thrx_cn31xx
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_29_63 : 35;
uint64_t tc_en : 1; /**< Time counter interrupt enable for group X
TC_EN must be zero when TC_THR==0 */
uint64_t tc_thr : 4; /**< Time counter interrupt threshold for group X
When TC_THR==0, POW_WQ_INT_CNT*[TC_CNT] is zero */
uint64_t reserved_20_23 : 4;
uint64_t ds_thr : 8; /**< De-schedule count threshold for group X
DS_THR==0 disables the threshold interrupt */
uint64_t reserved_8_11 : 4;
uint64_t iq_thr : 8; /**< Input queue count threshold for group X
IQ_THR==0 disables the threshold interrupt */
#else
uint64_t iq_thr : 8;
uint64_t reserved_8_11 : 4;
uint64_t ds_thr : 8;
uint64_t reserved_20_23 : 4;
uint64_t tc_thr : 4;
uint64_t tc_en : 1;
uint64_t reserved_29_63 : 35;
#endif
} cn31xx;
struct cvmx_pow_wq_int_thrx_s cn38xx;
struct cvmx_pow_wq_int_thrx_s cn38xxp2;
struct cvmx_pow_wq_int_thrx_cn31xx cn50xx;
struct cvmx_pow_wq_int_thrx_cn52xx
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_29_63 : 35;
uint64_t tc_en : 1; /**< Time counter interrupt enable for group X
TC_EN must be zero when TC_THR==0 */
uint64_t tc_thr : 4; /**< Time counter interrupt threshold for group X
When TC_THR==0, POW_WQ_INT_CNT*[TC_CNT] is zero */
uint64_t reserved_21_23 : 3;
uint64_t ds_thr : 9; /**< De-schedule count threshold for group X
DS_THR==0 disables the threshold interrupt */
uint64_t reserved_9_11 : 3;
uint64_t iq_thr : 9; /**< Input queue count threshold for group X
IQ_THR==0 disables the threshold interrupt */
#else
uint64_t iq_thr : 9;
uint64_t reserved_9_11 : 3;
uint64_t ds_thr : 9;
uint64_t reserved_21_23 : 3;
uint64_t tc_thr : 4;
uint64_t tc_en : 1;
uint64_t reserved_29_63 : 35;
#endif
} cn52xx;
struct cvmx_pow_wq_int_thrx_cn52xx cn52xxp1;
struct cvmx_pow_wq_int_thrx_s cn56xx;
struct cvmx_pow_wq_int_thrx_s cn56xxp1;
struct cvmx_pow_wq_int_thrx_s cn58xx;
struct cvmx_pow_wq_int_thrx_s cn58xxp1;
struct cvmx_pow_wq_int_thrx_cn63xx
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_29_63 : 35;
uint64_t tc_en : 1; /**< Time counter interrupt enable for group X
TC_EN must be zero when TC_THR==0 */
uint64_t tc_thr : 4; /**< Time counter interrupt threshold for group X
When TC_THR==0, POW_WQ_INT_CNT*[TC_CNT] is zero */
uint64_t reserved_22_23 : 2;
uint64_t ds_thr : 10; /**< De-schedule count threshold for group X
DS_THR==0 disables the threshold interrupt */
uint64_t reserved_10_11 : 2;
uint64_t iq_thr : 10; /**< Input queue count threshold for group X
IQ_THR==0 disables the threshold interrupt */
#else
uint64_t iq_thr : 10;
uint64_t reserved_10_11 : 2;
uint64_t ds_thr : 10;
uint64_t reserved_22_23 : 2;
uint64_t tc_thr : 4;
uint64_t tc_en : 1;
uint64_t reserved_29_63 : 35;
#endif
} cn63xx;
struct cvmx_pow_wq_int_thrx_cn63xx cn63xxp1;
};
typedef union cvmx_pow_wq_int_thrx cvmx_pow_wq_int_thrx_t;
/**
* cvmx_pow_ws_pc#
*
* POW_WS_PCX = POW Work Schedule Performance Counter (1 per group)
*
* Counts the number of work schedules for each group. Write to clear.
*/
union cvmx_pow_ws_pcx
{
uint64_t u64;
struct cvmx_pow_ws_pcx_s
{
#if __BYTE_ORDER == __BIG_ENDIAN
uint64_t reserved_32_63 : 32;
uint64_t ws_pc : 32; /**< Work schedule performance counter for group X */
#else
uint64_t ws_pc : 32;
uint64_t reserved_32_63 : 32;
#endif
} s;
struct cvmx_pow_ws_pcx_s cn30xx;
struct cvmx_pow_ws_pcx_s cn31xx;
struct cvmx_pow_ws_pcx_s cn38xx;
struct cvmx_pow_ws_pcx_s cn38xxp2;
struct cvmx_pow_ws_pcx_s cn50xx;
struct cvmx_pow_ws_pcx_s cn52xx;
struct cvmx_pow_ws_pcx_s cn52xxp1;
struct cvmx_pow_ws_pcx_s cn56xx;
struct cvmx_pow_ws_pcx_s cn56xxp1;
struct cvmx_pow_ws_pcx_s cn58xx;
struct cvmx_pow_ws_pcx_s cn58xxp1;
struct cvmx_pow_ws_pcx_s cn63xx;
struct cvmx_pow_ws_pcx_s cn63xxp1;
};
typedef union cvmx_pow_ws_pcx cvmx_pow_ws_pcx_t;
#endif