/* * Main midi driver for FreeBSD. This file provides the main * entry points for probe/attach and all i/o demultiplexing, including * default routines for generic devices. * * (C) 1999 Seigo Tanimura * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * * For each card type a template "mididev_info" structure contains * all the relevant parameters, both for configuration and runtime. * * In this file we build tables of pointers to the descriptors for * the various supported cards. The generic probe routine scans * the table(s) looking for a matching entry, then invokes the * board-specific probe routine. If successful, a pointer to the * correct mididev_info is stored in mididev_last_probed, for subsequent * use in the attach routine. The generic attach routine copies * the template to a permanent descriptor (midi_info[unit] and * friends), initializes all generic parameters, and calls the * board-specific attach routine. * * On device calls, the generic routines do the checks on unit and * device parameters, then call the board-specific routines if * available, or try to perform the task using the default code. * * $FreeBSD$ * */ #include static devclass_t midi_devclass; static d_open_t midiopen; static d_close_t midiclose; static d_ioctl_t midiioctl; static d_read_t midiread; static d_write_t midiwrite; static d_poll_t midipoll; /* These functions are local. */ static d_open_t midistat_open; static d_close_t midistat_close; static d_read_t midistat_read; static int midi_initstatus(char *buf, int size); static int midi_readstatus(char *buf, int *ptr, struct uio *uio); #define CDEV_MAJOR MIDI_CDEV_MAJOR static struct cdevsw midi_cdevsw = { /* open */ midiopen, /* close */ midiclose, /* read */ midiread, /* write */ midiwrite, /* ioctl */ midiioctl, /* poll */ midipoll, /* mmap */ nommap, /* strategy */ nostrategy, /* name */ "midi", /* maj */ CDEV_MAJOR, /* dump */ nodump, /* psize */ nopsize, /* flags */ 0, /* bmaj */ -1 }; /* * descriptors for active devices. also used as the public softc * of a device. */ mididev_info midi_info[NMIDI_MAX]; u_long nmidi; /* total number of midi devices, filled in by the driver */ u_long nsynth; /* total number of synthesizers, filled in by the driver */ /* These make the buffer for /dev/midistat */ static int midistatbusy; static char midistatbuf[4096]; static int midistatptr; /* * This is the generic init routine */ int midiinit(mididev_info *d, device_t dev) { int unit; if (midi_devclass == NULL) { midi_devclass = device_get_devclass(dev); make_dev(&midi_cdevsw, MIDIMKMINOR(0, MIDI_DEV_STATUS), UID_ROOT, GID_WHEEL, 0444, "midistat"); } unit = device_get_unit(dev); make_dev(&midi_cdevsw, MIDIMKMINOR(unit, MIDI_DEV_MIDIN), UID_ROOT, GID_WHEEL, 0666, "midi%d", unit); /* * initialize standard parameters for the device. This can be * overridden by device-specific configurations but better do * here the generic things. */ d->unit = device_get_unit(dev); d->softc = device_get_softc(dev); d->dev = dev; d->magic = MAGIC(d->unit); /* debugging... */ return 0 ; } /* * a small utility function which, given a device number, returns * a pointer to the associated mididev_info struct, and sets the unit * number. */ mididev_info * get_mididev_info(dev_t i_dev, int *unit) { int u; mididev_info *d = NULL; if (MIDIDEV(i_dev) != MIDI_DEV_MIDIN) return NULL; u = MIDIUNIT(i_dev); if (unit) *unit = u; if (u >= nmidi + nsynth) { DEB(printf("get_mididev_info: unit %d is not configured.\n", u)); return NULL; } d = &midi_info[u]; return d; } /* * here are the switches for the main functions. The switches do * all necessary checks on the device number to make sure * that the device is configured. They also provide some default * functionalities so that device-specific drivers have to deal * only with special cases. */ static int midiopen(dev_t i_dev, int flags, int mode, struct proc * p) { switch (MIDIDEV(i_dev)) { case MIDI_DEV_MIDIN: return midi_open(i_dev, flags, mode, p); case MIDI_DEV_STATUS: return midistat_open(i_dev, flags, mode, p); } return (ENXIO); } static int midiclose(dev_t i_dev, int flags, int mode, struct proc * p) { switch (MIDIDEV(i_dev)) { case MIDI_DEV_MIDIN: return midi_close(i_dev, flags, mode, p); case MIDI_DEV_STATUS: return midistat_close(i_dev, flags, mode, p); } return (ENXIO); } static int midiread(dev_t i_dev, struct uio * buf, int flag) { switch (MIDIDEV(i_dev)) { case MIDI_DEV_MIDIN: return midi_read(i_dev, buf, flag); case MIDI_DEV_STATUS: return midistat_read(i_dev, buf, flag); } return (ENXIO); } static int midiwrite(dev_t i_dev, struct uio * buf, int flag) { switch (MIDIDEV(i_dev)) { case MIDI_DEV_MIDIN: return midi_write(i_dev, buf, flag); } return (ENXIO); } static int midiioctl(dev_t i_dev, u_long cmd, caddr_t arg, int mode, struct proc * p) { switch (MIDIDEV(i_dev)) { case MIDI_DEV_MIDIN: return midi_ioctl(i_dev, cmd, arg, mode, p); } return (ENXIO); } static int midipoll(dev_t i_dev, int events, struct proc * p) { switch (MIDIDEV(i_dev)) { case MIDI_DEV_MIDIN: return midi_poll(i_dev, events, p); } return (ENXIO); } /* * Followings are the generic methods in midi drivers. */ int midi_open(dev_t i_dev, int flags, int mode, struct proc * p) { int dev, unit, s, ret; mididev_info *d; dev = minor(i_dev); d = get_mididev_info(i_dev, &unit); DEB(printf("open midi%d subdev %d flags 0x%08x mode 0x%08x\n", unit, dev & 0xf, flags, mode)); if (d == NULL) return (ENXIO); s = splmidi(); /* Mark this device busy. */ device_busy(d->dev); if ((d->flags & MIDI_F_BUSY) != 0) { splx(s); DEB(printf("opl_open: unit %d is busy.\n", unit)); return (EBUSY); } d->flags |= MIDI_F_BUSY; d->flags &= ~(MIDI_F_READING | MIDI_F_WRITING); d->fflags = flags; /* Init the queue. */ if ((d->fflags & FREAD) != 0) midibuf_init(&d->midi_dbuf_in); if ((d->fflags & FWRITE) != 0) { midibuf_init(&d->midi_dbuf_out); midibuf_init(&d->midi_dbuf_passthru); } if (d->open == NULL) ret = 0; else ret = d->open(i_dev, flags, mode, p); splx(s); return (ret); } int midi_close(dev_t i_dev, int flags, int mode, struct proc * p) { int dev, unit, s, ret; mididev_info *d; dev = minor(i_dev); d = get_mididev_info(i_dev, &unit); DEB(printf("close midi%d subdev %d\n", unit, dev & 0xf)); if (d == NULL) return (ENXIO); s = splmidi(); /* Clear the queues. */ if ((d->fflags & FREAD) != 0) midibuf_init(&d->midi_dbuf_in); if ((d->fflags & FWRITE) != 0) { midibuf_init(&d->midi_dbuf_out); midibuf_init(&d->midi_dbuf_passthru); } /* Stop playing and unmark this device busy. */ d->flags &= ~MIDI_F_BUSY; d->fflags = 0; device_unbusy(d->dev); if (d->close == NULL) ret = 0; else ret = d->close(i_dev, flags, mode, p); splx(s); return (ret); } int midi_read(dev_t i_dev, struct uio * buf, int flag) { int dev, unit, s, len, ret; mididev_info *d ; dev = minor(i_dev); d = get_mididev_info(i_dev, &unit); DEB(printf("read midi%d subdev %d flag 0x%08x\n", unit, dev & 0xf, flag)); if (d == NULL) return (ENXIO); ret = 0; s = splmidi(); /* Begin recording. */ d->callback(d, MIDI_CB_START | MIDI_CB_RD); /* Have we got the data to read? */ if ((d->flags & MIDI_F_NBIO) != 0 && d->midi_dbuf_in.rl == 0) ret = EAGAIN; else { len = buf->uio_resid; ret = midibuf_uioread(&d->midi_dbuf_in, buf, len); if (ret < 0) ret = -ret; else ret = 0; } if (ret == 0 && d->read != NULL) ret = d->read(i_dev, buf, flag); splx(s); return (ret); } int midi_write(dev_t i_dev, struct uio * buf, int flag) { int dev, unit, s, len, ret; mididev_info *d; dev = minor(i_dev); d = get_mididev_info(i_dev, &unit); DEB(printf("write midi%d subdev %d flag 0x%08x\n", unit, dev & 0xf, flag)); if (d == NULL) return (ENXIO); ret = 0; s = splmidi(); /* Begin playing. */ d->callback(d, MIDI_CB_START | MIDI_CB_WR); /* Have we got the data to write? */ if ((d->flags & MIDI_F_NBIO) != 0 && d->midi_dbuf_out.fl == 0) ret = EAGAIN; else { len = buf->uio_resid; if (len > d->midi_dbuf_out.fl && (d->flags & MIDI_F_NBIO)) len = d->midi_dbuf_out.fl; ret = midibuf_uiowrite(&d->midi_dbuf_out, buf, len); if (ret < 0) ret = -ret; else ret = 0; } /* Begin playing. */ d->callback(d, MIDI_CB_START | MIDI_CB_WR); if (ret == 0 && d->write != NULL) ret = d->write(i_dev, buf, flag); splx(s); return (ret); } /* * generic midi ioctl. Functions of the default driver can be * overridden by the device-specific ioctl call. * If a device-specific call returns ENOSYS (Function not implemented), * the default driver is called. Otherwise, the returned value * is passed up. * * The default handler, for many parameters, sets the value in the * descriptor, sets MIDI_F_INIT, and calls the callback function with * reason INIT. If successful, the callback returns 1 and the caller * can update the parameter. */ int midi_ioctl(dev_t i_dev, u_long cmd, caddr_t arg, int mode, struct proc * p) { int ret = ENOSYS, dev, unit; mididev_info *d; struct snd_size *sndsize; u_long s; dev = minor(i_dev); d = get_mididev_info(i_dev, &unit); if (d == NULL) return (ENXIO); if (d->ioctl) ret = d->ioctl(i_dev, cmd, arg, mode, p); if (ret != ENOSYS) return ret; /* * pass control to the default ioctl handler. Set ret to 0 now. */ ret = 0; /* * all routines are called with int. blocked. Make sure that * ints are re-enabled when calling slow or blocking functions! */ s = splmidi(); switch(cmd) { /* * we start with the new ioctl interface. */ case AIONWRITE: /* how many bytes can write ? */ *(int *)arg = d->midi_dbuf_out.fl; break; case AIOSSIZE: /* set the current blocksize */ sndsize = (struct snd_size *)arg; if (sndsize->play_size <= d->midi_dbuf_out.unit_size && sndsize->rec_size <= d->midi_dbuf_in.unit_size) { d->flags &= ~MIDI_F_HAS_SIZE; d->midi_dbuf_out.blocksize = d->midi_dbuf_out.unit_size; d->midi_dbuf_in.blocksize = d->midi_dbuf_in.unit_size; } else { if (sndsize->play_size > d->midi_dbuf_out.bufsize / 4) sndsize->play_size = d->midi_dbuf_out.bufsize / 4; if (sndsize->rec_size > d->midi_dbuf_in.bufsize / 4) sndsize->rec_size = d->midi_dbuf_in.bufsize / 4; /* Round up the size to the multiple of EV_SZ. */ d->midi_dbuf_out.blocksize = ((sndsize->play_size + d->midi_dbuf_out.unit_size - 1) / d->midi_dbuf_out.unit_size) * d->midi_dbuf_out.unit_size; d->midi_dbuf_in.blocksize = ((sndsize->rec_size + d->midi_dbuf_in.unit_size - 1) / d->midi_dbuf_in.unit_size) * d->midi_dbuf_in.unit_size; d->flags |= MIDI_F_HAS_SIZE; } /* FALLTHROUGH */ case AIOGSIZE: /* get the current blocksize */ sndsize = (struct snd_size *)arg; sndsize->play_size = d->midi_dbuf_out.blocksize; sndsize->rec_size = d->midi_dbuf_in.blocksize; ret = 0; break; case AIOSTOP: if (*(int *)arg == AIOSYNC_PLAY) /* play */ *(int *)arg = d->callback(d, MIDI_CB_STOP | MIDI_CB_WR); else if (*(int *)arg == AIOSYNC_CAPTURE) *(int *)arg = d->callback(d, MIDI_CB_STOP | MIDI_CB_RD); else { splx(s); DEB(printf("AIOSTOP: bad channel 0x%x\n", *(int *)arg)); *(int *)arg = 0 ; } break ; case AIOSYNC: DEB(printf("AIOSYNC chan 0x%03lx pos %lu unimplemented\n", ((snd_sync_parm *)arg)->chan, ((snd_sync_parm *)arg)->pos)); break; /* * here follow the standard ioctls (filio.h etc.) */ case FIONREAD: /* get # bytes to read */ *(int *)arg = d->midi_dbuf_in.rl; break; case FIOASYNC: /*set/clear async i/o */ DEB( printf("FIOASYNC\n") ; ) break; case FIONBIO: /* set/clear non-blocking i/o */ if ( *(int *)arg == 0 ) d->flags &= ~MIDI_F_NBIO ; else d->flags |= MIDI_F_NBIO ; break ; case MIOSPASSTHRU: /* set/clear passthru */ if ( *(int *)arg == 0 ) d->flags &= ~MIDI_F_PASSTHRU ; else d->flags |= MIDI_F_PASSTHRU ; /* Init the queue. */ midibuf_init(&d->midi_dbuf_passthru); /* FALLTHROUGH */ case MIOGPASSTHRU: /* get passthru */ if ((d->flags & MIDI_F_PASSTHRU) != 0) (int *)arg = 1; else (int *)arg = 0; break ; default: DEB(printf("default ioctl midi%d subdev %d fn 0x%08x fail\n", unit, dev & 0xf, cmd)); ret = EINVAL; break ; } splx(s); return ret ; } int midi_poll(dev_t i_dev, int events, struct proc * p) { int unit, dev, ret, s, lim; mididev_info *d; dev = minor(i_dev); d = get_mididev_info(i_dev, &unit); if (d == NULL) return (ENXIO); if (d->poll) ret = d->poll(i_dev, events, p); ret = 0; s = splmidi(); /* Look up the apropriate queue and select it. */ if ((events & (POLLOUT | POLLWRNORM)) != 0) { /* Start playing. */ d->callback(d, MIDI_CB_START | MIDI_CB_WR); /* Find out the boundary. */ if ((d->flags & MIDI_F_HAS_SIZE) != 0) lim = d->midi_dbuf_out.blocksize; else lim = d->midi_dbuf_out.unit_size; if (d->midi_dbuf_out.fl < lim) /* No enough space, record select. */ selrecord(p, &d->midi_dbuf_out.sel); else /* We can write now. */ ret |= events & (POLLOUT | POLLWRNORM); } if ((events & (POLLIN | POLLRDNORM)) != 0) { /* Start recording. */ d->callback(d, MIDI_CB_START | MIDI_CB_RD); /* Find out the boundary. */ if ((d->flags & MIDI_F_HAS_SIZE) != 0) lim = d->midi_dbuf_in.blocksize; else lim = d->midi_dbuf_in.unit_size; if (d->midi_dbuf_in.rl < lim) /* No data ready, record select. */ selrecord(p, &d->midi_dbuf_in.sel); else /* We can write now. */ ret |= events & (POLLIN | POLLRDNORM); } splx(s); return (ret); } void midi_intr(mididev_info *d) { if (d->intr != NULL) d->intr(d->intrarg, d); } /* * These handle the status message of the midi drivers. */ int midistat_open(dev_t i_dev, int flags, int mode, struct proc * p) { if (midistatbusy) return (EBUSY); bzero(midistatbuf, sizeof(midistatbuf)); midistatptr = 0; if (midi_initstatus(midistatbuf, sizeof(midistatbuf) - 1)) return (ENOMEM); midistatbusy = 1; return (0); } int midistat_close(dev_t i_dev, int flags, int mode, struct proc * p) { midistatbusy = 0; return (0); } int midistat_read(dev_t i_dev, struct uio * buf, int flag) { return midi_readstatus(midistatbuf, &midistatptr, buf); } /* * finally, some "libraries" */ /* Inits the buffer for /dev/midistat. */ static int midi_initstatus(char *buf, int size) { int i, p; device_t dev; mididev_info *md; p = 0; p += snprintf(buf, size, "FreeBSD Midi Driver (newmidi) %s %s\nInstalled devices:\n", __DATE__, __TIME__); for (i = 0 ; i < NMIDI_MAX ; i++) { md = &midi_info[i]; if (!MIDICONFED(md)) continue; dev = devclass_get_device(midi_devclass, i); if (p < size) p += snprintf(&buf[p], size - p, "midi%d: <%s> %s\n", i, device_get_desc(dev), md->midistat); else return (1); } return (0); } /* Reads the status message. */ static int midi_readstatus(char *buf, int *ptr, struct uio *uio) { int s, len; s = splmidi(); len = min(uio->uio_resid, strlen(&buf[*ptr])); if (len > 0) { uiomove(&buf[*ptr], len, uio); *ptr += len; } splx(s); return (0); }