/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC. * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). * Rewritten for Linux by Brian Behlendorf . * LLNL-CODE-403049. * * ZFS volume emulation driver. * * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes. * Volumes are accessed through the symbolic links named: * * /dev// * * Volumes are persistent through reboot and module load. No user command * needs to be run before opening and using a device. */ #include #include #include #include #include #include #include #include #include #include unsigned int zvol_inhibit_dev = 0; unsigned int zvol_major = ZVOL_MAJOR; unsigned int zvol_threads = 32; unsigned long zvol_max_discard_blocks = 16384; static taskq_t *zvol_taskq; static kmutex_t zvol_state_lock; static list_t zvol_state_list; static char *zvol_tag = "zvol_tag"; /* * The in-core state of each volume. */ typedef struct zvol_state { char zv_name[MAXNAMELEN]; /* name */ uint64_t zv_volsize; /* advertised space */ uint64_t zv_volblocksize;/* volume block size */ objset_t *zv_objset; /* objset handle */ uint32_t zv_flags; /* ZVOL_* flags */ uint32_t zv_open_count; /* open counts */ uint32_t zv_changed; /* disk changed */ zilog_t *zv_zilog; /* ZIL handle */ znode_t zv_znode; /* for range locking */ dmu_buf_t *zv_dbuf; /* bonus handle */ dev_t zv_dev; /* device id */ struct gendisk *zv_disk; /* generic disk */ struct request_queue *zv_queue; /* request queue */ spinlock_t zv_lock; /* request queue lock */ list_node_t zv_next; /* next zvol_state_t linkage */ } zvol_state_t; #define ZVOL_RDONLY 0x1 /* * Find the next available range of ZVOL_MINORS minor numbers. The * zvol_state_list is kept in ascending minor order so we simply need * to scan the list for the first gap in the sequence. This allows us * to recycle minor number as devices are created and removed. */ static int zvol_find_minor(unsigned *minor) { zvol_state_t *zv; *minor = 0; ASSERT(MUTEX_HELD(&zvol_state_lock)); for (zv = list_head(&zvol_state_list); zv != NULL; zv = list_next(&zvol_state_list, zv), *minor += ZVOL_MINORS) { if (MINOR(zv->zv_dev) != MINOR(*minor)) break; } /* All minors are in use */ if (*minor >= (1 << MINORBITS)) return ENXIO; return 0; } /* * Find a zvol_state_t given the full major+minor dev_t. */ static zvol_state_t * zvol_find_by_dev(dev_t dev) { zvol_state_t *zv; ASSERT(MUTEX_HELD(&zvol_state_lock)); for (zv = list_head(&zvol_state_list); zv != NULL; zv = list_next(&zvol_state_list, zv)) { if (zv->zv_dev == dev) return zv; } return NULL; } /* * Find a zvol_state_t given the name provided at zvol_alloc() time. */ static zvol_state_t * zvol_find_by_name(const char *name) { zvol_state_t *zv; ASSERT(MUTEX_HELD(&zvol_state_lock)); for (zv = list_head(&zvol_state_list); zv != NULL; zv = list_next(&zvol_state_list, zv)) { if (!strncmp(zv->zv_name, name, MAXNAMELEN)) return zv; } return NULL; } /* * Given a path, return TRUE if path is a ZVOL. */ boolean_t zvol_is_zvol(const char *device) { struct block_device *bdev; unsigned int major; bdev = lookup_bdev(device); if (IS_ERR(bdev)) return (B_FALSE); major = MAJOR(bdev->bd_dev); bdput(bdev); if (major == zvol_major) return (B_TRUE); return (B_FALSE); } /* * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation. */ void zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) { zfs_creat_t *zct = arg; nvlist_t *nvprops = zct->zct_props; int error; uint64_t volblocksize, volsize; VERIFY(nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0); if (nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0) volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE); /* * These properties must be removed from the list so the generic * property setting step won't apply to them. */ VERIFY(nvlist_remove_all(nvprops, zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0); (void) nvlist_remove_all(nvprops, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE)); error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize, DMU_OT_NONE, 0, tx); ASSERT(error == 0); error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP, DMU_OT_NONE, 0, tx); ASSERT(error == 0); error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx); ASSERT(error == 0); } /* * ZFS_IOC_OBJSET_STATS entry point. */ int zvol_get_stats(objset_t *os, nvlist_t *nv) { int error; dmu_object_info_t *doi; uint64_t val; error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val); if (error) return (error); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val); doi = kmem_alloc(sizeof(dmu_object_info_t), KM_SLEEP); error = dmu_object_info(os, ZVOL_OBJ, doi); if (error == 0) { dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE, doi->doi_data_block_size); } kmem_free(doi, sizeof(dmu_object_info_t)); return (error); } /* * Sanity check volume size. */ int zvol_check_volsize(uint64_t volsize, uint64_t blocksize) { if (volsize == 0) return (SET_ERROR(EINVAL)); if (volsize % blocksize != 0) return (SET_ERROR(EINVAL)); #ifdef _ILP32 if (volsize - 1 > MAXOFFSET_T) return (SET_ERROR(EOVERFLOW)); #endif return (0); } /* * Ensure the zap is flushed then inform the VFS of the capacity change. */ static int zvol_update_volsize(zvol_state_t *zv, uint64_t volsize, objset_t *os) { struct block_device *bdev; dmu_tx_t *tx; int error; ASSERT(MUTEX_HELD(&zvol_state_lock)); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); return (error); } error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx); dmu_tx_commit(tx); if (error) return (error); error = dmu_free_long_range(os, ZVOL_OBJ, volsize, DMU_OBJECT_END); if (error) return (error); bdev = bdget_disk(zv->zv_disk, 0); if (!bdev) return (SET_ERROR(EIO)); /* * 2.6.28 API change * Added check_disk_size_change() helper function. */ #ifdef HAVE_CHECK_DISK_SIZE_CHANGE set_capacity(zv->zv_disk, volsize >> 9); zv->zv_volsize = volsize; check_disk_size_change(zv->zv_disk, bdev); #else zv->zv_volsize = volsize; zv->zv_changed = 1; (void) check_disk_change(bdev); #endif /* HAVE_CHECK_DISK_SIZE_CHANGE */ bdput(bdev); return (0); } /* * Set ZFS_PROP_VOLSIZE set entry point. */ int zvol_set_volsize(const char *name, uint64_t volsize) { zvol_state_t *zv; dmu_object_info_t *doi; objset_t *os = NULL; uint64_t readonly; int error; error = dsl_prop_get_integer(name, zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL); if (error != 0) return (error); if (readonly) return (SET_ERROR(EROFS)); mutex_enter(&zvol_state_lock); zv = zvol_find_by_name(name); if (zv == NULL) { error = SET_ERROR(ENXIO); goto out; } doi = kmem_alloc(sizeof(dmu_object_info_t), KM_SLEEP); error = dmu_objset_hold(name, FTAG, &os); if (error) goto out_doi; if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) != 0 || (error = zvol_check_volsize(volsize,doi->doi_data_block_size)) != 0) goto out_doi; VERIFY(dsl_prop_get_integer(name, "readonly", &readonly, NULL) == 0); if (readonly) { error = SET_ERROR(EROFS); goto out_doi; } if (get_disk_ro(zv->zv_disk) || (zv->zv_flags & ZVOL_RDONLY)) { error = SET_ERROR(EROFS); goto out_doi; } error = zvol_update_volsize(zv, volsize, os); out_doi: kmem_free(doi, sizeof(dmu_object_info_t)); out: if (os) dmu_objset_rele(os, FTAG); mutex_exit(&zvol_state_lock); return (error); } /* * Sanity check volume block size. */ int zvol_check_volblocksize(uint64_t volblocksize) { if (volblocksize < SPA_MINBLOCKSIZE || volblocksize > SPA_MAXBLOCKSIZE || !ISP2(volblocksize)) return (SET_ERROR(EDOM)); return (0); } /* * Set ZFS_PROP_VOLBLOCKSIZE set entry point. */ int zvol_set_volblocksize(const char *name, uint64_t volblocksize) { zvol_state_t *zv; dmu_tx_t *tx; int error; mutex_enter(&zvol_state_lock); zv = zvol_find_by_name(name); if (zv == NULL) { error = SET_ERROR(ENXIO); goto out; } if (get_disk_ro(zv->zv_disk) || (zv->zv_flags & ZVOL_RDONLY)) { error = SET_ERROR(EROFS); goto out; } tx = dmu_tx_create(zv->zv_objset); dmu_tx_hold_bonus(tx, ZVOL_OBJ); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); } else { error = dmu_object_set_blocksize(zv->zv_objset, ZVOL_OBJ, volblocksize, 0, tx); if (error == ENOTSUP) error = SET_ERROR(EBUSY); dmu_tx_commit(tx); if (error == 0) zv->zv_volblocksize = volblocksize; } out: mutex_exit(&zvol_state_lock); return (error); } /* * Replay a TX_WRITE ZIL transaction that didn't get committed * after a system failure */ static int zvol_replay_write(zvol_state_t *zv, lr_write_t *lr, boolean_t byteswap) { objset_t *os = zv->zv_objset; char *data = (char *)(lr + 1); /* data follows lr_write_t */ uint64_t off = lr->lr_offset; uint64_t len = lr->lr_length; dmu_tx_t *tx; int error; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); tx = dmu_tx_create(os); dmu_tx_hold_write(tx, ZVOL_OBJ, off, len); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); } else { dmu_write(os, ZVOL_OBJ, off, len, data, tx); dmu_tx_commit(tx); } return (error); } static int zvol_replay_err(zvol_state_t *zv, lr_t *lr, boolean_t byteswap) { return (SET_ERROR(ENOTSUP)); } /* * Callback vectors for replaying records. * Only TX_WRITE is needed for zvol. */ zil_replay_func_t zvol_replay_vector[TX_MAX_TYPE] = { (zil_replay_func_t)zvol_replay_err, /* no such transaction type */ (zil_replay_func_t)zvol_replay_err, /* TX_CREATE */ (zil_replay_func_t)zvol_replay_err, /* TX_MKDIR */ (zil_replay_func_t)zvol_replay_err, /* TX_MKXATTR */ (zil_replay_func_t)zvol_replay_err, /* TX_SYMLINK */ (zil_replay_func_t)zvol_replay_err, /* TX_REMOVE */ (zil_replay_func_t)zvol_replay_err, /* TX_RMDIR */ (zil_replay_func_t)zvol_replay_err, /* TX_LINK */ (zil_replay_func_t)zvol_replay_err, /* TX_RENAME */ (zil_replay_func_t)zvol_replay_write, /* TX_WRITE */ (zil_replay_func_t)zvol_replay_err, /* TX_TRUNCATE */ (zil_replay_func_t)zvol_replay_err, /* TX_SETATTR */ (zil_replay_func_t)zvol_replay_err, /* TX_ACL */ }; /* * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions. * * We store data in the log buffers if it's small enough. * Otherwise we will later flush the data out via dmu_sync(). */ ssize_t zvol_immediate_write_sz = 32768; static void zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset, uint64_t size, int sync) { uint32_t blocksize = zv->zv_volblocksize; zilog_t *zilog = zv->zv_zilog; boolean_t slogging; ssize_t immediate_write_sz; if (zil_replaying(zilog, tx)) return; immediate_write_sz = (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT) ? 0 : zvol_immediate_write_sz; slogging = spa_has_slogs(zilog->zl_spa) && (zilog->zl_logbias == ZFS_LOGBIAS_LATENCY); while (size) { itx_t *itx; lr_write_t *lr; ssize_t len; itx_wr_state_t write_state; /* * Unlike zfs_log_write() we can be called with * up to DMU_MAX_ACCESS/2 (5MB) writes. */ if (blocksize > immediate_write_sz && !slogging && size >= blocksize && offset % blocksize == 0) { write_state = WR_INDIRECT; /* uses dmu_sync */ len = blocksize; } else if (sync) { write_state = WR_COPIED; len = MIN(ZIL_MAX_LOG_DATA, size); } else { write_state = WR_NEED_COPY; len = MIN(ZIL_MAX_LOG_DATA, size); } itx = zil_itx_create(TX_WRITE, sizeof (*lr) + (write_state == WR_COPIED ? len : 0)); lr = (lr_write_t *)&itx->itx_lr; if (write_state == WR_COPIED && dmu_read(zv->zv_objset, ZVOL_OBJ, offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) { zil_itx_destroy(itx); itx = zil_itx_create(TX_WRITE, sizeof (*lr)); lr = (lr_write_t *)&itx->itx_lr; write_state = WR_NEED_COPY; } itx->itx_wr_state = write_state; if (write_state == WR_NEED_COPY) itx->itx_sod += len; lr->lr_foid = ZVOL_OBJ; lr->lr_offset = offset; lr->lr_length = len; lr->lr_blkoff = 0; BP_ZERO(&lr->lr_blkptr); itx->itx_private = zv; itx->itx_sync = sync; (void) zil_itx_assign(zilog, itx, tx); offset += len; size -= len; } } /* * Common write path running under the zvol taskq context. This function * is responsible for copying the request structure data in to the DMU and * signaling the request queue with the result of the copy. */ static void zvol_write(void *arg) { struct request *req = (struct request *)arg; struct request_queue *q = req->q; zvol_state_t *zv = q->queuedata; uint64_t offset = blk_rq_pos(req) << 9; uint64_t size = blk_rq_bytes(req); int error = 0; dmu_tx_t *tx; rl_t *rl; /* * Annotate this call path with a flag that indicates that it is * unsafe to use KM_SLEEP during memory allocations due to the * potential for a deadlock. KM_PUSHPAGE should be used instead. */ ASSERT(!(current->flags & PF_NOFS)); current->flags |= PF_NOFS; if (req->cmd_flags & VDEV_REQ_FLUSH) zil_commit(zv->zv_zilog, ZVOL_OBJ); /* * Some requests are just for flush and nothing else. */ if (size == 0) { blk_end_request(req, 0, size); goto out; } rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_WRITER); tx = dmu_tx_create(zv->zv_objset); dmu_tx_hold_write(tx, ZVOL_OBJ, offset, size); /* This will only fail for ENOSPC */ error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); zfs_range_unlock(rl); blk_end_request(req, -error, size); goto out; } error = dmu_write_req(zv->zv_objset, ZVOL_OBJ, req, tx); if (error == 0) zvol_log_write(zv, tx, offset, size, req->cmd_flags & VDEV_REQ_FUA); dmu_tx_commit(tx); zfs_range_unlock(rl); if ((req->cmd_flags & VDEV_REQ_FUA) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS) zil_commit(zv->zv_zilog, ZVOL_OBJ); blk_end_request(req, -error, size); out: current->flags &= ~PF_NOFS; } #ifdef HAVE_BLK_QUEUE_DISCARD static void zvol_discard(void *arg) { struct request *req = (struct request *)arg; struct request_queue *q = req->q; zvol_state_t *zv = q->queuedata; uint64_t start = blk_rq_pos(req) << 9; uint64_t end = start + blk_rq_bytes(req); int error; rl_t *rl; /* * Annotate this call path with a flag that indicates that it is * unsafe to use KM_SLEEP during memory allocations due to the * potential for a deadlock. KM_PUSHPAGE should be used instead. */ ASSERT(!(current->flags & PF_NOFS)); current->flags |= PF_NOFS; if (end > zv->zv_volsize) { blk_end_request(req, -EIO, blk_rq_bytes(req)); goto out; } /* * Align the request to volume block boundaries. If we don't, * then this will force dnode_free_range() to zero out the * unaligned parts, which is slow (read-modify-write) and * useless since we are not freeing any space by doing so. */ start = P2ROUNDUP(start, zv->zv_volblocksize); end = P2ALIGN(end, zv->zv_volblocksize); if (start >= end) { blk_end_request(req, 0, blk_rq_bytes(req)); goto out; } rl = zfs_range_lock(&zv->zv_znode, start, end - start, RL_WRITER); error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, start, end - start); /* * TODO: maybe we should add the operation to the log. */ zfs_range_unlock(rl); blk_end_request(req, -error, blk_rq_bytes(req)); out: current->flags &= ~PF_NOFS; } #endif /* HAVE_BLK_QUEUE_DISCARD */ /* * Common read path running under the zvol taskq context. This function * is responsible for copying the requested data out of the DMU and in to * a linux request structure. It then must signal the request queue with * an error code describing the result of the copy. */ static void zvol_read(void *arg) { struct request *req = (struct request *)arg; struct request_queue *q = req->q; zvol_state_t *zv = q->queuedata; uint64_t offset = blk_rq_pos(req) << 9; uint64_t size = blk_rq_bytes(req); int error; rl_t *rl; if (size == 0) { blk_end_request(req, 0, size); return; } rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_READER); error = dmu_read_req(zv->zv_objset, ZVOL_OBJ, req); zfs_range_unlock(rl); /* convert checksum errors into IO errors */ if (error == ECKSUM) error = SET_ERROR(EIO); blk_end_request(req, -error, size); } /* * Request will be added back to the request queue and retried if * it cannot be immediately dispatched to the taskq for handling */ static inline void zvol_dispatch(task_func_t func, struct request *req) { if (!taskq_dispatch(zvol_taskq, func, (void *)req, TQ_NOSLEEP)) blk_requeue_request(req->q, req); } /* * Common request path. Rather than registering a custom make_request() * function we use the generic Linux version. This is done because it allows * us to easily merge read requests which would otherwise we performed * synchronously by the DMU. This is less critical in write case where the * DMU will perform the correct merging within a transaction group. Using * the generic make_request() also let's use leverage the fact that the * elevator with ensure correct ordering in regards to barrior IOs. On * the downside it means that in the write case we end up doing request * merging twice once in the elevator and once in the DMU. * * The request handler is called under a spin lock so all the real work * is handed off to be done in the context of the zvol taskq. This function * simply performs basic request sanity checking and hands off the request. */ static void zvol_request(struct request_queue *q) { zvol_state_t *zv = q->queuedata; struct request *req; unsigned int size; while ((req = blk_fetch_request(q)) != NULL) { size = blk_rq_bytes(req); if (size != 0 && blk_rq_pos(req) + blk_rq_sectors(req) > get_capacity(zv->zv_disk)) { printk(KERN_INFO "%s: bad access: block=%llu, count=%lu\n", req->rq_disk->disk_name, (long long unsigned)blk_rq_pos(req), (long unsigned)blk_rq_sectors(req)); __blk_end_request(req, -EIO, size); continue; } if (!blk_fs_request(req)) { printk(KERN_INFO "%s: non-fs cmd\n", req->rq_disk->disk_name); __blk_end_request(req, -EIO, size); continue; } switch (rq_data_dir(req)) { case READ: zvol_dispatch(zvol_read, req); break; case WRITE: if (unlikely(get_disk_ro(zv->zv_disk)) || unlikely(zv->zv_flags & ZVOL_RDONLY)) { __blk_end_request(req, -EROFS, size); break; } #ifdef HAVE_BLK_QUEUE_DISCARD if (req->cmd_flags & VDEV_REQ_DISCARD) { zvol_dispatch(zvol_discard, req); break; } #endif /* HAVE_BLK_QUEUE_DISCARD */ zvol_dispatch(zvol_write, req); break; default: printk(KERN_INFO "%s: unknown cmd: %d\n", req->rq_disk->disk_name, (int)rq_data_dir(req)); __blk_end_request(req, -EIO, size); break; } } } static void zvol_get_done(zgd_t *zgd, int error) { if (zgd->zgd_db) dmu_buf_rele(zgd->zgd_db, zgd); zfs_range_unlock(zgd->zgd_rl); if (error == 0 && zgd->zgd_bp) zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); kmem_free(zgd, sizeof (zgd_t)); } /* * Get data to generate a TX_WRITE intent log record. */ static int zvol_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) { zvol_state_t *zv = arg; objset_t *os = zv->zv_objset; uint64_t offset = lr->lr_offset; uint64_t size = lr->lr_length; dmu_buf_t *db; zgd_t *zgd; int error; ASSERT(zio != NULL); ASSERT(size != 0); zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_PUSHPAGE); zgd->zgd_zilog = zv->zv_zilog; zgd->zgd_rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_READER); /* * Write records come in two flavors: immediate and indirect. * For small writes it's cheaper to store the data with the * log record (immediate); for large writes it's cheaper to * sync the data and get a pointer to it (indirect) so that * we don't have to write the data twice. */ if (buf != NULL) { /* immediate write */ error = dmu_read(os, ZVOL_OBJ, offset, size, buf, DMU_READ_NO_PREFETCH); } else { size = zv->zv_volblocksize; offset = P2ALIGN_TYPED(offset, size, uint64_t); error = dmu_buf_hold(os, ZVOL_OBJ, offset, zgd, &db, DMU_READ_NO_PREFETCH); if (error == 0) { zgd->zgd_db = db; zgd->zgd_bp = &lr->lr_blkptr; ASSERT(db != NULL); ASSERT(db->db_offset == offset); ASSERT(db->db_size == size); error = dmu_sync(zio, lr->lr_common.lrc_txg, zvol_get_done, zgd); if (error == 0) return (0); } } zvol_get_done(zgd, error); return (error); } /* * The zvol_state_t's are inserted in increasing MINOR(dev_t) order. */ static void zvol_insert(zvol_state_t *zv_insert) { zvol_state_t *zv = NULL; ASSERT(MUTEX_HELD(&zvol_state_lock)); ASSERT3U(MINOR(zv_insert->zv_dev) & ZVOL_MINOR_MASK, ==, 0); for (zv = list_head(&zvol_state_list); zv != NULL; zv = list_next(&zvol_state_list, zv)) { if (MINOR(zv->zv_dev) > MINOR(zv_insert->zv_dev)) break; } list_insert_before(&zvol_state_list, zv, zv_insert); } /* * Simply remove the zvol from to list of zvols. */ static void zvol_remove(zvol_state_t *zv_remove) { ASSERT(MUTEX_HELD(&zvol_state_lock)); list_remove(&zvol_state_list, zv_remove); } static int zvol_first_open(zvol_state_t *zv) { objset_t *os; uint64_t volsize; int locked = 0; int error; uint64_t ro; /* * In all other cases the spa_namespace_lock is taken before the * bdev->bd_mutex lock. But in this case the Linux __blkdev_get() * function calls fops->open() with the bdev->bd_mutex lock held. * * To avoid a potential lock inversion deadlock we preemptively * try to take the spa_namespace_lock(). Normally it will not * be contended and this is safe because spa_open_common() handles * the case where the caller already holds the spa_namespace_lock. * * When it is contended we risk a lock inversion if we were to * block waiting for the lock. Luckily, the __blkdev_get() * function allows us to return -ERESTARTSYS which will result in * bdev->bd_mutex being dropped, reacquired, and fops->open() being * called again. This process can be repeated safely until both * locks are acquired. */ if (!mutex_owned(&spa_namespace_lock)) { locked = mutex_tryenter(&spa_namespace_lock); if (!locked) return (-SET_ERROR(ERESTARTSYS)); } /* lie and say we're read-only */ error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, 1, zvol_tag, &os); if (error) goto out_mutex; error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize); if (error) { dmu_objset_disown(os, zvol_tag); goto out_mutex; } zv->zv_objset = os; error = dmu_bonus_hold(os, ZVOL_OBJ, zvol_tag, &zv->zv_dbuf); if (error) { dmu_objset_disown(os, zvol_tag); goto out_mutex; } set_capacity(zv->zv_disk, volsize >> 9); zv->zv_volsize = volsize; zv->zv_zilog = zil_open(os, zvol_get_data); VERIFY(dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL) == 0); if (ro || dmu_objset_is_snapshot(os) || !spa_writeable(dmu_objset_spa(os))) { set_disk_ro(zv->zv_disk, 1); zv->zv_flags |= ZVOL_RDONLY; } else { set_disk_ro(zv->zv_disk, 0); zv->zv_flags &= ~ZVOL_RDONLY; } out_mutex: if (locked) mutex_exit(&spa_namespace_lock); return (-error); } static void zvol_last_close(zvol_state_t *zv) { zil_close(zv->zv_zilog); zv->zv_zilog = NULL; dmu_buf_rele(zv->zv_dbuf, zvol_tag); zv->zv_dbuf = NULL; /* * Evict cached data */ if (dsl_dataset_is_dirty(dmu_objset_ds(zv->zv_objset)) && !(zv->zv_flags & ZVOL_RDONLY)) txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0); (void) dmu_objset_evict_dbufs(zv->zv_objset); dmu_objset_disown(zv->zv_objset, zvol_tag); zv->zv_objset = NULL; } static int zvol_open(struct block_device *bdev, fmode_t flag) { zvol_state_t *zv = bdev->bd_disk->private_data; int error = 0, drop_mutex = 0; /* * If the caller is already holding the mutex do not take it * again, this will happen as part of zvol_create_minor(). * Once add_disk() is called the device is live and the kernel * will attempt to open it to read the partition information. */ if (!mutex_owned(&zvol_state_lock)) { mutex_enter(&zvol_state_lock); drop_mutex = 1; } ASSERT3P(zv, !=, NULL); if (zv->zv_open_count == 0) { error = zvol_first_open(zv); if (error) goto out_mutex; } if ((flag & FMODE_WRITE) && (get_disk_ro(zv->zv_disk) || (zv->zv_flags & ZVOL_RDONLY))) { error = -EROFS; goto out_open_count; } zv->zv_open_count++; out_open_count: if (zv->zv_open_count == 0) zvol_last_close(zv); out_mutex: if (drop_mutex) mutex_exit(&zvol_state_lock); check_disk_change(bdev); return (error); } #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_VOID static void #else static int #endif zvol_release(struct gendisk *disk, fmode_t mode) { zvol_state_t *zv = disk->private_data; int drop_mutex = 0; if (!mutex_owned(&zvol_state_lock)) { mutex_enter(&zvol_state_lock); drop_mutex = 1; } ASSERT3P(zv, !=, NULL); ASSERT3U(zv->zv_open_count, >, 0); zv->zv_open_count--; if (zv->zv_open_count == 0) zvol_last_close(zv); if (drop_mutex) mutex_exit(&zvol_state_lock); #ifndef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_VOID return (0); #endif } static int zvol_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { zvol_state_t *zv = bdev->bd_disk->private_data; int error = 0; if (zv == NULL) return (-SET_ERROR(ENXIO)); switch (cmd) { case BLKFLSBUF: zil_commit(zv->zv_zilog, ZVOL_OBJ); break; case BLKZNAME: error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN); break; default: error = -ENOTTY; break; } return (error); } #ifdef CONFIG_COMPAT static int zvol_compat_ioctl(struct block_device *bdev, fmode_t mode, unsigned cmd, unsigned long arg) { return zvol_ioctl(bdev, mode, cmd, arg); } #else #define zvol_compat_ioctl NULL #endif static int zvol_media_changed(struct gendisk *disk) { zvol_state_t *zv = disk->private_data; return zv->zv_changed; } static int zvol_revalidate_disk(struct gendisk *disk) { zvol_state_t *zv = disk->private_data; zv->zv_changed = 0; set_capacity(zv->zv_disk, zv->zv_volsize >> 9); return 0; } /* * Provide a simple virtual geometry for legacy compatibility. For devices * smaller than 1 MiB a small head and sector count is used to allow very * tiny devices. For devices over 1 Mib a standard head and sector count * is used to keep the cylinders count reasonable. */ static int zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo) { zvol_state_t *zv = bdev->bd_disk->private_data; sector_t sectors = get_capacity(zv->zv_disk); if (sectors > 2048) { geo->heads = 16; geo->sectors = 63; } else { geo->heads = 2; geo->sectors = 4; } geo->start = 0; geo->cylinders = sectors / (geo->heads * geo->sectors); return 0; } static struct kobject * zvol_probe(dev_t dev, int *part, void *arg) { zvol_state_t *zv; struct kobject *kobj; mutex_enter(&zvol_state_lock); zv = zvol_find_by_dev(dev); kobj = zv ? get_disk(zv->zv_disk) : NULL; mutex_exit(&zvol_state_lock); return kobj; } #ifdef HAVE_BDEV_BLOCK_DEVICE_OPERATIONS static struct block_device_operations zvol_ops = { .open = zvol_open, .release = zvol_release, .ioctl = zvol_ioctl, .compat_ioctl = zvol_compat_ioctl, .media_changed = zvol_media_changed, .revalidate_disk = zvol_revalidate_disk, .getgeo = zvol_getgeo, .owner = THIS_MODULE, }; #else /* HAVE_BDEV_BLOCK_DEVICE_OPERATIONS */ static int zvol_open_by_inode(struct inode *inode, struct file *file) { return zvol_open(inode->i_bdev, file->f_mode); } static int zvol_release_by_inode(struct inode *inode, struct file *file) { return zvol_release(inode->i_bdev->bd_disk, file->f_mode); } static int zvol_ioctl_by_inode(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { if (file == NULL || inode == NULL) return -EINVAL; return zvol_ioctl(inode->i_bdev, file->f_mode, cmd, arg); } # ifdef CONFIG_COMPAT static long zvol_compat_ioctl_by_inode(struct file *file, unsigned int cmd, unsigned long arg) { if (file == NULL) return -EINVAL; return zvol_compat_ioctl(file->f_dentry->d_inode->i_bdev, file->f_mode, cmd, arg); } # else # define zvol_compat_ioctl_by_inode NULL # endif static struct block_device_operations zvol_ops = { .open = zvol_open_by_inode, .release = zvol_release_by_inode, .ioctl = zvol_ioctl_by_inode, .compat_ioctl = zvol_compat_ioctl_by_inode, .media_changed = zvol_media_changed, .revalidate_disk = zvol_revalidate_disk, .getgeo = zvol_getgeo, .owner = THIS_MODULE, }; #endif /* HAVE_BDEV_BLOCK_DEVICE_OPERATIONS */ /* * Allocate memory for a new zvol_state_t and setup the required * request queue and generic disk structures for the block device. */ static zvol_state_t * zvol_alloc(dev_t dev, const char *name) { zvol_state_t *zv; int error = 0; zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP); spin_lock_init(&zv->zv_lock); list_link_init(&zv->zv_next); zv->zv_queue = blk_init_queue(zvol_request, &zv->zv_lock); if (zv->zv_queue == NULL) goto out_kmem; #ifdef HAVE_ELEVATOR_CHANGE error = elevator_change(zv->zv_queue, "noop"); #endif /* HAVE_ELEVATOR_CHANGE */ if (error) { printk("ZFS: Unable to set \"%s\" scheduler for zvol %s: %d\n", "noop", name, error); goto out_queue; } #ifdef HAVE_BLK_QUEUE_FLUSH blk_queue_flush(zv->zv_queue, VDEV_REQ_FLUSH | VDEV_REQ_FUA); #else blk_queue_ordered(zv->zv_queue, QUEUE_ORDERED_DRAIN, NULL); #endif /* HAVE_BLK_QUEUE_FLUSH */ zv->zv_disk = alloc_disk(ZVOL_MINORS); if (zv->zv_disk == NULL) goto out_queue; zv->zv_queue->queuedata = zv; zv->zv_dev = dev; zv->zv_open_count = 0; strlcpy(zv->zv_name, name, MAXNAMELEN); mutex_init(&zv->zv_znode.z_range_lock, NULL, MUTEX_DEFAULT, NULL); avl_create(&zv->zv_znode.z_range_avl, zfs_range_compare, sizeof (rl_t), offsetof(rl_t, r_node)); zv->zv_znode.z_is_zvol = TRUE; zv->zv_disk->major = zvol_major; zv->zv_disk->first_minor = (dev & MINORMASK); zv->zv_disk->fops = &zvol_ops; zv->zv_disk->private_data = zv; zv->zv_disk->queue = zv->zv_queue; snprintf(zv->zv_disk->disk_name, DISK_NAME_LEN, "%s%d", ZVOL_DEV_NAME, (dev & MINORMASK)); return zv; out_queue: blk_cleanup_queue(zv->zv_queue); out_kmem: kmem_free(zv, sizeof (zvol_state_t)); return NULL; } /* * Cleanup then free a zvol_state_t which was created by zvol_alloc(). */ static void zvol_free(zvol_state_t *zv) { avl_destroy(&zv->zv_znode.z_range_avl); mutex_destroy(&zv->zv_znode.z_range_lock); del_gendisk(zv->zv_disk); blk_cleanup_queue(zv->zv_queue); put_disk(zv->zv_disk); kmem_free(zv, sizeof (zvol_state_t)); } static int __zvol_snapdev_hidden(const char *name) { uint64_t snapdev; char *parent; char *atp; int error = 0; parent = kmem_alloc(MAXPATHLEN, KM_SLEEP); (void) strlcpy(parent, name, MAXPATHLEN); if ((atp = strrchr(parent, '@')) != NULL) { *atp = '\0'; error = dsl_prop_get_integer(parent, "snapdev", &snapdev, NULL); if ((error == 0) && (snapdev == ZFS_SNAPDEV_HIDDEN)) error = SET_ERROR(ENODEV); } kmem_free(parent, MAXPATHLEN); return (error); } static int __zvol_create_minor(const char *name, boolean_t ignore_snapdev) { zvol_state_t *zv; objset_t *os; dmu_object_info_t *doi; uint64_t volsize; unsigned minor = 0; int error = 0; ASSERT(MUTEX_HELD(&zvol_state_lock)); zv = zvol_find_by_name(name); if (zv) { error = SET_ERROR(EEXIST); goto out; } if (ignore_snapdev == B_FALSE) { error = __zvol_snapdev_hidden(name); if (error) goto out; } doi = kmem_alloc(sizeof(dmu_object_info_t), KM_SLEEP); error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, zvol_tag, &os); if (error) goto out_doi; error = dmu_object_info(os, ZVOL_OBJ, doi); if (error) goto out_dmu_objset_disown; error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize); if (error) goto out_dmu_objset_disown; error = zvol_find_minor(&minor); if (error) goto out_dmu_objset_disown; zv = zvol_alloc(MKDEV(zvol_major, minor), name); if (zv == NULL) { error = SET_ERROR(EAGAIN); goto out_dmu_objset_disown; } if (dmu_objset_is_snapshot(os)) zv->zv_flags |= ZVOL_RDONLY; zv->zv_volblocksize = doi->doi_data_block_size; zv->zv_volsize = volsize; zv->zv_objset = os; set_capacity(zv->zv_disk, zv->zv_volsize >> 9); blk_queue_max_hw_sectors(zv->zv_queue, UINT_MAX); blk_queue_max_segments(zv->zv_queue, UINT16_MAX); blk_queue_max_segment_size(zv->zv_queue, UINT_MAX); blk_queue_physical_block_size(zv->zv_queue, zv->zv_volblocksize); blk_queue_io_opt(zv->zv_queue, zv->zv_volblocksize); #ifdef HAVE_BLK_QUEUE_DISCARD blk_queue_max_discard_sectors(zv->zv_queue, (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9); blk_queue_discard_granularity(zv->zv_queue, zv->zv_volblocksize); queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zv->zv_queue); #endif #ifdef HAVE_BLK_QUEUE_NONROT queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zv->zv_queue); #endif if (spa_writeable(dmu_objset_spa(os))) { if (zil_replay_disable) zil_destroy(dmu_objset_zil(os), B_FALSE); else zil_replay(os, zv, zvol_replay_vector); } zv->zv_objset = NULL; out_dmu_objset_disown: dmu_objset_disown(os, zvol_tag); out_doi: kmem_free(doi, sizeof(dmu_object_info_t)); out: if (error == 0) { zvol_insert(zv); add_disk(zv->zv_disk); } return (error); } /* * Create a block device minor node and setup the linkage between it * and the specified volume. Once this function returns the block * device is live and ready for use. */ int zvol_create_minor(const char *name) { int error; mutex_enter(&zvol_state_lock); error = __zvol_create_minor(name, B_FALSE); mutex_exit(&zvol_state_lock); return (error); } static int __zvol_remove_minor(const char *name) { zvol_state_t *zv; ASSERT(MUTEX_HELD(&zvol_state_lock)); zv = zvol_find_by_name(name); if (zv == NULL) return (SET_ERROR(ENXIO)); if (zv->zv_open_count > 0) return (SET_ERROR(EBUSY)); zvol_remove(zv); zvol_free(zv); return (0); } /* * Remove a block device minor node for the specified volume. */ int zvol_remove_minor(const char *name) { int error; mutex_enter(&zvol_state_lock); error = __zvol_remove_minor(name); mutex_exit(&zvol_state_lock); return (error); } static int zvol_create_minors_cb(const char *dsname, void *arg) { if (strchr(dsname, '/') == NULL) return 0; (void) __zvol_create_minor(dsname, B_FALSE); return (0); } /* * Create minors for specified pool, if pool is NULL create minors * for all available pools. */ int zvol_create_minors(char *pool) { spa_t *spa = NULL; int error = 0; if (zvol_inhibit_dev) return (0); mutex_enter(&zvol_state_lock); if (pool) { error = dmu_objset_find(pool, zvol_create_minors_cb, NULL, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); } else { mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) { error = dmu_objset_find(spa_name(spa), zvol_create_minors_cb, NULL, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); if (error) break; } mutex_exit(&spa_namespace_lock); } mutex_exit(&zvol_state_lock); return error; } /* * Remove minors for specified pool, if pool is NULL remove all minors. */ void zvol_remove_minors(const char *pool) { zvol_state_t *zv, *zv_next; char *str; if (zvol_inhibit_dev) return; str = kmem_zalloc(MAXNAMELEN, KM_SLEEP); if (pool) { (void) strncpy(str, pool, strlen(pool)); (void) strcat(str, "/"); } mutex_enter(&zvol_state_lock); for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) { zv_next = list_next(&zvol_state_list, zv); if (pool == NULL || !strncmp(str, zv->zv_name, strlen(str))) { zvol_remove(zv); zvol_free(zv); } } mutex_exit(&zvol_state_lock); kmem_free(str, MAXNAMELEN); } static int snapdev_snapshot_changed_cb(const char *dsname, void *arg) { uint64_t snapdev = *(uint64_t *) arg; if (strchr(dsname, '@') == NULL) return 0; switch (snapdev) { case ZFS_SNAPDEV_VISIBLE: mutex_enter(&zvol_state_lock); (void) __zvol_create_minor(dsname, B_TRUE); mutex_exit(&zvol_state_lock); break; case ZFS_SNAPDEV_HIDDEN: (void) zvol_remove_minor(dsname); break; } return 0; } int zvol_set_snapdev(const char *dsname, uint64_t snapdev) { (void) dmu_objset_find((char *) dsname, snapdev_snapshot_changed_cb, &snapdev, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); /* caller should continue to modify snapdev property */ return (-1); } int zvol_init(void) { int error; list_create(&zvol_state_list, sizeof (zvol_state_t), offsetof(zvol_state_t, zv_next)); mutex_init(&zvol_state_lock, NULL, MUTEX_DEFAULT, NULL); zvol_taskq = taskq_create(ZVOL_DRIVER, zvol_threads, maxclsyspri, zvol_threads, INT_MAX, TASKQ_PREPOPULATE); if (zvol_taskq == NULL) { printk(KERN_INFO "ZFS: taskq_create() failed\n"); error = -ENOMEM; goto out1; } error = register_blkdev(zvol_major, ZVOL_DRIVER); if (error) { printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error); goto out2; } blk_register_region(MKDEV(zvol_major, 0), 1UL << MINORBITS, THIS_MODULE, zvol_probe, NULL, NULL); return (0); out2: taskq_destroy(zvol_taskq); out1: mutex_destroy(&zvol_state_lock); list_destroy(&zvol_state_list); return (error); } void zvol_fini(void) { zvol_remove_minors(NULL); blk_unregister_region(MKDEV(zvol_major, 0), 1UL << MINORBITS); unregister_blkdev(zvol_major, ZVOL_DRIVER); taskq_destroy(zvol_taskq); mutex_destroy(&zvol_state_lock); list_destroy(&zvol_state_list); } module_param(zvol_inhibit_dev, uint, 0644); MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes"); module_param(zvol_major, uint, 0444); MODULE_PARM_DESC(zvol_major, "Major number for zvol device"); module_param(zvol_threads, uint, 0444); MODULE_PARM_DESC(zvol_threads, "Number of threads for zvol device"); module_param(zvol_max_discard_blocks, ulong, 0444); MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard at once");