/*- * Copyright (c) 1990 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * William Jolitz and Don Ahn. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)clock.c 7.2 (Berkeley) 5/12/91 * $FreeBSD$ */ /* * Routines to handle clock hardware. */ /* * inittodr, settodr and support routines written * by Christoph Robitschko * * reintroduced and updated by Chris Stenton 8/10/94 */ /* * modified for PC98 by Kakefuda */ #include "opt_clock.h" #include "opt_isa.h" #include "opt_mca.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(SMP) #include #endif #include #include #include #include #ifdef DEV_ISA #include #endif #include /* * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we * can use a simple formula for leap years. */ #define LEAPYEAR(y) (((u_int)(y) % 4 == 0) ? 1 : 0) #define DAYSPERYEAR (31+28+31+30+31+30+31+31+30+31+30+31) #define TIMER_DIV(x) ((timer_freq + (x) / 2) / (x)) #ifndef BURN_BRIDGES /* * Time in timer cycles that it takes for microtime() to disable interrupts * and latch the count. microtime() currently uses "cli; outb ..." so it * normally takes less than 2 timer cycles. Add a few for cache misses. * Add a few more to allow for latency in bogus calls to microtime() with * interrupts already disabled. */ #define TIMER0_LATCH_COUNT 20 /* * Maximum frequency that we are willing to allow for timer0. Must be * low enough to guarantee that the timer interrupt handler returns * before the next timer interrupt. */ #define TIMER0_MAX_FREQ 20000 #endif int adjkerntz; /* local offset from GMT in seconds */ int clkintr_pending; int disable_rtc_set; /* disable resettodr() if != 0 */ int pscnt = 1; int psdiv = 1; int statclock_disable; #ifndef TIMER_FREQ #define TIMER_FREQ 2457600 #endif u_int timer_freq = TIMER_FREQ; int timer0_max_count; int wall_cmos_clock; /* wall CMOS clock assumed if != 0 */ struct mtx clock_lock; static int beeping = 0; static const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31}; static u_int hardclock_max_count; static u_int32_t i8254_lastcount; static u_int32_t i8254_offset; static int i8254_ticked; static struct intsrc *i8254_intsrc; #ifndef BURN_BRIDGES /* * XXX new_function and timer_func should not handle clockframes, but * timer_func currently needs to hold hardclock to handle the * timer0_state == 0 case. We should use inthand_add()/inthand_remove() * to switch between clkintr() and a slightly different timerintr(). */ static void (*new_function)(struct clockframe *frame); static u_int new_rate; static u_int timer0_prescaler_count; static u_char timer0_state; #endif /* Values for timerX_state: */ #define RELEASED 0 #define RELEASE_PENDING 1 #define ACQUIRED 2 #define ACQUIRE_PENDING 3 static u_char timer1_state; static u_char timer2_state; static void (*timer_func)(struct clockframe *frame) = hardclock; static void rtc_serialcombit(int); static void rtc_serialcom(int); static int rtc_inb(void); static void rtc_outb(int); static unsigned i8254_get_timecount(struct timecounter *tc); static void set_timer_freq(u_int freq, int intr_freq); static struct timecounter i8254_timecounter = { i8254_get_timecount, /* get_timecount */ 0, /* no poll_pps */ ~0u, /* counter_mask */ 0, /* frequency */ "i8254", /* name */ 0 /* quality */ }; static void clkintr(struct clockframe *frame) { if (timecounter->tc_get_timecount == i8254_get_timecount) { mtx_lock_spin(&clock_lock); if (i8254_ticked) i8254_ticked = 0; else { i8254_offset += timer0_max_count; i8254_lastcount = 0; } clkintr_pending = 0; mtx_unlock_spin(&clock_lock); } timer_func(frame); #ifdef SMP if (timer_func == hardclock) forward_hardclock(); #endif #ifndef BURN_BRIDGES switch (timer0_state) { case RELEASED: break; case ACQUIRED: if ((timer0_prescaler_count += timer0_max_count) >= hardclock_max_count) { timer0_prescaler_count -= hardclock_max_count; hardclock(frame); #ifdef SMP forward_hardclock(); #endif } break; case ACQUIRE_PENDING: mtx_lock_spin(&clock_lock); i8254_offset = i8254_get_timecount(NULL); i8254_lastcount = 0; timer0_max_count = TIMER_DIV(new_rate); outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT); outb(TIMER_CNTR0, timer0_max_count & 0xff); outb(TIMER_CNTR0, timer0_max_count >> 8); mtx_unlock_spin(&clock_lock); timer_func = new_function; timer0_state = ACQUIRED; break; case RELEASE_PENDING: if ((timer0_prescaler_count += timer0_max_count) >= hardclock_max_count) { mtx_lock_spin(&clock_lock); i8254_offset = i8254_get_timecount(NULL); i8254_lastcount = 0; timer0_max_count = hardclock_max_count; outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT); outb(TIMER_CNTR0, timer0_max_count & 0xff); outb(TIMER_CNTR0, timer0_max_count >> 8); mtx_unlock_spin(&clock_lock); timer0_prescaler_count = 0; timer_func = hardclock; timer0_state = RELEASED; hardclock(frame); #ifdef SMP forward_hardclock(); #endif } break; } #endif } #ifndef BURN_BRIDGES /* * The acquire and release functions must be called at ipl >= splclock(). */ int acquire_timer0(int rate, void (*function)(struct clockframe *frame)) { static int old_rate; if (rate <= 0 || rate > TIMER0_MAX_FREQ) return (-1); switch (timer0_state) { case RELEASED: timer0_state = ACQUIRE_PENDING; break; case RELEASE_PENDING: if (rate != old_rate) return (-1); /* * The timer has been released recently, but is being * re-acquired before the release completed. In this * case, we simply reclaim it as if it had not been * released at all. */ timer0_state = ACQUIRED; break; default: return (-1); /* busy */ } new_function = function; old_rate = new_rate = rate; return (0); } #endif int acquire_timer1(int mode) { if (timer1_state != RELEASED) return (-1); timer1_state = ACQUIRED; /* * This access to the timer registers is as atomic as possible * because it is a single instruction. We could do better if we * knew the rate. Use of splclock() limits glitches to 10-100us, * and this is probably good enough for timer2, so we aren't as * careful with it as with timer0. */ outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f)); return (0); } int acquire_timer2(int mode) { if (timer2_state != RELEASED) return (-1); timer2_state = ACQUIRED; /* * This access to the timer registers is as atomic as possible * because it is a single instruction. We could do better if we * knew the rate. Use of splclock() limits glitches to 10-100us, * and this is probably good enough for timer2, so we aren't as * careful with it as with timer0. */ outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f)); return (0); } #ifndef BURN_BRIDGES int release_timer0() { switch (timer0_state) { case ACQUIRED: timer0_state = RELEASE_PENDING; break; case ACQUIRE_PENDING: /* Nothing happened yet, release quickly. */ timer0_state = RELEASED; break; default: return (-1); } return (0); } #endif int release_timer1() { if (timer1_state != ACQUIRED) return (-1); timer1_state = RELEASED; outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT); return (0); } int release_timer2() { if (timer2_state != ACQUIRED) return (-1); timer2_state = RELEASED; outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT); return (0); } static int getit(void) { int high, low; mtx_lock_spin(&clock_lock); /* Select timer0 and latch counter value. */ outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH); low = inb(TIMER_CNTR0); high = inb(TIMER_CNTR0); mtx_unlock_spin(&clock_lock); return ((high << 8) | low); } /* * Wait "n" microseconds. * Relies on timer 1 counting down from (timer_freq / hz) * Note: timer had better have been programmed before this is first used! */ void DELAY(int n) { int delta, prev_tick, tick, ticks_left; #ifdef DELAYDEBUG int getit_calls = 1; int n1; static int state = 0; if (state == 0) { state = 1; for (n1 = 1; n1 <= 10000000; n1 *= 10) DELAY(n1); state = 2; } if (state == 1) printf("DELAY(%d)...", n); #endif /* * Guard against the timer being uninitialized if we are called * early for console i/o. */ if (timer0_max_count == 0) set_timer_freq(timer_freq, hz); /* * Read the counter first, so that the rest of the setup overhead is * counted. Guess the initial overhead is 20 usec (on most systems it * takes about 1.5 usec for each of the i/o's in getit(). The loop * takes about 6 usec on a 486/33 and 13 usec on a 386/20. The * multiplications and divisions to scale the count take a while). * * However, if ddb is active then use a fake counter since reading * the i8254 counter involves acquiring a lock. ddb must not go * locking for many reasons, but it calls here for at least atkbd * input. */ #ifdef DDB if (db_active) prev_tick = 0; else #endif prev_tick = getit(); n -= 0; /* XXX actually guess no initial overhead */ /* * Calculate (n * (timer_freq / 1e6)) without using floating point * and without any avoidable overflows. */ if (n <= 0) ticks_left = 0; else if (n < 256) /* * Use fixed point to avoid a slow division by 1000000. * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest. * 2^15 is the first power of 2 that gives exact results * for n between 0 and 256. */ ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15; else /* * Don't bother using fixed point, although gcc-2.7.2 * generates particularly poor code for the long long * division, since even the slow way will complete long * before the delay is up (unless we're interrupted). */ ticks_left = ((u_int)n * (long long)timer_freq + 999999) / 1000000; while (ticks_left > 0) { #ifdef DDB if (db_active) { outb(0x5f, 0); tick = prev_tick + 1; } else #endif tick = getit(); #ifdef DELAYDEBUG ++getit_calls; #endif delta = prev_tick - tick; prev_tick = tick; if (delta < 0) { delta += timer0_max_count; /* * Guard against timer0_max_count being wrong. * This shouldn't happen in normal operation, * but it may happen if set_timer_freq() is * traced. */ if (delta < 0) delta = 0; } ticks_left -= delta; } #ifdef DELAYDEBUG if (state == 1) printf(" %d calls to getit() at %d usec each\n", getit_calls, (n + 5) / getit_calls); #endif } static void sysbeepstop(void *chan) { outb(IO_PPI, inb(IO_PPI)|0x08); /* disable counter1 output to speaker */ release_timer1(); beeping = 0; } int sysbeep(int pitch, int period) { int x = splclock(); if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT)) if (!beeping) { /* Something else owns it. */ splx(x); return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */ } disable_intr(); outb(0x3fdb, pitch); outb(0x3fdb, (pitch>>8)); enable_intr(); if (!beeping) { /* enable counter1 output to speaker */ outb(IO_PPI, (inb(IO_PPI) & 0xf7)); beeping = period; timeout(sysbeepstop, (void *)NULL, period); } splx(x); return (0); } unsigned int delaycount; #define FIRST_GUESS 0x2000 static void findcpuspeed(void) { int i; int remainder; /* Put counter in count down mode */ outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN); outb(TIMER_CNTR0, 0xff); outb(TIMER_CNTR0, 0xff); for (i = FIRST_GUESS; i; i--) ; remainder = getit(); delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder); } static u_int calibrate_clocks(void) { int timeout; u_int count, prev_count, tot_count; u_short sec, start_sec; if (bootverbose) printf("Calibrating clock(s) ... "); /* Check ARTIC. */ if (!(PC98_SYSTEM_PARAMETER(0x458) & 0x80) && !(PC98_SYSTEM_PARAMETER(0x45b) & 0x04)) goto fail; timeout = 100000000; /* Read the ARTIC. */ sec = inw(0x5e); /* Wait for the ARTIC to changes. */ start_sec = sec; for (;;) { sec = inw(0x5e); if (sec != start_sec) break; if (--timeout == 0) goto fail; } prev_count = getit(); if (prev_count == 0 || prev_count > timer0_max_count) goto fail; tot_count = 0; start_sec = sec; for (;;) { sec = inw(0x5e); count = getit(); if (count == 0 || count > timer0_max_count) goto fail; if (count > prev_count) tot_count += prev_count - (count - timer0_max_count); else tot_count += prev_count - count; prev_count = count; if ((sec == start_sec + 1200) || (sec < start_sec && (u_int)sec + 0x10000 == (u_int)start_sec + 1200)) break; if (--timeout == 0) goto fail; } if (bootverbose) { printf("i8254 clock: %u Hz\n", tot_count); } return (tot_count); fail: if (bootverbose) printf("failed, using default i8254 clock of %u Hz\n", timer_freq); return (timer_freq); } static void set_timer_freq(u_int freq, int intr_freq) { int new_timer0_max_count; mtx_lock_spin(&clock_lock); timer_freq = freq; new_timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq); if (new_timer0_max_count != timer0_max_count) { timer0_max_count = new_timer0_max_count; outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT); outb(TIMER_CNTR0, timer0_max_count & 0xff); outb(TIMER_CNTR0, timer0_max_count >> 8); } mtx_unlock_spin(&clock_lock); } static void i8254_restore(void) { mtx_lock_spin(&clock_lock); outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT); outb(TIMER_CNTR0, timer0_max_count & 0xff); outb(TIMER_CNTR0, timer0_max_count >> 8); mtx_unlock_spin(&clock_lock); } /* * Restore all the timers non-atomically (XXX: should be atomically). * * This function is called from pmtimer_resume() to restore all the timers. * This should not be necessary, but there are broken laptops that do not * restore all the timers on resume. */ void timer_restore(void) { i8254_restore(); /* restore timer_freq and hz */ } /* * Initialize 8254 timer 0 early so that it can be used in DELAY(). * XXX initialization of other timers is unintentionally left blank. */ void startrtclock() { u_int delta, freq; findcpuspeed(); if (pc98_machine_type & M_8M) timer_freq = 1996800L; /* 1.9968 MHz */ else timer_freq = 2457600L; /* 2.4576 MHz */ set_timer_freq(timer_freq, hz); freq = calibrate_clocks(); #ifdef CLK_CALIBRATION_LOOP if (bootverbose) { printf( "Press a key on the console to abort clock calibration\n"); while (cncheckc() == -1) calibrate_clocks(); } #endif /* * Use the calibrated i8254 frequency if it seems reasonable. * Otherwise use the default, and don't use the calibrated i586 * frequency. */ delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq; if (delta < timer_freq / 100) { #ifndef CLK_USE_I8254_CALIBRATION if (bootverbose) printf( "CLK_USE_I8254_CALIBRATION not specified - using default frequency\n"); freq = timer_freq; #endif timer_freq = freq; } else { if (bootverbose) printf( "%d Hz differs from default of %d Hz by more than 1%%\n", freq, timer_freq); } set_timer_freq(timer_freq, hz); i8254_timecounter.tc_frequency = timer_freq; tc_init(&i8254_timecounter); init_TSC(); } static void rtc_serialcombit(int i) { outb(IO_RTC, ((i&0x01)<<5)|0x07); DELAY(1); outb(IO_RTC, ((i&0x01)<<5)|0x17); DELAY(1); outb(IO_RTC, ((i&0x01)<<5)|0x07); DELAY(1); } static void rtc_serialcom(int i) { rtc_serialcombit(i&0x01); rtc_serialcombit((i&0x02)>>1); rtc_serialcombit((i&0x04)>>2); rtc_serialcombit((i&0x08)>>3); outb(IO_RTC, 0x07); DELAY(1); outb(IO_RTC, 0x0f); DELAY(1); outb(IO_RTC, 0x07); DELAY(1); } static void rtc_outb(int val) { int s; int sa = 0; for (s=0;s<8;s++) { sa = ((val >> s) & 0x01) ? 0x27 : 0x07; outb(IO_RTC, sa); /* set DI & CLK 0 */ DELAY(1); outb(IO_RTC, sa | 0x10); /* CLK 1 */ DELAY(1); } outb(IO_RTC, sa & 0xef); /* CLK 0 */ } static int rtc_inb(void) { int s; int sa = 0; for (s=0;s<8;s++) { sa |= ((inb(0x33) & 0x01) << s); outb(IO_RTC, 0x17); /* CLK 1 */ DELAY(1); outb(IO_RTC, 0x07); /* CLK 0 */ DELAY(2); } return sa; } /* * Initialize the time of day register, based on the time base which is, e.g. * from a filesystem. */ void inittodr(time_t base) { unsigned long sec, days; int year, month; int y, m, s; struct timespec ts; int second, min, hour; if (base) { s = splclock(); ts.tv_sec = base; ts.tv_nsec = 0; tc_setclock(&ts); splx(s); } rtc_serialcom(0x03); /* Time Read */ rtc_serialcom(0x01); /* Register shift command. */ DELAY(20); second = bcd2bin(rtc_inb() & 0xff); /* sec */ min = bcd2bin(rtc_inb() & 0xff); /* min */ hour = bcd2bin(rtc_inb() & 0xff); /* hour */ days = bcd2bin(rtc_inb() & 0xff) - 1; /* date */ month = (rtc_inb() >> 4) & 0x0f; /* month */ for (m = 1; m < month; m++) days += daysinmonth[m-1]; year = bcd2bin(rtc_inb() & 0xff) + 1900; /* year */ /* 2000 year problem */ if (year < 1995) year += 100; if (year < 1970) goto wrong_time; for (y = 1970; y < year; y++) days += DAYSPERYEAR + LEAPYEAR(y); if ((month > 2) && LEAPYEAR(year)) days ++; sec = ((( days * 24 + hour) * 60 + min) * 60 + second); /* sec now contains the number of seconds, since Jan 1 1970, in the local time zone */ s = splhigh(); sec += tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0); y = time_second - sec; if (y <= -2 || y >= 2) { /* badly off, adjust it */ ts.tv_sec = sec; ts.tv_nsec = 0; tc_setclock(&ts); } splx(s); return; wrong_time: printf("Invalid time in real time clock.\n"); printf("Check and reset the date immediately!\n"); } /* * Write system time back to RTC */ void resettodr() { unsigned long tm; int y, m, s; int wd; if (disable_rtc_set) return; s = splclock(); tm = time_second; splx(s); rtc_serialcom(0x01); /* Register shift command. */ /* Calculate local time to put in RTC */ tm -= tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0); rtc_outb(bin2bcd(tm%60)); tm /= 60; /* Write back Seconds */ rtc_outb(bin2bcd(tm%60)); tm /= 60; /* Write back Minutes */ rtc_outb(bin2bcd(tm%24)); tm /= 24; /* Write back Hours */ /* We have now the days since 01-01-1970 in tm */ wd = (tm + 4) % 7 + 1; /* Write back Weekday */ for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y); tm >= m; y++, m = DAYSPERYEAR + LEAPYEAR(y)) tm -= m; /* Now we have the years in y and the day-of-the-year in tm */ for (m = 0; ; m++) { int ml; ml = daysinmonth[m]; if (m == 1 && LEAPYEAR(y)) ml++; if (tm < ml) break; tm -= ml; } m++; rtc_outb(bin2bcd(tm+1)); /* Write back Day */ rtc_outb((m << 4) | wd); /* Write back Month & Weekday */ rtc_outb(bin2bcd(y%100)); /* Write back Year */ rtc_serialcom(0x02); /* Time set & Counter hold command. */ rtc_serialcom(0x00); /* Register hold command. */ } /* * Start both clocks running. */ void cpu_initclocks() { /* Finish initializing 8254 timer 0. */ intr_add_handler("clk", 0, (driver_intr_t *)clkintr, NULL, INTR_TYPE_CLK | INTR_FAST, NULL); init_TSC_tc(); } void cpu_startprofclock(void) { } void cpu_stopprofclock(void) { } static int sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS) { int error; u_int freq; /* * Use `i8254' instead of `timer' in external names because `timer' * is is too generic. Should use it everywhere. */ freq = timer_freq; error = sysctl_handle_int(oidp, &freq, sizeof(freq), req); if (error == 0 && req->newptr != NULL) { #ifndef BURN_BRIDGES if (timer0_state != RELEASED) return (EBUSY); /* too much trouble to handle */ #endif set_timer_freq(freq, hz); i8254_timecounter.tc_frequency = freq; } return (error); } SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW, 0, sizeof(u_int), sysctl_machdep_i8254_freq, "IU", ""); static unsigned i8254_get_timecount(struct timecounter *tc) { u_int count; u_int high, low; u_int eflags; eflags = read_eflags(); mtx_lock_spin(&clock_lock); /* Select timer0 and latch counter value. */ outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH); low = inb(TIMER_CNTR0); high = inb(TIMER_CNTR0); count = timer0_max_count - ((high << 8) | low); if (count < i8254_lastcount || (!i8254_ticked && (clkintr_pending || ((count < 20 || (!(eflags & PSL_I) && count < timer0_max_count / 2u)) && i8254_intsrc != NULL && i8254_intsrc->is_pic->pic_source_pending(i8254_intsrc))))) { i8254_ticked = 1; i8254_offset += timer0_max_count; } i8254_lastcount = count; count += i8254_offset; mtx_unlock_spin(&clock_lock); return (count); } #ifdef DEV_ISA /* * Attach to the ISA PnP descriptors for the timer and realtime clock. */ static struct isa_pnp_id attimer_ids[] = { { 0x0001d041 /* PNP0100 */, "AT timer" }, { 0x000bd041 /* PNP0B00 */, "AT realtime clock" }, { 0 } }; static int attimer_probe(device_t dev) { int result; if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, attimer_ids)) <= 0) device_quiet(dev); return(result); } static int attimer_attach(device_t dev) { return(0); } static device_method_t attimer_methods[] = { /* Device interface */ DEVMETHOD(device_probe, attimer_probe), DEVMETHOD(device_attach, attimer_attach), DEVMETHOD(device_detach, bus_generic_detach), DEVMETHOD(device_shutdown, bus_generic_shutdown), DEVMETHOD(device_suspend, bus_generic_suspend), /* XXX stop statclock? */ DEVMETHOD(device_resume, bus_generic_resume), /* XXX restart statclock? */ { 0, 0 } }; static driver_t attimer_driver = { "attimer", attimer_methods, 1, /* no softc */ }; static devclass_t attimer_devclass; DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0); #endif /* DEV_ISA */