/* * Copyright (C) 2000 Jason Evans . * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice(s), this list of conditions and the following disclaimer as * the first lines of this file unmodified other than the possible * addition of one or more copyright notices. * 2. Redistributions in binary form must reproduce the above copyright * notice(s), this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #include "namespace.h" #include #include #include #include #include #include #include #include <_semaphore.h> #include "un-namespace.h" #include "libc_private.h" #include "thr_private.h" extern int pthread_cond_wait(pthread_cond_t *, pthread_mutex_t *); extern int pthread_cond_timedwait(pthread_cond_t *, pthread_mutex_t *, struct timespec *); __weak_reference(_sem_init, sem_init); __weak_reference(_sem_wait, sem_wait); __weak_reference(_sem_timedwait, sem_timedwait); __weak_reference(_sem_post, sem_post); static inline int sem_check_validity(sem_t *sem) { if ((sem != NULL) && ((*sem)->magic == SEM_MAGIC)) return (0); else { errno = EINVAL; return (-1); } } static void decrease_nwaiters(void *arg) { sem_t *sem = (sem_t *)arg; (*sem)->nwaiters--; /* * this function is called from cancellation point, * the mutex should already be hold. */ _pthread_mutex_unlock(&(*sem)->lock); } static sem_t sem_alloc(unsigned int value, semid_t semid, int system_sem) { sem_t sem; if (value > SEM_VALUE_MAX) { errno = EINVAL; return (NULL); } sem = (sem_t)malloc(sizeof(struct sem)); if (sem == NULL) { errno = ENOSPC; return (NULL); } /* * Initialize the semaphore. */ if (_pthread_mutex_init(&sem->lock, NULL) != 0) { free(sem); errno = ENOSPC; return (NULL); } if (_pthread_cond_init(&sem->gtzero, NULL) != 0) { _pthread_mutex_destroy(&sem->lock); free(sem); errno = ENOSPC; return (NULL); } sem->count = (u_int32_t)value; sem->nwaiters = 0; sem->magic = SEM_MAGIC; sem->semid = semid; sem->syssem = system_sem; return (sem); } int _sem_init(sem_t *sem, int pshared, unsigned int value) { semid_t semid; semid = (semid_t)SEM_USER; if ((pshared != 0) && (ksem_init(&semid, value) != 0)) return (-1); (*sem) = sem_alloc(value, semid, pshared); if ((*sem) == NULL) { if (pshared != 0) ksem_destroy(semid); return (-1); } return (0); } int _sem_wait(sem_t *sem) { struct pthread *curthread; int retval; if (sem_check_validity(sem) != 0) return (-1); curthread = _get_curthread(); if ((*sem)->syssem != 0) { _thr_cancel_enter(curthread); retval = ksem_wait((*sem)->semid); _thr_cancel_leave(curthread, retval != 0); } else { pthread_testcancel(); _pthread_mutex_lock(&(*sem)->lock); while ((*sem)->count <= 0) { (*sem)->nwaiters++; THR_CLEANUP_PUSH(curthread, decrease_nwaiters, sem); pthread_cond_wait(&(*sem)->gtzero, &(*sem)->lock); THR_CLEANUP_POP(curthread, 0); (*sem)->nwaiters--; } (*sem)->count--; _pthread_mutex_unlock(&(*sem)->lock); retval = 0; } return (retval); } int _sem_timedwait(sem_t * __restrict sem, struct timespec * __restrict abs_timeout) { struct pthread *curthread; int retval; int timeout_invalid; if (sem_check_validity(sem) != 0) return (-1); if ((*sem)->syssem != 0) { curthread = _get_curthread(); _thr_cancel_enter(curthread); retval = ksem_timedwait((*sem)->semid, abs_timeout); _thr_cancel_leave(curthread, retval != 0); } else { /* * The timeout argument is only supposed to * be checked if the thread would have blocked. * This is checked outside of the lock so a * segfault on an invalid address doesn't end * up leaving the mutex locked. */ pthread_testcancel(); timeout_invalid = (abs_timeout->tv_nsec >= 1000000000) || (abs_timeout->tv_nsec < 0); _pthread_mutex_lock(&(*sem)->lock); if ((*sem)->count <= 0) { if (timeout_invalid) { _pthread_mutex_unlock(&(*sem)->lock); errno = EINVAL; return (-1); } (*sem)->nwaiters++; pthread_cleanup_push(decrease_nwaiters, sem); pthread_cond_timedwait(&(*sem)->gtzero, &(*sem)->lock, abs_timeout); pthread_cleanup_pop(0); (*sem)->nwaiters--; } if ((*sem)->count == 0) { errno = ETIMEDOUT; retval = -1; } else { (*sem)->count--; retval = 0; } _pthread_mutex_unlock(&(*sem)->lock); } return (retval); } int _sem_post(sem_t *sem) { struct pthread *curthread; int retval; if (sem_check_validity(sem) != 0) return (-1); if ((*sem)->syssem != 0) retval = ksem_post((*sem)->semid); else { /* * sem_post() is required to be safe to call from within * signal handlers. Thus, we must enter a critical region. */ curthread = _get_curthread(); _thr_critical_enter(curthread); _pthread_mutex_lock(&(*sem)->lock); (*sem)->count++; if ((*sem)->nwaiters > 0) _pthread_cond_signal(&(*sem)->gtzero); _pthread_mutex_unlock(&(*sem)->lock); _thr_critical_leave(curthread); retval = 0; } return (retval); }