/*- * Copyright (c) 1998 Doug Rabson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define KV(pa) ALPHA_PHYS_TO_K0SEG(pa) static devclass_t lca_devclass; static device_t lca0; /* XXX only one for now */ struct lca_softc { int junk; }; #define LCA_SOFTC(dev) (struct lca_softc*) device_get_softc(dev) static alpha_chipset_inb_t lca_inb; static alpha_chipset_inw_t lca_inw; static alpha_chipset_inl_t lca_inl; static alpha_chipset_outb_t lca_outb; static alpha_chipset_outw_t lca_outw; static alpha_chipset_outl_t lca_outl; static alpha_chipset_readb_t lca_readb; static alpha_chipset_readw_t lca_readw; static alpha_chipset_readl_t lca_readl; static alpha_chipset_writeb_t lca_writeb; static alpha_chipset_writew_t lca_writew; static alpha_chipset_writel_t lca_writel; static alpha_chipset_maxdevs_t lca_maxdevs; static alpha_chipset_cfgreadb_t lca_cfgreadb; static alpha_chipset_cfgreadw_t lca_cfgreadw; static alpha_chipset_cfgreadl_t lca_cfgreadl; static alpha_chipset_cfgwriteb_t lca_cfgwriteb; static alpha_chipset_cfgwritew_t lca_cfgwritew; static alpha_chipset_cfgwritel_t lca_cfgwritel; static alpha_chipset_addrcvt_t lca_cvt_dense; static alpha_chipset_read_hae_t lca_read_hae; static alpha_chipset_write_hae_t lca_write_hae; static alpha_chipset_t lca_chipset = { lca_inb, lca_inw, lca_inl, lca_outb, lca_outw, lca_outl, lca_readb, lca_readw, lca_readl, lca_writeb, lca_writew, lca_writel, lca_maxdevs, lca_cfgreadb, lca_cfgreadw, lca_cfgreadl, lca_cfgwriteb, lca_cfgwritew, lca_cfgwritel, lca_cvt_dense, NULL, lca_read_hae, lca_write_hae, }; static u_int8_t lca_inb(u_int32_t port) { alpha_mb(); return SPARSE_READ_BYTE(KV(LCA_PCI_SIO), port); } static u_int16_t lca_inw(u_int32_t port) { alpha_mb(); return SPARSE_READ_WORD(KV(LCA_PCI_SIO), port); } static u_int32_t lca_inl(u_int32_t port) { alpha_mb(); return SPARSE_READ_LONG(KV(LCA_PCI_SIO), port); } static void lca_outb(u_int32_t port, u_int8_t data) { SPARSE_WRITE_BYTE(KV(LCA_PCI_SIO), port, data); alpha_wmb(); } static void lca_outw(u_int32_t port, u_int16_t data) { SPARSE_WRITE_WORD(KV(LCA_PCI_SIO), port, data); alpha_wmb(); } static void lca_outl(u_int32_t port, u_int32_t data) { SPARSE_WRITE_LONG(KV(LCA_PCI_SIO), port, data); alpha_wmb(); } /* * The LCA HAE is write-only. According to NetBSD, this is where it starts. */ static u_int32_t lca_hae_mem = 0x80000000; /* * The first 16Mb ignores the HAE. The next 112Mb uses the HAE to set * the high bits of the PCI address. */ #define REG1 (1UL << 24) static __inline void lca_set_hae_mem(u_int32_t *pa) { int s; u_int32_t msb; if(*pa >= REG1){ msb = *pa & 0xf8000000; *pa -= msb; s = splhigh(); if (msb != lca_hae_mem) { lca_hae_mem = msb; REGVAL(LCA_IOC_HAE) = lca_hae_mem; alpha_mb(); alpha_mb(); } splx(s); } } static u_int8_t lca_readb(u_int32_t pa) { alpha_mb(); lca_set_hae_mem(&pa); return SPARSE_READ_BYTE(KV(LCA_PCI_SPARSE), pa); } static u_int16_t lca_readw(u_int32_t pa) { alpha_mb(); lca_set_hae_mem(&pa); return SPARSE_READ_WORD(KV(LCA_PCI_SPARSE), pa); } static u_int32_t lca_readl(u_int32_t pa) { alpha_mb(); lca_set_hae_mem(&pa); return SPARSE_READ_LONG(KV(LCA_PCI_SPARSE), pa); } static void lca_writeb(u_int32_t pa, u_int8_t data) { lca_set_hae_mem(&pa); SPARSE_WRITE_BYTE(KV(LCA_PCI_SPARSE), pa, data); alpha_wmb(); } static void lca_writew(u_int32_t pa, u_int16_t data) { lca_set_hae_mem(&pa); SPARSE_WRITE_WORD(KV(LCA_PCI_SPARSE), pa, data); alpha_wmb(); } static void lca_writel(u_int32_t pa, u_int32_t data) { lca_set_hae_mem(&pa); SPARSE_WRITE_LONG(KV(LCA_PCI_SPARSE), pa, data); alpha_wmb(); } static int lca_maxdevs(u_int b) { return 12; /* XXX */ } #define LCA_CFGOFF(b, s, f, r) \ ((b) ? (((b) << 16) | ((s) << 11) | ((f) << 8) | (r)) \ : ((1 << ((s) + 11)) | ((f) << 8) | (r))) #define LCA_TYPE1_SETUP(b,s) if ((b)) { \ do { \ (s) = splhigh(); \ alpha_mb(); \ REGVAL(LCA_IOC_CONF) = 1; \ alpha_mb(); \ } while(0); \ } #define LCA_TYPE1_TEARDOWN(b,s) if ((b)) { \ do { \ alpha_mb(); \ REGVAL(LCA_IOC_CONF) = 0; \ alpha_mb(); \ splx((s)); \ } while(0); \ } #define CFGREAD(b, s, f, r, width, type) \ type val = ~0; \ int ipl = 0; \ vm_offset_t off = LCA_CFGOFF(b, s, f, r); \ vm_offset_t kv = SPARSE_##width##_ADDRESS(KV(LCA_PCI_CONF), off); \ alpha_mb(); \ LCA_TYPE1_SETUP(b,ipl); \ if (!badaddr((caddr_t)kv, sizeof(type))) { \ val = SPARSE_##width##_EXTRACT(off, SPARSE_READ(kv)); \ } \ LCA_TYPE1_TEARDOWN(b,ipl); \ return val #define CFGWRITE(b, s, f, r, data, width, type) \ int ipl = 0; \ vm_offset_t off = LCA_CFGOFF(b, s, f, r); \ vm_offset_t kv = SPARSE_##width##_ADDRESS(KV(LCA_PCI_CONF), off); \ alpha_mb(); \ LCA_TYPE1_SETUP(b,ipl); \ if (!badaddr((caddr_t)kv, sizeof(type))) { \ SPARSE_WRITE(kv, SPARSE_##width##_INSERT(off, data)); \ alpha_wmb(); \ } \ LCA_TYPE1_TEARDOWN(b,ipl); \ return static u_int8_t lca_cfgreadb(u_int h, u_int b, u_int s, u_int f, u_int r) { CFGREAD(b, s, f, r, BYTE, u_int8_t); } static u_int16_t lca_cfgreadw(u_int h, u_int b, u_int s, u_int f, u_int r) { CFGREAD(b, s, f, r, WORD, u_int16_t); } static u_int32_t lca_cfgreadl(u_int h, u_int b, u_int s, u_int f, u_int r) { CFGREAD(b, s, f, r, LONG, u_int32_t); } static void lca_cfgwriteb(u_int h, u_int b, u_int s, u_int f, u_int r, u_int8_t data) { CFGWRITE(b, s, f, r, data, BYTE, u_int8_t); } static void lca_cfgwritew(u_int h, u_int b, u_int s, u_int f, u_int r, u_int16_t data) { CFGWRITE(b, s, f, r, data, WORD, u_int16_t); } static void lca_cfgwritel(u_int h, u_int b, u_int s, u_int f, u_int r, u_int32_t data) { CFGWRITE(b, s, f, r, data, LONG, u_int16_t); } static vm_offset_t lca_cvt_dense(vm_offset_t addr) { addr &= 0xffffffffUL; return (addr | LCA_PCI_DENSE); } static u_int64_t lca_read_hae(void) { return lca_hae_mem & 0xf8000000; } static void lca_write_hae(u_int64_t hae) { u_int32_t pa = hae; lca_set_hae_mem(&pa); } static int lca_probe(device_t dev); static int lca_attach(device_t dev); static struct resource *lca_alloc_resource(device_t bus, device_t child, int type, int *rid, u_long start, u_long end, u_long count, u_int flags); static int lca_release_resource(device_t bus, device_t child, int type, int rid, struct resource *r); static device_method_t lca_methods[] = { /* Device interface */ DEVMETHOD(device_probe, lca_probe), DEVMETHOD(device_attach, lca_attach), /* Bus interface */ DEVMETHOD(bus_alloc_resource, lca_alloc_resource), DEVMETHOD(bus_release_resource, lca_release_resource), DEVMETHOD(bus_activate_resource, pci_activate_resource), DEVMETHOD(bus_deactivate_resource, pci_deactivate_resource), DEVMETHOD(bus_setup_intr, isa_setup_intr), DEVMETHOD(bus_teardown_intr, isa_teardown_intr), { 0, 0 } }; static driver_t lca_driver = { "lca", lca_methods, sizeof(struct lca_softc), }; #define LCA_SGMAP_BASE (8*1024*1024) #define LCA_SGMAP_SIZE (8*1024*1024) static void lca_sgmap_invalidate(void) { alpha_mb(); REGVAL(LCA_IOC_TBIA) = 0; alpha_mb(); } static void lca_sgmap_map(void *arg, vm_offset_t ba, vm_offset_t pa) { u_int64_t *sgtable = arg; int index = alpha_btop(ba - LCA_SGMAP_BASE); if (pa) { if (pa > (1L<<32)) panic("lca_sgmap_map: can't map address 0x%lx", pa); sgtable[index] = ((pa >> 13) << 1) | 1; } else { sgtable[index] = 0; } alpha_mb(); lca_sgmap_invalidate(); } static void lca_init_sgmap(void) { void *sgtable; /* * First setup Window 0 to map 8Mb to 16Mb with an * sgmap. Allocate the map aligned to a 32 boundary. */ REGVAL64(LCA_IOC_W_BASE0) = LCA_SGMAP_BASE | IOC_W_BASE_SG | IOC_W_BASE_WEN; alpha_mb(); REGVAL64(LCA_IOC_W_MASK0) = IOC_W_MASK_8M; alpha_mb(); sgtable = contigmalloc(8192, M_DEVBUF, M_NOWAIT, 0, (1L<<34), 32*1024, (1L<<34)); if (!sgtable) panic("lca_init_sgmap: can't allocate page table"); chipset.sgmap = sgmap_map_create(LCA_SGMAP_BASE, LCA_SGMAP_BASE + LCA_SGMAP_SIZE, lca_sgmap_map, sgtable); REGVAL64(LCA_IOC_W_T_BASE0) = pmap_kextract((vm_offset_t) sgtable); alpha_mb(); REGVAL64(LCA_IOC_TB_ENA) = IOC_TB_ENA_TEN; alpha_mb(); lca_sgmap_invalidate(); } void lca_init() { static int initted = 0; if (initted) return; initted = 1; /* Type 0 PCI conf access. */ REGVAL64(LCA_IOC_CONF) = 0; if (platform.pci_intr_init) platform.pci_intr_init(); chipset = lca_chipset; } static int lca_probe(device_t dev) { if (lca0) return ENXIO; lca0 = dev; device_set_desc(dev, "21066 Core Logic chipset"); /* XXX */ pci_init_resources(); isa_init_intr(); lca_init_sgmap(); device_add_child(dev, "pcib", 0); return 0; } static int lca_attach(device_t dev) { lca_init(); set_iointr(alpha_dispatch_intr); snprintf(chipset_type, sizeof(chipset_type), "lca"); chipset_bwx = 0; chipset_ports = LCA_PCI_SIO; chipset_memory = LCA_PCI_SPARSE; chipset_dense = LCA_PCI_DENSE; chipset_hae_mask = IOC_HAE_ADDREXT; bus_generic_attach(dev); return 0; } static struct resource * lca_alloc_resource(device_t bus, device_t child, int type, int *rid, u_long start, u_long end, u_long count, u_int flags) { if (type == SYS_RES_IRQ) return isa_alloc_intr(bus, child, start); else return pci_alloc_resource(bus, child, type, rid, start, end, count, flags); } static int lca_release_resource(device_t bus, device_t child, int type, int rid, struct resource *r) { if (type == SYS_RES_IRQ) return isa_release_intr(bus, child, r); else return pci_release_resource(bus, child, type, rid, r); } DRIVER_MODULE(lca, root, lca_driver, lca_devclass, 0, 0);