/*- * Copyright (c) 2017 Ruslan Bukin * All rights reserved. * * This software was developed by BAE Systems, the University of Cambridge * Computer Laboratory, and Memorial University under DARPA/AFRL contract * FA8650-15-C-7558 ("CADETS"), as part of the DARPA Transparent Computing * (TC) research program. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Design overview. * * The driver provides character device for mmap(2) and ioctl(2) system calls * allowing user to manage isolated compartments ("enclaves") in user VA space. * * The driver duties is EPC pages management, enclave management, user data * validation. * * This driver requires Intel SGX support from hardware. * * /dev/sgx: * .mmap: * sgx_mmap_single() allocates VM object with following pager * operations: * a) sgx_pg_ctor(): * VM object constructor does nothing * b) sgx_pg_dtor(): * VM object destructor destroys the SGX enclave associated * with the object: it frees all the EPC pages allocated for * enclave and removes the enclave. * c) sgx_pg_fault(): * VM object fault handler does nothing * * .ioctl: * sgx_ioctl(): * a) SGX_IOC_ENCLAVE_CREATE * Adds Enclave SECS page: initial step of enclave creation. * b) SGX_IOC_ENCLAVE_ADD_PAGE * Adds TCS, REG pages to the enclave. * c) SGX_IOC_ENCLAVE_INIT * Finalizes enclave creation. * * Enclave lifecycle: * .-- ECREATE -- Add SECS page * Kernel | EADD -- Add TCS, REG pages * space | EEXTEND -- Measure the page (take unique hash) * ENCLS | EPA -- Allocate version array page * '-- EINIT -- Finalize enclave creation * User .-- EENTER -- Go to entry point of enclave * space | EEXIT -- Exit back to main application * ENCLU '-- ERESUME -- Resume enclave execution (e.g. after exception) * * Enclave lifecycle from driver point of view: * 1) User calls mmap() on /dev/sgx: we allocate a VM object * 2) User calls ioctl SGX_IOC_ENCLAVE_CREATE: we look for the VM object * associated with user process created on step 1, create SECS physical * page and store it in enclave's VM object queue by special index * SGX_SECS_VM_OBJECT_INDEX. * 3) User calls ioctl SGX_IOC_ENCLAVE_ADD_PAGE: we look for enclave created * on step 2, create TCS or REG physical page and map it to specified by * user address of enclave VM object. * 4) User finalizes enclave creation with ioctl SGX_IOC_ENCLAVE_INIT call. * 5) User can freely enter to and exit from enclave using ENCLU instructions * from userspace: the driver does nothing here. * 6) User proceed munmap(2) system call (or the process with enclave dies): * we destroy the enclave associated with the object. * * EPC page types and their indexes in VM object queue: * - PT_SECS index is special and equals SGX_SECS_VM_OBJECT_INDEX (-1); * - PT_TCS and PT_REG indexes are specified by user in addr field of ioctl * request data and determined as follows: * pidx = OFF_TO_IDX(addp->addr - vmh->base); * - PT_VA index is special, created for PT_REG, PT_TCS and PT_SECS pages * and determined by formula: * va_page_idx = - SGX_VA_PAGES_OFFS - (page_idx / SGX_VA_PAGE_SLOTS); * PT_VA page can hold versions of up to 512 pages, and slot for each * page in PT_VA page is determined as follows: * va_slot_idx = page_idx % SGX_VA_PAGE_SLOTS; * - PT_TRIM is unused. * * Locking: * SGX ENCLS set of instructions have limitations on concurrency: * some instructions can't be executed same time on different CPUs. * We use sc->mtx_encls lock around them to prevent concurrent execution. * sc->mtx lock is used to manage list of created enclaves and the state of * SGX driver. * * Eviction of EPC pages: * Eviction support is not implemented in this driver, however the driver * manages VA (version array) pages: it allocates a VA slot for each EPC * page. This will be required for eviction support in future. * VA pages and slots are currently unused. * * IntelĀ® 64 and IA-32 Architectures Software Developer's Manual * https://software.intel.com/en-us/articles/intel-sdm */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SGX_DEBUG #undef SGX_DEBUG #ifdef SGX_DEBUG #define dprintf(fmt, ...) printf(fmt, ##__VA_ARGS__) #else #define dprintf(fmt, ...) #endif static struct cdev_pager_ops sgx_pg_ops; struct sgx_softc sgx_sc; static int sgx_get_epc_page(struct sgx_softc *sc, struct epc_page **epc) { vmem_addr_t addr; int i; if (vmem_alloc(sc->vmem_epc, PAGE_SIZE, M_FIRSTFIT | M_NOWAIT, &addr) == 0) { i = (addr - sc->epc_base) / PAGE_SIZE; *epc = &sc->epc_pages[i]; return (0); } return (ENOMEM); } static void sgx_put_epc_page(struct sgx_softc *sc, struct epc_page *epc) { vmem_addr_t addr; if (epc == NULL) return; addr = (epc->index * PAGE_SIZE) + sc->epc_base; vmem_free(sc->vmem_epc, addr, PAGE_SIZE); } static int sgx_va_slot_init_by_index(struct sgx_softc *sc, vm_object_t object, uint64_t idx) { struct epc_page *epc; vm_page_t page; vm_page_t p; int ret; VM_OBJECT_ASSERT_WLOCKED(object); p = vm_page_lookup(object, idx); if (p == NULL) { ret = sgx_get_epc_page(sc, &epc); if (ret) { dprintf("%s: No free EPC pages available.\n", __func__); return (ret); } mtx_lock(&sc->mtx_encls); sgx_epa((void *)epc->base); mtx_unlock(&sc->mtx_encls); page = PHYS_TO_VM_PAGE(epc->phys); vm_page_insert(page, object, idx); page->valid = VM_PAGE_BITS_ALL; } return (0); } static int sgx_va_slot_init(struct sgx_softc *sc, struct sgx_enclave *enclave, uint64_t addr) { vm_pindex_t pidx; uint64_t va_page_idx; uint64_t idx; vm_object_t object; int va_slot; int ret; object = enclave->object; VM_OBJECT_ASSERT_WLOCKED(object); pidx = OFF_TO_IDX(addr); va_slot = pidx % SGX_VA_PAGE_SLOTS; va_page_idx = pidx / SGX_VA_PAGE_SLOTS; idx = - SGX_VA_PAGES_OFFS - va_page_idx; ret = sgx_va_slot_init_by_index(sc, object, idx); return (ret); } static int sgx_mem_find(struct sgx_softc *sc, uint64_t addr, vm_map_entry_t *entry0, vm_object_t *object0) { vm_map_t map; vm_map_entry_t entry; vm_object_t object; map = &curproc->p_vmspace->vm_map; vm_map_lock_read(map); if (!vm_map_lookup_entry(map, addr, &entry)) { vm_map_unlock_read(map); dprintf("%s: Can't find enclave.\n", __func__); return (EINVAL); } object = entry->object.vm_object; if (object == NULL || object->handle == NULL) { vm_map_unlock_read(map); return (EINVAL); } if (object->type != OBJT_MGTDEVICE || object->un_pager.devp.ops != &sgx_pg_ops) { vm_map_unlock_read(map); return (EINVAL); } vm_object_reference(object); *object0 = object; *entry0 = entry; vm_map_unlock_read(map); return (0); } static int sgx_enclave_find(struct sgx_softc *sc, uint64_t addr, struct sgx_enclave **encl) { struct sgx_vm_handle *vmh; struct sgx_enclave *enclave; vm_map_entry_t entry; vm_object_t object; int ret; ret = sgx_mem_find(sc, addr, &entry, &object); if (ret) return (ret); vmh = object->handle; if (vmh == NULL) { vm_object_deallocate(object); return (EINVAL); } enclave = vmh->enclave; if (enclave == NULL || enclave->object == NULL) { vm_object_deallocate(object); return (EINVAL); } *encl = enclave; return (0); } static int sgx_enclave_alloc(struct sgx_softc *sc, struct secs *secs, struct sgx_enclave **enclave0) { struct sgx_enclave *enclave; enclave = malloc(sizeof(struct sgx_enclave), M_SGX, M_WAITOK | M_ZERO); enclave->base = secs->base; enclave->size = secs->size; *enclave0 = enclave; return (0); } static void sgx_epc_page_remove(struct sgx_softc *sc, struct epc_page *epc) { mtx_lock(&sc->mtx_encls); sgx_eremove((void *)epc->base); mtx_unlock(&sc->mtx_encls); } static void sgx_page_remove(struct sgx_softc *sc, vm_page_t p) { struct epc_page *epc; vm_paddr_t pa; uint64_t offs; vm_page_lock(p); vm_page_remove(p); vm_page_unlock(p); dprintf("%s: p->pidx %ld\n", __func__, p->pindex); pa = VM_PAGE_TO_PHYS(p); epc = &sc->epc_pages[0]; offs = (pa - epc->phys) / PAGE_SIZE; epc = &sc->epc_pages[offs]; sgx_epc_page_remove(sc, epc); sgx_put_epc_page(sc, epc); } static void sgx_enclave_remove(struct sgx_softc *sc, struct sgx_enclave *enclave) { vm_object_t object; vm_page_t p, p_secs, p_next; mtx_lock(&sc->mtx); TAILQ_REMOVE(&sc->enclaves, enclave, next); mtx_unlock(&sc->mtx); object = enclave->object; VM_OBJECT_WLOCK(object); /* * First remove all the pages except SECS, * then remove SECS page. */ p_secs = NULL; TAILQ_FOREACH_SAFE(p, &object->memq, listq, p_next) { if (p->pindex == SGX_SECS_VM_OBJECT_INDEX) { p_secs = p; continue; } sgx_page_remove(sc, p); } /* Now remove SECS page */ if (p_secs != NULL) sgx_page_remove(sc, p_secs); KASSERT(TAILQ_EMPTY(&object->memq) == 1, ("not empty")); KASSERT(object->resident_page_count == 0, ("count")); VM_OBJECT_WUNLOCK(object); } static int sgx_measure_page(struct sgx_softc *sc, struct epc_page *secs, struct epc_page *epc, uint16_t mrmask) { int i, j; int ret; mtx_lock(&sc->mtx_encls); for (i = 0, j = 1; i < PAGE_SIZE; i += 0x100, j <<= 1) { if (!(j & mrmask)) continue; ret = sgx_eextend((void *)secs->base, (void *)(epc->base + i)); if (ret == SGX_EFAULT) { mtx_unlock(&sc->mtx_encls); return (ret); } } mtx_unlock(&sc->mtx_encls); return (0); } static int sgx_secs_validate(struct sgx_softc *sc, struct secs *secs) { struct secs_attr *attr; int i; if (secs->size == 0) return (EINVAL); /* BASEADDR must be naturally aligned on an SECS.SIZE boundary. */ if (secs->base & (secs->size - 1)) return (EINVAL); /* SECS.SIZE must be at least 2 pages. */ if (secs->size < 2 * PAGE_SIZE) return (EINVAL); if ((secs->size & (secs->size - 1)) != 0) return (EINVAL); attr = &secs->attributes; if (attr->reserved1 != 0 || attr->reserved2 != 0 || attr->reserved3 != 0) return (EINVAL); for (i = 0; i < SECS_ATTR_RSV4_SIZE; i++) if (attr->reserved4[i]) return (EINVAL); /* * IntelĀ® Software Guard Extensions Programming Reference * 6.7.2 Relevant Fields in Various Data Structures * 6.7.2.1 SECS.ATTRIBUTES.XFRM * XFRM[1:0] must be set to 0x3. */ if ((attr->xfrm & 0x3) != 0x3) return (EINVAL); if (!attr->mode64bit) return (EINVAL); if (secs->size > sc->enclave_size_max) return (EINVAL); for (i = 0; i < SECS_RSV1_SIZE; i++) if (secs->reserved1[i]) return (EINVAL); for (i = 0; i < SECS_RSV2_SIZE; i++) if (secs->reserved2[i]) return (EINVAL); for (i = 0; i < SECS_RSV3_SIZE; i++) if (secs->reserved3[i]) return (EINVAL); for (i = 0; i < SECS_RSV4_SIZE; i++) if (secs->reserved4[i]) return (EINVAL); return (0); } static int sgx_tcs_validate(struct tcs *tcs) { int i; if ((tcs->flags) || (tcs->ossa & (PAGE_SIZE - 1)) || (tcs->ofsbasgx & (PAGE_SIZE - 1)) || (tcs->ogsbasgx & (PAGE_SIZE - 1)) || ((tcs->fslimit & 0xfff) != 0xfff) || ((tcs->gslimit & 0xfff) != 0xfff)) return (EINVAL); for (i = 0; i < nitems(tcs->reserved3); i++) if (tcs->reserved3[i]) return (EINVAL); return (0); } static void sgx_tcs_dump(struct sgx_softc *sc, struct tcs *t) { dprintf("t->flags %lx\n", t->flags); dprintf("t->ossa %lx\n", t->ossa); dprintf("t->cssa %x\n", t->cssa); dprintf("t->nssa %x\n", t->nssa); dprintf("t->oentry %lx\n", t->oentry); dprintf("t->ofsbasgx %lx\n", t->ofsbasgx); dprintf("t->ogsbasgx %lx\n", t->ogsbasgx); dprintf("t->fslimit %x\n", t->fslimit); dprintf("t->gslimit %x\n", t->gslimit); } static int sgx_pg_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, vm_ooffset_t foff, struct ucred *cred, u_short *color) { struct sgx_vm_handle *vmh; vmh = handle; if (vmh == NULL) { dprintf("%s: vmh not found.\n", __func__); return (0); } dprintf("%s: vmh->base %lx foff 0x%lx size 0x%lx\n", __func__, vmh->base, foff, size); return (0); } static void sgx_pg_dtor(void *handle) { struct sgx_vm_handle *vmh; struct sgx_softc *sc; vmh = handle; if (vmh == NULL) { dprintf("%s: vmh not found.\n", __func__); return; } sc = vmh->sc; if (sc == NULL) { dprintf("%s: sc is NULL\n", __func__); return; } if (vmh->enclave == NULL) { dprintf("%s: Enclave not found.\n", __func__); return; } sgx_enclave_remove(sc, vmh->enclave); free(vmh->enclave, M_SGX); free(vmh, M_SGX); } static int sgx_pg_fault(vm_object_t object, vm_ooffset_t offset, int prot, vm_page_t *mres) { /* * The purpose of this trivial handler is to handle the race * when user tries to access mmaped region before or during * enclave creation ioctl calls. */ dprintf("%s: offset 0x%lx\n", __func__, offset); return (VM_PAGER_FAIL); } static struct cdev_pager_ops sgx_pg_ops = { .cdev_pg_ctor = sgx_pg_ctor, .cdev_pg_dtor = sgx_pg_dtor, .cdev_pg_fault = sgx_pg_fault, }; static void sgx_insert_epc_page_by_index(vm_page_t page, vm_object_t object, vm_pindex_t pidx) { VM_OBJECT_ASSERT_WLOCKED(object); vm_page_insert(page, object, pidx); page->valid = VM_PAGE_BITS_ALL; } static void sgx_insert_epc_page(struct sgx_enclave *enclave, struct epc_page *epc, uint64_t addr) { vm_pindex_t pidx; vm_page_t page; VM_OBJECT_ASSERT_WLOCKED(enclave->object); pidx = OFF_TO_IDX(addr); page = PHYS_TO_VM_PAGE(epc->phys); sgx_insert_epc_page_by_index(page, enclave->object, pidx); } static int sgx_ioctl_create(struct sgx_softc *sc, struct sgx_enclave_create *param) { struct sgx_vm_handle *vmh; vm_map_entry_t entry; vm_page_t p; struct page_info pginfo; struct secinfo secinfo; struct sgx_enclave *enclave; struct epc_page *epc; struct secs *secs; vm_object_t object; vm_page_t page; int ret; epc = NULL; secs = NULL; enclave = NULL; object = NULL; /* SGX Enclave Control Structure (SECS) */ secs = malloc(PAGE_SIZE, M_SGX, M_WAITOK | M_ZERO); ret = copyin((void *)param->src, secs, sizeof(struct secs)); if (ret) { dprintf("%s: Can't copy SECS.\n", __func__); goto error; } ret = sgx_secs_validate(sc, secs); if (ret) { dprintf("%s: SECS validation failed.\n", __func__); goto error; } ret = sgx_mem_find(sc, secs->base, &entry, &object); if (ret) { dprintf("%s: Can't find vm_map.\n", __func__); goto error; } vmh = object->handle; if (!vmh) { dprintf("%s: Can't find vmh.\n", __func__); ret = ENXIO; goto error; } dprintf("%s: entry start %lx offset %lx\n", __func__, entry->start, entry->offset); vmh->base = (entry->start - entry->offset); ret = sgx_enclave_alloc(sc, secs, &enclave); if (ret) { dprintf("%s: Can't alloc enclave.\n", __func__); goto error; } enclave->object = object; enclave->vmh = vmh; memset(&secinfo, 0, sizeof(struct secinfo)); memset(&pginfo, 0, sizeof(struct page_info)); pginfo.linaddr = 0; pginfo.srcpge = (uint64_t)secs; pginfo.secinfo = &secinfo; pginfo.secs = 0; ret = sgx_get_epc_page(sc, &epc); if (ret) { dprintf("%s: Failed to get free epc page.\n", __func__); goto error; } enclave->secs_epc_page = epc; VM_OBJECT_WLOCK(object); p = vm_page_lookup(object, SGX_SECS_VM_OBJECT_INDEX); if (p) { VM_OBJECT_WUNLOCK(object); /* SECS page already added. */ ret = ENXIO; goto error; } ret = sgx_va_slot_init_by_index(sc, object, - SGX_VA_PAGES_OFFS - SGX_SECS_VM_OBJECT_INDEX); if (ret) { VM_OBJECT_WUNLOCK(object); dprintf("%s: Can't init va slot.\n", __func__); goto error; } mtx_lock(&sc->mtx); if ((sc->state & SGX_STATE_RUNNING) == 0) { mtx_unlock(&sc->mtx); /* Remove VA page that was just created for SECS page. */ p = vm_page_lookup(enclave->object, - SGX_VA_PAGES_OFFS - SGX_SECS_VM_OBJECT_INDEX); sgx_page_remove(sc, p); VM_OBJECT_WUNLOCK(object); goto error; } mtx_lock(&sc->mtx_encls); ret = sgx_ecreate(&pginfo, (void *)epc->base); mtx_unlock(&sc->mtx_encls); if (ret == SGX_EFAULT) { dprintf("%s: gp fault\n", __func__); mtx_unlock(&sc->mtx); /* Remove VA page that was just created for SECS page. */ p = vm_page_lookup(enclave->object, - SGX_VA_PAGES_OFFS - SGX_SECS_VM_OBJECT_INDEX); sgx_page_remove(sc, p); VM_OBJECT_WUNLOCK(object); goto error; } TAILQ_INSERT_TAIL(&sc->enclaves, enclave, next); mtx_unlock(&sc->mtx); vmh->enclave = enclave; page = PHYS_TO_VM_PAGE(epc->phys); sgx_insert_epc_page_by_index(page, enclave->object, SGX_SECS_VM_OBJECT_INDEX); VM_OBJECT_WUNLOCK(object); /* Release the reference. */ vm_object_deallocate(object); free(secs, M_SGX); return (0); error: free(secs, M_SGX); sgx_put_epc_page(sc, epc); free(enclave, M_SGX); vm_object_deallocate(object); return (ret); } static int sgx_ioctl_add_page(struct sgx_softc *sc, struct sgx_enclave_add_page *addp) { struct epc_page *secs_epc_page; struct sgx_enclave *enclave; struct sgx_vm_handle *vmh; struct epc_page *epc; struct page_info pginfo; struct secinfo secinfo; vm_object_t object; void *tmp_vaddr; uint64_t page_type; struct tcs *t; uint64_t addr; uint64_t pidx; vm_page_t p; int ret; tmp_vaddr = NULL; epc = NULL; object = NULL; /* Find and get reference to VM object. */ ret = sgx_enclave_find(sc, addp->addr, &enclave); if (ret) { dprintf("%s: Failed to find enclave.\n", __func__); goto error; } object = enclave->object; KASSERT(object != NULL, ("vm object is NULL\n")); vmh = object->handle; ret = sgx_get_epc_page(sc, &epc); if (ret) { dprintf("%s: Failed to get free epc page.\n", __func__); goto error; } memset(&secinfo, 0, sizeof(struct secinfo)); ret = copyin((void *)addp->secinfo, &secinfo, sizeof(struct secinfo)); if (ret) { dprintf("%s: Failed to copy secinfo.\n", __func__); goto error; } tmp_vaddr = malloc(PAGE_SIZE, M_SGX, M_WAITOK | M_ZERO); ret = copyin((void *)addp->src, tmp_vaddr, PAGE_SIZE); if (ret) { dprintf("%s: Failed to copy page.\n", __func__); goto error; } page_type = (secinfo.flags & SECINFO_FLAGS_PT_M) >> SECINFO_FLAGS_PT_S; if (page_type != SGX_PT_TCS && page_type != SGX_PT_REG) { dprintf("%s: page can't be added.\n", __func__); goto error; } if (page_type == SGX_PT_TCS) { t = (struct tcs *)tmp_vaddr; ret = sgx_tcs_validate(t); if (ret) { dprintf("%s: TCS page validation failed.\n", __func__); goto error; } sgx_tcs_dump(sc, t); } addr = (addp->addr - vmh->base); pidx = OFF_TO_IDX(addr); VM_OBJECT_WLOCK(object); p = vm_page_lookup(object, pidx); if (p) { VM_OBJECT_WUNLOCK(object); /* Page already added. */ ret = ENXIO; goto error; } ret = sgx_va_slot_init(sc, enclave, addr); if (ret) { VM_OBJECT_WUNLOCK(object); dprintf("%s: Can't init va slot.\n", __func__); goto error; } secs_epc_page = enclave->secs_epc_page; memset(&pginfo, 0, sizeof(struct page_info)); pginfo.linaddr = (uint64_t)addp->addr; pginfo.srcpge = (uint64_t)tmp_vaddr; pginfo.secinfo = &secinfo; pginfo.secs = (uint64_t)secs_epc_page->base; mtx_lock(&sc->mtx_encls); ret = sgx_eadd(&pginfo, (void *)epc->base); if (ret == SGX_EFAULT) { dprintf("%s: gp fault on eadd\n", __func__); mtx_unlock(&sc->mtx_encls); VM_OBJECT_WUNLOCK(object); goto error; } mtx_unlock(&sc->mtx_encls); ret = sgx_measure_page(sc, enclave->secs_epc_page, epc, addp->mrmask); if (ret == SGX_EFAULT) { dprintf("%s: gp fault on eextend\n", __func__); sgx_epc_page_remove(sc, epc); VM_OBJECT_WUNLOCK(object); goto error; } sgx_insert_epc_page(enclave, epc, addr); VM_OBJECT_WUNLOCK(object); /* Release the reference. */ vm_object_deallocate(object); free(tmp_vaddr, M_SGX); return (0); error: free(tmp_vaddr, M_SGX); sgx_put_epc_page(sc, epc); vm_object_deallocate(object); return (ret); } static int sgx_ioctl_init(struct sgx_softc *sc, struct sgx_enclave_init *initp) { struct epc_page *secs_epc_page; struct sgx_enclave *enclave; struct thread *td; void *tmp_vaddr; void *einittoken; void *sigstruct; vm_object_t object; int retry; int ret; td = curthread; tmp_vaddr = NULL; object = NULL; dprintf("%s: addr %lx, sigstruct %lx, einittoken %lx\n", __func__, initp->addr, initp->sigstruct, initp->einittoken); /* Find and get reference to VM object. */ ret = sgx_enclave_find(sc, initp->addr, &enclave); if (ret) { dprintf("%s: Failed to find enclave.\n", __func__); goto error; } object = enclave->object; tmp_vaddr = malloc(PAGE_SIZE, M_SGX, M_WAITOK | M_ZERO); sigstruct = tmp_vaddr; einittoken = (void *)((uint64_t)sigstruct + PAGE_SIZE / 2); ret = copyin((void *)initp->sigstruct, sigstruct, SGX_SIGSTRUCT_SIZE); if (ret) { dprintf("%s: Failed to copy SIGSTRUCT page.\n", __func__); goto error; } ret = copyin((void *)initp->einittoken, einittoken, SGX_EINITTOKEN_SIZE); if (ret) { dprintf("%s: Failed to copy EINITTOKEN page.\n", __func__); goto error; } secs_epc_page = enclave->secs_epc_page; retry = 16; do { mtx_lock(&sc->mtx_encls); ret = sgx_einit(sigstruct, (void *)secs_epc_page->base, einittoken); mtx_unlock(&sc->mtx_encls); dprintf("%s: sgx_einit returned %d\n", __func__, ret); } while (ret == SGX_UNMASKED_EVENT && retry--); if (ret) { dprintf("%s: Failed init enclave: %d\n", __func__, ret); td->td_retval[0] = ret; ret = 0; } error: free(tmp_vaddr, M_SGX); /* Release the reference. */ vm_object_deallocate(object); return (ret); } static int sgx_ioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flags, struct thread *td) { struct sgx_enclave_add_page *addp; struct sgx_enclave_create *param; struct sgx_enclave_init *initp; struct sgx_softc *sc; int ret; int len; sc = &sgx_sc; len = IOCPARM_LEN(cmd); dprintf("%s: cmd %lx, addr %lx, len %d\n", __func__, cmd, (uint64_t)addr, len); if (len > SGX_IOCTL_MAX_DATA_LEN) return (EINVAL); switch (cmd) { case SGX_IOC_ENCLAVE_CREATE: param = (struct sgx_enclave_create *)addr; ret = sgx_ioctl_create(sc, param); break; case SGX_IOC_ENCLAVE_ADD_PAGE: addp = (struct sgx_enclave_add_page *)addr; ret = sgx_ioctl_add_page(sc, addp); break; case SGX_IOC_ENCLAVE_INIT: initp = (struct sgx_enclave_init *)addr; ret = sgx_ioctl_init(sc, initp); break; default: return (EINVAL); } return (ret); } static int sgx_mmap_single(struct cdev *cdev, vm_ooffset_t *offset, vm_size_t mapsize, struct vm_object **objp, int nprot) { struct sgx_vm_handle *vmh; struct sgx_softc *sc; sc = &sgx_sc; dprintf("%s: mapsize 0x%lx, offset %lx\n", __func__, mapsize, *offset); vmh = malloc(sizeof(struct sgx_vm_handle), M_SGX, M_WAITOK | M_ZERO); vmh->sc = sc; vmh->size = mapsize; vmh->mem = cdev_pager_allocate(vmh, OBJT_MGTDEVICE, &sgx_pg_ops, mapsize, nprot, *offset, NULL); if (vmh->mem == NULL) { free(vmh, M_SGX); return (ENOMEM); } VM_OBJECT_WLOCK(vmh->mem); vm_object_set_flag(vmh->mem, OBJ_PG_DTOR); VM_OBJECT_WUNLOCK(vmh->mem); *objp = vmh->mem; return (0); } static struct cdevsw sgx_cdevsw = { .d_version = D_VERSION, .d_ioctl = sgx_ioctl, .d_mmap_single = sgx_mmap_single, .d_name = "Intel SGX", }; static int sgx_get_epc_area(struct sgx_softc *sc) { vm_offset_t epc_base_vaddr; u_int cp[4]; int error; int i; cpuid_count(SGX_CPUID, 0x2, cp); sc->epc_base = ((uint64_t)(cp[1] & 0xfffff) << 32) + (cp[0] & 0xfffff000); sc->epc_size = ((uint64_t)(cp[3] & 0xfffff) << 32) + (cp[2] & 0xfffff000); sc->npages = sc->epc_size / SGX_PAGE_SIZE; if (sc->epc_size == 0 || sc->epc_base == 0) { printf("%s: Incorrect EPC data: EPC base %lx, size %lu\n", __func__, sc->epc_base, sc->epc_size); return (EINVAL); } if (cp[3] & 0xffff) sc->enclave_size_max = (1 << ((cp[3] >> 8) & 0xff)); else sc->enclave_size_max = SGX_ENCL_SIZE_MAX_DEF; epc_base_vaddr = (vm_offset_t)pmap_mapdev_attr(sc->epc_base, sc->epc_size, VM_MEMATTR_DEFAULT); sc->epc_pages = malloc(sizeof(struct epc_page) * sc->npages, M_DEVBUF, M_WAITOK | M_ZERO); for (i = 0; i < sc->npages; i++) { sc->epc_pages[i].base = epc_base_vaddr + SGX_PAGE_SIZE * i; sc->epc_pages[i].phys = sc->epc_base + SGX_PAGE_SIZE * i; sc->epc_pages[i].index = i; } sc->vmem_epc = vmem_create("SGX EPC", sc->epc_base, sc->epc_size, PAGE_SIZE, PAGE_SIZE, M_FIRSTFIT | M_WAITOK); if (sc->vmem_epc == NULL) { printf("%s: Can't create vmem arena.\n", __func__); free(sc->epc_pages, M_SGX); return (EINVAL); } error = vm_phys_fictitious_reg_range(sc->epc_base, sc->epc_base + sc->epc_size, VM_MEMATTR_DEFAULT); if (error) { printf("%s: Can't register fictitious space.\n", __func__); free(sc->epc_pages, M_SGX); return (EINVAL); } return (0); } static void sgx_put_epc_area(struct sgx_softc *sc) { vm_phys_fictitious_unreg_range(sc->epc_base, sc->epc_base + sc->epc_size); free(sc->epc_pages, M_SGX); } static int sgx_load(void) { struct sgx_softc *sc; int error; sc = &sgx_sc; if ((cpu_stdext_feature & CPUID_STDEXT_SGX) == 0) return (ENXIO); error = sgx_get_epc_area(sc); if (error) { printf("%s: Failed to get Processor Reserved Memory area.\n", __func__); return (ENXIO); } mtx_init(&sc->mtx_encls, "SGX ENCLS", NULL, MTX_DEF); mtx_init(&sc->mtx, "SGX driver", NULL, MTX_DEF); TAILQ_INIT(&sc->enclaves); sc->sgx_cdev = make_dev(&sgx_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, "isgx"); sc->state |= SGX_STATE_RUNNING; printf("SGX initialized: EPC base 0x%lx size %ld (%d pages)\n", sc->epc_base, sc->epc_size, sc->npages); return (0); } static int sgx_unload(void) { struct sgx_softc *sc; sc = &sgx_sc; if ((sc->state & SGX_STATE_RUNNING) == 0) return (0); mtx_lock(&sc->mtx); if (!TAILQ_EMPTY(&sc->enclaves)) { mtx_unlock(&sc->mtx); return (EBUSY); } sc->state &= ~SGX_STATE_RUNNING; mtx_unlock(&sc->mtx); destroy_dev(sc->sgx_cdev); vmem_destroy(sc->vmem_epc); sgx_put_epc_area(sc); mtx_destroy(&sc->mtx_encls); mtx_destroy(&sc->mtx); return (0); } static int sgx_handler(module_t mod, int what, void *arg) { int error; switch (what) { case MOD_LOAD: error = sgx_load(); break; case MOD_UNLOAD: error = sgx_unload(); break; default: error = 0; break; } return (error); } static moduledata_t sgx_kmod = { "sgx", sgx_handler, NULL }; DECLARE_MODULE(sgx, sgx_kmod, SI_SUB_LAST, SI_ORDER_ANY); MODULE_VERSION(sgx, 1);