/*- * Copyright (c) 1982, 1986, 1989, 1991, 1993 * The Regents of the University of California. * Copyright 2004-2006 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * From: @(#)uipc_usrreq.c 8.3 (Berkeley) 1/4/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_mac.h" #include #include #include #include /* XXX must be before */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static uma_zone_t unp_zone; static unp_gen_t unp_gencnt; static u_int unp_count; static struct unp_head unp_shead, unp_dhead; /* * Unix communications domain. * * TODO: * SEQPACKET, RDM * rethink name space problems * need a proper out-of-band * lock pushdown */ static const struct sockaddr sun_noname = { sizeof(sun_noname), AF_LOCAL }; static ino_t unp_ino; /* prototype for fake inode numbers */ struct mbuf *unp_addsockcred(struct thread *, struct mbuf *); /* * Currently, UNIX domain sockets are protected by a single subsystem lock, * which covers global data structures and variables, the contents of each * per-socket unpcb structure, and the so_pcb field in sockets attached to * the UNIX domain. This provides for a moderate degree of paralellism, as * receive operations on UNIX domain sockets do not need to acquire the * subsystem lock. Finer grained locking to permit send() without acquiring * a global lock would be a logical next step. * * The UNIX domain socket lock preceds all socket layer locks, including the * socket lock and socket buffer lock, permitting UNIX domain socket code to * call into socket support routines without releasing its locks. * * Some caution is required in areas where the UNIX domain socket code enters * VFS in order to create or find rendezvous points. This results in * dropping of the UNIX domain socket subsystem lock, acquisition of the * Giant lock, and potential sleeping. This increases the chances of races, * and exposes weaknesses in the socket->protocol API by offering poor * failure modes. */ static struct mtx unp_mtx; #define UNP_LOCK_INIT() \ mtx_init(&unp_mtx, "unp", NULL, MTX_DEF) #define UNP_LOCK() mtx_lock(&unp_mtx) #define UNP_UNLOCK() mtx_unlock(&unp_mtx) #define UNP_LOCK_ASSERT() mtx_assert(&unp_mtx, MA_OWNED) #define UNP_UNLOCK_ASSERT() mtx_assert(&unp_mtx, MA_NOTOWNED) /* * Garbage collection of cyclic file descriptor/socket references occurs * asynchronously in a taskqueue context in order to avoid recursion and * reentrance in the UNIX domain socket, file descriptor, and socket layer * code. See unp_gc() for a full description. */ static struct task unp_gc_task; static int unp_attach(struct socket *); static void unp_detach(struct unpcb *); static int unp_bind(struct unpcb *,struct sockaddr *, struct thread *); static int unp_connect(struct socket *,struct sockaddr *, struct thread *); static int unp_connect2(struct socket *so, struct socket *so2, int); static void unp_disconnect(struct unpcb *); static void unp_shutdown(struct unpcb *); static void unp_drop(struct unpcb *, int); static void unp_gc(__unused void *, int); static void unp_scan(struct mbuf *, void (*)(struct file *)); static void unp_mark(struct file *); static void unp_discard(struct file *); static void unp_freerights(struct file **, int); static int unp_internalize(struct mbuf **, struct thread *); static int unp_listen(struct socket *, struct unpcb *, int, struct thread *); static void uipc_abort(struct socket *so) { struct unpcb *unp; unp = sotounpcb(so); KASSERT(unp != NULL, ("uipc_abort: unp == NULL")); UNP_LOCK(); unp_drop(unp, ECONNABORTED); UNP_UNLOCK(); } static int uipc_accept(struct socket *so, struct sockaddr **nam) { struct unpcb *unp; const struct sockaddr *sa; /* * Pass back name of connected socket, * if it was bound and we are still connected * (our peer may have closed already!). */ unp = sotounpcb(so); KASSERT(unp != NULL, ("uipc_accept: unp == NULL")); *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); UNP_LOCK(); if (unp->unp_conn != NULL && unp->unp_conn->unp_addr != NULL) sa = (struct sockaddr *) unp->unp_conn->unp_addr; else sa = &sun_noname; bcopy(sa, *nam, sa->sa_len); UNP_UNLOCK(); return (0); } static int uipc_attach(struct socket *so, int proto, struct thread *td) { return (unp_attach(so)); } static int uipc_bind(struct socket *so, struct sockaddr *nam, struct thread *td) { struct unpcb *unp; int error; unp = sotounpcb(so); KASSERT(unp != NULL, ("uipc_bind: unp == NULL")); UNP_LOCK(); error = unp_bind(unp, nam, td); UNP_UNLOCK(); return (error); } static int uipc_connect(struct socket *so, struct sockaddr *nam, struct thread *td) { int error; KASSERT(td == curthread, ("uipc_connect: td != curthread")); UNP_LOCK(); error = unp_connect(so, nam, td); UNP_UNLOCK(); return (error); } /* * XXXRW: Should also unbind? */ static void uipc_close(struct socket *so) { struct unpcb *unp; unp = sotounpcb(so); KASSERT(unp != NULL, ("uipc_close: unp == NULL")); UNP_LOCK(); unp_disconnect(unp); UNP_UNLOCK(); } int uipc_connect2(struct socket *so1, struct socket *so2) { struct unpcb *unp; int error; unp = sotounpcb(so1); KASSERT(unp != NULL, ("uipc_connect2: unp == NULL")); UNP_LOCK(); error = unp_connect2(so1, so2, PRU_CONNECT2); UNP_UNLOCK(); return (error); } /* control is EOPNOTSUPP */ static void uipc_detach(struct socket *so) { struct unpcb *unp; unp = sotounpcb(so); KASSERT(unp != NULL, ("uipc_detach: unp == NULL")); UNP_LOCK(); unp_detach(unp); UNP_UNLOCK_ASSERT(); } static int uipc_disconnect(struct socket *so) { struct unpcb *unp; unp = sotounpcb(so); KASSERT(unp != NULL, ("uipc_disconnect: unp == NULL")); UNP_LOCK(); unp_disconnect(unp); UNP_UNLOCK(); return (0); } static int uipc_listen(struct socket *so, int backlog, struct thread *td) { struct unpcb *unp; int error; unp = sotounpcb(so); KASSERT(unp != NULL, ("uipc_listen: unp == NULL")); UNP_LOCK(); if (unp->unp_vnode == NULL) { UNP_UNLOCK(); return (EINVAL); } error = unp_listen(so, unp, backlog, td); UNP_UNLOCK(); return (error); } static int uipc_peeraddr(struct socket *so, struct sockaddr **nam) { struct unpcb *unp; const struct sockaddr *sa; unp = sotounpcb(so); KASSERT(unp != NULL, ("uipc_peeraddr: unp == NULL")); *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); UNP_LOCK(); if (unp->unp_conn != NULL && unp->unp_conn->unp_addr!= NULL) sa = (struct sockaddr *) unp->unp_conn->unp_addr; else { /* * XXX: It seems that this test always fails even when * connection is established. So, this else clause is * added as workaround to return PF_LOCAL sockaddr. */ sa = &sun_noname; } bcopy(sa, *nam, sa->sa_len); UNP_UNLOCK(); return (0); } static int uipc_rcvd(struct socket *so, int flags) { struct unpcb *unp; struct socket *so2; u_int mbcnt, sbcc; u_long newhiwat; unp = sotounpcb(so); KASSERT(unp != NULL, ("uipc_rcvd: unp == NULL")); switch (so->so_type) { case SOCK_DGRAM: panic("uipc_rcvd DGRAM?"); /*NOTREACHED*/ case SOCK_STREAM: /* * Adjust backpressure on sender * and wakeup any waiting to write. */ SOCKBUF_LOCK(&so->so_rcv); mbcnt = so->so_rcv.sb_mbcnt; sbcc = so->so_rcv.sb_cc; SOCKBUF_UNLOCK(&so->so_rcv); UNP_LOCK(); if (unp->unp_conn == NULL) { UNP_UNLOCK(); break; } so2 = unp->unp_conn->unp_socket; SOCKBUF_LOCK(&so2->so_snd); so2->so_snd.sb_mbmax += unp->unp_mbcnt - mbcnt; newhiwat = so2->so_snd.sb_hiwat + unp->unp_cc - sbcc; (void)chgsbsize(so2->so_cred->cr_uidinfo, &so2->so_snd.sb_hiwat, newhiwat, RLIM_INFINITY); sowwakeup_locked(so2); unp->unp_mbcnt = mbcnt; unp->unp_cc = sbcc; UNP_UNLOCK(); break; default: panic("uipc_rcvd unknown socktype"); } return (0); } /* pru_rcvoob is EOPNOTSUPP */ static int uipc_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, struct mbuf *control, struct thread *td) { int error = 0; struct unpcb *unp; struct socket *so2; u_int mbcnt, sbcc; u_long newhiwat; unp = sotounpcb(so); KASSERT(unp != NULL, ("uipc_send: unp == NULL")); if (flags & PRUS_OOB) { error = EOPNOTSUPP; goto release; } if (control != NULL && (error = unp_internalize(&control, td))) goto release; UNP_LOCK(); switch (so->so_type) { case SOCK_DGRAM: { const struct sockaddr *from; if (nam != NULL) { if (unp->unp_conn != NULL) { error = EISCONN; break; } error = unp_connect(so, nam, td); if (error) break; } else { if (unp->unp_conn == NULL) { error = ENOTCONN; break; } } so2 = unp->unp_conn->unp_socket; if (unp->unp_addr != NULL) from = (struct sockaddr *)unp->unp_addr; else from = &sun_noname; if (unp->unp_conn->unp_flags & UNP_WANTCRED) control = unp_addsockcred(td, control); SOCKBUF_LOCK(&so2->so_rcv); if (sbappendaddr_locked(&so2->so_rcv, from, m, control)) { sorwakeup_locked(so2); m = NULL; control = NULL; } else { SOCKBUF_UNLOCK(&so2->so_rcv); error = ENOBUFS; } if (nam != NULL) unp_disconnect(unp); break; } case SOCK_STREAM: /* Connect if not connected yet. */ /* * Note: A better implementation would complain * if not equal to the peer's address. */ if ((so->so_state & SS_ISCONNECTED) == 0) { if (nam != NULL) { error = unp_connect(so, nam, td); if (error) break; /* XXX */ } else { error = ENOTCONN; break; } } /* Lockless read. */ if (so->so_snd.sb_state & SBS_CANTSENDMORE) { error = EPIPE; break; } if (unp->unp_conn == NULL) panic("uipc_send connected but no connection?"); so2 = unp->unp_conn->unp_socket; SOCKBUF_LOCK(&so2->so_rcv); if (unp->unp_conn->unp_flags & UNP_WANTCRED) { /* * Credentials are passed only once on * SOCK_STREAM. */ unp->unp_conn->unp_flags &= ~UNP_WANTCRED; control = unp_addsockcred(td, control); } /* * Send to paired receive port, and then reduce * send buffer hiwater marks to maintain backpressure. * Wake up readers. */ if (control != NULL) { if (sbappendcontrol_locked(&so2->so_rcv, m, control)) control = NULL; } else { sbappend_locked(&so2->so_rcv, m); } mbcnt = so2->so_rcv.sb_mbcnt - unp->unp_conn->unp_mbcnt; unp->unp_conn->unp_mbcnt = so2->so_rcv.sb_mbcnt; sbcc = so2->so_rcv.sb_cc; sorwakeup_locked(so2); SOCKBUF_LOCK(&so->so_snd); newhiwat = so->so_snd.sb_hiwat - (sbcc - unp->unp_conn->unp_cc); (void)chgsbsize(so->so_cred->cr_uidinfo, &so->so_snd.sb_hiwat, newhiwat, RLIM_INFINITY); so->so_snd.sb_mbmax -= mbcnt; SOCKBUF_UNLOCK(&so->so_snd); unp->unp_conn->unp_cc = sbcc; m = NULL; break; default: panic("uipc_send unknown socktype"); } /* * SEND_EOF is equivalent to a SEND followed by * a SHUTDOWN. */ if (flags & PRUS_EOF) { socantsendmore(so); unp_shutdown(unp); } UNP_UNLOCK(); if (control != NULL && error != 0) unp_dispose(control); release: if (control != NULL) m_freem(control); if (m != NULL) m_freem(m); return (error); } static int uipc_sense(struct socket *so, struct stat *sb) { struct unpcb *unp; struct socket *so2; unp = sotounpcb(so); KASSERT(unp != NULL, ("uipc_sense: unp == NULL")); UNP_LOCK(); sb->st_blksize = so->so_snd.sb_hiwat; if (so->so_type == SOCK_STREAM && unp->unp_conn != NULL) { so2 = unp->unp_conn->unp_socket; sb->st_blksize += so2->so_rcv.sb_cc; } sb->st_dev = NODEV; if (unp->unp_ino == 0) unp->unp_ino = (++unp_ino == 0) ? ++unp_ino : unp_ino; sb->st_ino = unp->unp_ino; UNP_UNLOCK(); return (0); } static int uipc_shutdown(struct socket *so) { struct unpcb *unp; unp = sotounpcb(so); KASSERT(unp != NULL, ("uipc_shutdown: unp == NULL")); UNP_LOCK(); socantsendmore(so); unp_shutdown(unp); UNP_UNLOCK(); return (0); } static int uipc_sockaddr(struct socket *so, struct sockaddr **nam) { struct unpcb *unp; const struct sockaddr *sa; unp = sotounpcb(so); KASSERT(unp != NULL, ("uipc_sockaddr: unp == NULL")); *nam = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); UNP_LOCK(); if (unp->unp_addr != NULL) sa = (struct sockaddr *) unp->unp_addr; else sa = &sun_noname; bcopy(sa, *nam, sa->sa_len); UNP_UNLOCK(); return (0); } struct pr_usrreqs uipc_usrreqs = { .pru_abort = uipc_abort, .pru_accept = uipc_accept, .pru_attach = uipc_attach, .pru_bind = uipc_bind, .pru_connect = uipc_connect, .pru_connect2 = uipc_connect2, .pru_detach = uipc_detach, .pru_disconnect = uipc_disconnect, .pru_listen = uipc_listen, .pru_peeraddr = uipc_peeraddr, .pru_rcvd = uipc_rcvd, .pru_send = uipc_send, .pru_sense = uipc_sense, .pru_shutdown = uipc_shutdown, .pru_sockaddr = uipc_sockaddr, .pru_sosend = sosend, .pru_soreceive = soreceive, .pru_sopoll = sopoll, .pru_close = uipc_close, }; int uipc_ctloutput(struct socket *so, struct sockopt *sopt) { struct unpcb *unp; struct xucred xu; int error, optval; if (sopt->sopt_level != 0) return (EINVAL); unp = sotounpcb(so); KASSERT(unp != NULL, ("uipc_ctloutput: unp == NULL")); UNP_LOCK(); error = 0; switch (sopt->sopt_dir) { case SOPT_GET: switch (sopt->sopt_name) { case LOCAL_PEERCRED: if (unp->unp_flags & UNP_HAVEPC) xu = unp->unp_peercred; else { if (so->so_type == SOCK_STREAM) error = ENOTCONN; else error = EINVAL; } if (error == 0) error = sooptcopyout(sopt, &xu, sizeof(xu)); break; case LOCAL_CREDS: optval = unp->unp_flags & UNP_WANTCRED ? 1 : 0; error = sooptcopyout(sopt, &optval, sizeof(optval)); break; case LOCAL_CONNWAIT: optval = unp->unp_flags & UNP_CONNWAIT ? 1 : 0; error = sooptcopyout(sopt, &optval, sizeof(optval)); break; default: error = EOPNOTSUPP; break; } break; case SOPT_SET: switch (sopt->sopt_name) { case LOCAL_CREDS: case LOCAL_CONNWAIT: error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); if (error) break; #define OPTSET(bit) \ if (optval) \ unp->unp_flags |= bit; \ else \ unp->unp_flags &= ~bit; switch (sopt->sopt_name) { case LOCAL_CREDS: OPTSET(UNP_WANTCRED); break; case LOCAL_CONNWAIT: OPTSET(UNP_CONNWAIT); break; default: break; } break; #undef OPTSET default: error = ENOPROTOOPT; break; } break; default: error = EOPNOTSUPP; break; } UNP_UNLOCK(); return (error); } /* * Both send and receive buffers are allocated PIPSIZ bytes of buffering * for stream sockets, although the total for sender and receiver is * actually only PIPSIZ. * Datagram sockets really use the sendspace as the maximum datagram size, * and don't really want to reserve the sendspace. Their recvspace should * be large enough for at least one max-size datagram plus address. */ #ifndef PIPSIZ #define PIPSIZ 8192 #endif static u_long unpst_sendspace = PIPSIZ; static u_long unpst_recvspace = PIPSIZ; static u_long unpdg_sendspace = 2*1024; /* really max datagram size */ static u_long unpdg_recvspace = 4*1024; static int unp_rights; /* file descriptors in flight */ SYSCTL_DECL(_net_local_stream); SYSCTL_ULONG(_net_local_stream, OID_AUTO, sendspace, CTLFLAG_RW, &unpst_sendspace, 0, ""); SYSCTL_ULONG(_net_local_stream, OID_AUTO, recvspace, CTLFLAG_RW, &unpst_recvspace, 0, ""); SYSCTL_DECL(_net_local_dgram); SYSCTL_ULONG(_net_local_dgram, OID_AUTO, maxdgram, CTLFLAG_RW, &unpdg_sendspace, 0, ""); SYSCTL_ULONG(_net_local_dgram, OID_AUTO, recvspace, CTLFLAG_RW, &unpdg_recvspace, 0, ""); SYSCTL_DECL(_net_local); SYSCTL_INT(_net_local, OID_AUTO, inflight, CTLFLAG_RD, &unp_rights, 0, ""); static int unp_attach(struct socket *so) { struct unpcb *unp; int error; KASSERT(so->so_pcb == NULL, ("unp_attach: so_pcb != NULL")); if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { switch (so->so_type) { case SOCK_STREAM: error = soreserve(so, unpst_sendspace, unpst_recvspace); break; case SOCK_DGRAM: error = soreserve(so, unpdg_sendspace, unpdg_recvspace); break; default: panic("unp_attach"); } if (error) return (error); } unp = uma_zalloc(unp_zone, M_WAITOK | M_ZERO); if (unp == NULL) return (ENOBUFS); LIST_INIT(&unp->unp_refs); unp->unp_socket = so; so->so_pcb = unp; UNP_LOCK(); unp->unp_gencnt = ++unp_gencnt; unp_count++; LIST_INSERT_HEAD(so->so_type == SOCK_DGRAM ? &unp_dhead : &unp_shead, unp, unp_link); UNP_UNLOCK(); return (0); } static void unp_detach(struct unpcb *unp) { struct vnode *vp; int local_unp_rights; UNP_LOCK_ASSERT(); LIST_REMOVE(unp, unp_link); unp->unp_gencnt = ++unp_gencnt; --unp_count; if ((vp = unp->unp_vnode) != NULL) { /* * XXXRW: should v_socket be frobbed only while holding * Giant? */ unp->unp_vnode->v_socket = NULL; unp->unp_vnode = NULL; } if (unp->unp_conn != NULL) unp_disconnect(unp); while (!LIST_EMPTY(&unp->unp_refs)) { struct unpcb *ref = LIST_FIRST(&unp->unp_refs); unp_drop(ref, ECONNRESET); } soisdisconnected(unp->unp_socket); unp->unp_socket->so_pcb = NULL; local_unp_rights = unp_rights; UNP_UNLOCK(); if (unp->unp_addr != NULL) FREE(unp->unp_addr, M_SONAME); uma_zfree(unp_zone, unp); if (vp) { int vfslocked; vfslocked = VFS_LOCK_GIANT(vp->v_mount); vrele(vp); VFS_UNLOCK_GIANT(vfslocked); } if (local_unp_rights) taskqueue_enqueue(taskqueue_thread, &unp_gc_task); } static int unp_bind(struct unpcb *unp, struct sockaddr *nam, struct thread *td) { struct sockaddr_un *soun = (struct sockaddr_un *)nam; struct vnode *vp; struct mount *mp; struct vattr vattr; int error, namelen; struct nameidata nd; char *buf; UNP_LOCK_ASSERT(); /* * XXXRW: This test-and-set of unp_vnode is non-atomic; the * unlocked read here is fine, but the value of unp_vnode needs * to be tested again after we do all the lookups to see if the * pcb is still unbound? */ if (unp->unp_vnode != NULL) return (EINVAL); namelen = soun->sun_len - offsetof(struct sockaddr_un, sun_path); if (namelen <= 0) return (EINVAL); UNP_UNLOCK(); buf = malloc(namelen + 1, M_TEMP, M_WAITOK); strlcpy(buf, soun->sun_path, namelen + 1); mtx_lock(&Giant); restart: mtx_assert(&Giant, MA_OWNED); NDINIT(&nd, CREATE, NOFOLLOW | LOCKPARENT | SAVENAME, UIO_SYSSPACE, buf, td); /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */ error = namei(&nd); if (error) goto done; vp = nd.ni_vp; if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) { NDFREE(&nd, NDF_ONLY_PNBUF); if (nd.ni_dvp == vp) vrele(nd.ni_dvp); else vput(nd.ni_dvp); if (vp != NULL) { vrele(vp); error = EADDRINUSE; goto done; } error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH); if (error) goto done; goto restart; } VATTR_NULL(&vattr); vattr.va_type = VSOCK; vattr.va_mode = (ACCESSPERMS & ~td->td_proc->p_fd->fd_cmask); #ifdef MAC error = mac_check_vnode_create(td->td_ucred, nd.ni_dvp, &nd.ni_cnd, &vattr); #endif if (error == 0) { VOP_LEASE(nd.ni_dvp, td, td->td_ucred, LEASE_WRITE); error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr); } NDFREE(&nd, NDF_ONLY_PNBUF); vput(nd.ni_dvp); if (error) { vn_finished_write(mp); goto done; } vp = nd.ni_vp; ASSERT_VOP_LOCKED(vp, "unp_bind"); soun = (struct sockaddr_un *)sodupsockaddr(nam, M_WAITOK); UNP_LOCK(); vp->v_socket = unp->unp_socket; unp->unp_vnode = vp; unp->unp_addr = soun; UNP_UNLOCK(); VOP_UNLOCK(vp, 0, td); vn_finished_write(mp); done: mtx_unlock(&Giant); free(buf, M_TEMP); UNP_LOCK(); return (error); } static int unp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) { struct sockaddr_un *soun = (struct sockaddr_un *)nam; struct vnode *vp; struct socket *so2, *so3; struct unpcb *unp, *unp2, *unp3; int error, len; struct nameidata nd; char buf[SOCK_MAXADDRLEN]; struct sockaddr *sa; UNP_LOCK_ASSERT(); unp = sotounpcb(so); KASSERT(unp != NULL, ("unp_connect: unp == NULL")); len = nam->sa_len - offsetof(struct sockaddr_un, sun_path); if (len <= 0) return (EINVAL); strlcpy(buf, soun->sun_path, len + 1); UNP_UNLOCK(); sa = malloc(sizeof(struct sockaddr_un), M_SONAME, M_WAITOK); mtx_lock(&Giant); NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, buf, td); error = namei(&nd); if (error) vp = NULL; else vp = nd.ni_vp; ASSERT_VOP_LOCKED(vp, "unp_connect"); NDFREE(&nd, NDF_ONLY_PNBUF); if (error) goto bad; if (vp->v_type != VSOCK) { error = ENOTSOCK; goto bad; } error = VOP_ACCESS(vp, VWRITE, td->td_ucred, td); if (error) goto bad; mtx_unlock(&Giant); UNP_LOCK(); unp = sotounpcb(so); KASSERT(unp != NULL, ("unp_connect: unp == NULL")); so2 = vp->v_socket; if (so2 == NULL) { error = ECONNREFUSED; goto bad2; } if (so->so_type != so2->so_type) { error = EPROTOTYPE; goto bad2; } if (so->so_proto->pr_flags & PR_CONNREQUIRED) { if (so2->so_options & SO_ACCEPTCONN) { /* * NB: drop locks here so unp_attach is entered * w/o locks; this avoids a recursive lock * of the head and holding sleep locks across * a (potentially) blocking malloc. */ UNP_UNLOCK(); so3 = sonewconn(so2, 0); UNP_LOCK(); } else so3 = NULL; if (so3 == NULL) { error = ECONNREFUSED; goto bad2; } unp = sotounpcb(so); unp2 = sotounpcb(so2); unp3 = sotounpcb(so3); if (unp2->unp_addr != NULL) { bcopy(unp2->unp_addr, sa, unp2->unp_addr->sun_len); unp3->unp_addr = (struct sockaddr_un *) sa; sa = NULL; } /* * unp_peercred management: * * The connecter's (client's) credentials are copied * from its process structure at the time of connect() * (which is now). */ cru2x(td->td_ucred, &unp3->unp_peercred); unp3->unp_flags |= UNP_HAVEPC; /* * The receiver's (server's) credentials are copied * from the unp_peercred member of socket on which the * former called listen(); unp_listen() cached that * process's credentials at that time so we can use * them now. */ KASSERT(unp2->unp_flags & UNP_HAVEPCCACHED, ("unp_connect: listener without cached peercred")); memcpy(&unp->unp_peercred, &unp2->unp_peercred, sizeof(unp->unp_peercred)); unp->unp_flags |= UNP_HAVEPC; if (unp2->unp_flags & UNP_WANTCRED) unp3->unp_flags |= UNP_WANTCRED; #ifdef MAC SOCK_LOCK(so); mac_set_socket_peer_from_socket(so, so3); mac_set_socket_peer_from_socket(so3, so); SOCK_UNLOCK(so); #endif so2 = so3; } error = unp_connect2(so, so2, PRU_CONNECT); bad2: UNP_UNLOCK(); mtx_lock(&Giant); bad: mtx_assert(&Giant, MA_OWNED); if (vp != NULL) vput(vp); mtx_unlock(&Giant); free(sa, M_SONAME); UNP_LOCK(); return (error); } static int unp_connect2(struct socket *so, struct socket *so2, int req) { struct unpcb *unp = sotounpcb(so); struct unpcb *unp2; UNP_LOCK_ASSERT(); if (so2->so_type != so->so_type) return (EPROTOTYPE); unp2 = sotounpcb(so2); KASSERT(unp2 != NULL, ("unp_connect2: unp2 == NULL")); unp->unp_conn = unp2; switch (so->so_type) { case SOCK_DGRAM: LIST_INSERT_HEAD(&unp2->unp_refs, unp, unp_reflink); soisconnected(so); break; case SOCK_STREAM: unp2->unp_conn = unp; if (req == PRU_CONNECT && ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)) soisconnecting(so); else soisconnected(so); soisconnected(so2); break; default: panic("unp_connect2"); } return (0); } static void unp_disconnect(struct unpcb *unp) { struct unpcb *unp2 = unp->unp_conn; struct socket *so; UNP_LOCK_ASSERT(); if (unp2 == NULL) return; unp->unp_conn = NULL; switch (unp->unp_socket->so_type) { case SOCK_DGRAM: LIST_REMOVE(unp, unp_reflink); so = unp->unp_socket; SOCK_LOCK(so); so->so_state &= ~SS_ISCONNECTED; SOCK_UNLOCK(so); break; case SOCK_STREAM: soisdisconnected(unp->unp_socket); unp2->unp_conn = NULL; soisdisconnected(unp2->unp_socket); break; } } /* * unp_pcblist() assumes that UNIX domain socket memory is never reclaimed * by the zone (UMA_ZONE_NOFREE), and as such potentially stale pointers * are safe to reference. It first scans the list of struct unpcb's to * generate a pointer list, then it rescans its list one entry at a time to * externalize and copyout. It checks the generation number to see if a * struct unpcb has been reused, and will skip it if so. */ static int unp_pcblist(SYSCTL_HANDLER_ARGS) { int error, i, n; struct unpcb *unp, **unp_list; unp_gen_t gencnt; struct xunpgen *xug; struct unp_head *head; struct xunpcb *xu; head = ((intptr_t)arg1 == SOCK_DGRAM ? &unp_dhead : &unp_shead); /* * The process of preparing the PCB list is too time-consuming and * resource-intensive to repeat twice on every request. */ if (req->oldptr == NULL) { n = unp_count; req->oldidx = 2 * (sizeof *xug) + (n + n/8) * sizeof(struct xunpcb); return (0); } if (req->newptr != NULL) return (EPERM); /* * OK, now we're committed to doing something. */ xug = malloc(sizeof(*xug), M_TEMP, M_WAITOK); UNP_LOCK(); gencnt = unp_gencnt; n = unp_count; UNP_UNLOCK(); xug->xug_len = sizeof *xug; xug->xug_count = n; xug->xug_gen = gencnt; xug->xug_sogen = so_gencnt; error = SYSCTL_OUT(req, xug, sizeof *xug); if (error) { free(xug, M_TEMP); return (error); } unp_list = malloc(n * sizeof *unp_list, M_TEMP, M_WAITOK); UNP_LOCK(); for (unp = LIST_FIRST(head), i = 0; unp && i < n; unp = LIST_NEXT(unp, unp_link)) { if (unp->unp_gencnt <= gencnt) { if (cr_cansee(req->td->td_ucred, unp->unp_socket->so_cred)) continue; unp_list[i++] = unp; } } UNP_UNLOCK(); n = i; /* in case we lost some during malloc */ error = 0; xu = malloc(sizeof(*xu), M_TEMP, M_WAITOK | M_ZERO); for (i = 0; i < n; i++) { unp = unp_list[i]; if (unp->unp_gencnt <= gencnt) { xu->xu_len = sizeof *xu; xu->xu_unpp = unp; /* * XXX - need more locking here to protect against * connect/disconnect races for SMP. */ if (unp->unp_addr != NULL) bcopy(unp->unp_addr, &xu->xu_addr, unp->unp_addr->sun_len); if (unp->unp_conn != NULL && unp->unp_conn->unp_addr != NULL) bcopy(unp->unp_conn->unp_addr, &xu->xu_caddr, unp->unp_conn->unp_addr->sun_len); bcopy(unp, &xu->xu_unp, sizeof *unp); sotoxsocket(unp->unp_socket, &xu->xu_socket); error = SYSCTL_OUT(req, xu, sizeof *xu); } } free(xu, M_TEMP); if (!error) { /* * Give the user an updated idea of our state. * If the generation differs from what we told * her before, she knows that something happened * while we were processing this request, and it * might be necessary to retry. */ xug->xug_gen = unp_gencnt; xug->xug_sogen = so_gencnt; xug->xug_count = unp_count; error = SYSCTL_OUT(req, xug, sizeof *xug); } free(unp_list, M_TEMP); free(xug, M_TEMP); return (error); } SYSCTL_PROC(_net_local_dgram, OID_AUTO, pcblist, CTLFLAG_RD, (caddr_t)(long)SOCK_DGRAM, 0, unp_pcblist, "S,xunpcb", "List of active local datagram sockets"); SYSCTL_PROC(_net_local_stream, OID_AUTO, pcblist, CTLFLAG_RD, (caddr_t)(long)SOCK_STREAM, 0, unp_pcblist, "S,xunpcb", "List of active local stream sockets"); static void unp_shutdown(struct unpcb *unp) { struct socket *so; UNP_LOCK_ASSERT(); if (unp->unp_socket->so_type == SOCK_STREAM && unp->unp_conn && (so = unp->unp_conn->unp_socket)) socantrcvmore(so); } static void unp_drop(struct unpcb *unp, int errno) { struct socket *so = unp->unp_socket; UNP_LOCK_ASSERT(); so->so_error = errno; unp_disconnect(unp); } static void unp_freerights(struct file **rp, int fdcount) { int i; struct file *fp; for (i = 0; i < fdcount; i++) { fp = *rp; /* * zero the pointer before calling * unp_discard since it may end up * in unp_gc().. * * XXXRW: This is less true than it used to be. */ *rp++ = 0; unp_discard(fp); } } int unp_externalize(struct mbuf *control, struct mbuf **controlp) { struct thread *td = curthread; /* XXX */ struct cmsghdr *cm = mtod(control, struct cmsghdr *); int i; int *fdp; struct file **rp; struct file *fp; void *data; socklen_t clen = control->m_len, datalen; int error, newfds; int f; u_int newlen; UNP_UNLOCK_ASSERT(); error = 0; if (controlp != NULL) /* controlp == NULL => free control messages */ *controlp = NULL; while (cm != NULL) { if (sizeof(*cm) > clen || cm->cmsg_len > clen) { error = EINVAL; break; } data = CMSG_DATA(cm); datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; if (cm->cmsg_level == SOL_SOCKET && cm->cmsg_type == SCM_RIGHTS) { newfds = datalen / sizeof(struct file *); rp = data; /* If we're not outputting the descriptors free them. */ if (error || controlp == NULL) { unp_freerights(rp, newfds); goto next; } FILEDESC_LOCK(td->td_proc->p_fd); /* if the new FD's will not fit free them. */ if (!fdavail(td, newfds)) { FILEDESC_UNLOCK(td->td_proc->p_fd); error = EMSGSIZE; unp_freerights(rp, newfds); goto next; } /* * now change each pointer to an fd in the global * table to an integer that is the index to the * local fd table entry that we set up to point * to the global one we are transferring. */ newlen = newfds * sizeof(int); *controlp = sbcreatecontrol(NULL, newlen, SCM_RIGHTS, SOL_SOCKET); if (*controlp == NULL) { FILEDESC_UNLOCK(td->td_proc->p_fd); error = E2BIG; unp_freerights(rp, newfds); goto next; } fdp = (int *) CMSG_DATA(mtod(*controlp, struct cmsghdr *)); for (i = 0; i < newfds; i++) { if (fdalloc(td, 0, &f)) panic("unp_externalize fdalloc failed"); fp = *rp++; td->td_proc->p_fd->fd_ofiles[f] = fp; FILE_LOCK(fp); fp->f_msgcount--; FILE_UNLOCK(fp); unp_rights--; *fdp++ = f; } FILEDESC_UNLOCK(td->td_proc->p_fd); } else { /* We can just copy anything else across */ if (error || controlp == NULL) goto next; *controlp = sbcreatecontrol(NULL, datalen, cm->cmsg_type, cm->cmsg_level); if (*controlp == NULL) { error = ENOBUFS; goto next; } bcopy(data, CMSG_DATA(mtod(*controlp, struct cmsghdr *)), datalen); } controlp = &(*controlp)->m_next; next: if (CMSG_SPACE(datalen) < clen) { clen -= CMSG_SPACE(datalen); cm = (struct cmsghdr *) ((caddr_t)cm + CMSG_SPACE(datalen)); } else { clen = 0; cm = NULL; } } m_freem(control); return (error); } static void unp_zone_change(void *tag) { uma_zone_set_max(unp_zone, maxsockets); } void unp_init(void) { unp_zone = uma_zcreate("unpcb", sizeof(struct unpcb), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); if (unp_zone == NULL) panic("unp_init"); uma_zone_set_max(unp_zone, maxsockets); EVENTHANDLER_REGISTER(maxsockets_change, unp_zone_change, NULL, EVENTHANDLER_PRI_ANY); LIST_INIT(&unp_dhead); LIST_INIT(&unp_shead); TASK_INIT(&unp_gc_task, 0, unp_gc, NULL); UNP_LOCK_INIT(); } static int unp_internalize(struct mbuf **controlp, struct thread *td) { struct mbuf *control = *controlp; struct proc *p = td->td_proc; struct filedesc *fdescp = p->p_fd; struct cmsghdr *cm = mtod(control, struct cmsghdr *); struct cmsgcred *cmcred; struct file **rp; struct file *fp; struct timeval *tv; int i, fd, *fdp; void *data; socklen_t clen = control->m_len, datalen; int error, oldfds; u_int newlen; UNP_UNLOCK_ASSERT(); error = 0; *controlp = NULL; while (cm != NULL) { if (sizeof(*cm) > clen || cm->cmsg_level != SOL_SOCKET || cm->cmsg_len > clen) { error = EINVAL; goto out; } data = CMSG_DATA(cm); datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; switch (cm->cmsg_type) { /* * Fill in credential information. */ case SCM_CREDS: *controlp = sbcreatecontrol(NULL, sizeof(*cmcred), SCM_CREDS, SOL_SOCKET); if (*controlp == NULL) { error = ENOBUFS; goto out; } cmcred = (struct cmsgcred *) CMSG_DATA(mtod(*controlp, struct cmsghdr *)); cmcred->cmcred_pid = p->p_pid; cmcred->cmcred_uid = td->td_ucred->cr_ruid; cmcred->cmcred_gid = td->td_ucred->cr_rgid; cmcred->cmcred_euid = td->td_ucred->cr_uid; cmcred->cmcred_ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX); for (i = 0; i < cmcred->cmcred_ngroups; i++) cmcred->cmcred_groups[i] = td->td_ucred->cr_groups[i]; break; case SCM_RIGHTS: oldfds = datalen / sizeof (int); /* * check that all the FDs passed in refer to legal files * If not, reject the entire operation. */ fdp = data; FILEDESC_LOCK(fdescp); for (i = 0; i < oldfds; i++) { fd = *fdp++; if ((unsigned)fd >= fdescp->fd_nfiles || fdescp->fd_ofiles[fd] == NULL) { FILEDESC_UNLOCK(fdescp); error = EBADF; goto out; } fp = fdescp->fd_ofiles[fd]; if (!(fp->f_ops->fo_flags & DFLAG_PASSABLE)) { FILEDESC_UNLOCK(fdescp); error = EOPNOTSUPP; goto out; } } /* * Now replace the integer FDs with pointers to * the associated global file table entry.. */ newlen = oldfds * sizeof(struct file *); *controlp = sbcreatecontrol(NULL, newlen, SCM_RIGHTS, SOL_SOCKET); if (*controlp == NULL) { FILEDESC_UNLOCK(fdescp); error = E2BIG; goto out; } fdp = data; rp = (struct file **) CMSG_DATA(mtod(*controlp, struct cmsghdr *)); for (i = 0; i < oldfds; i++) { fp = fdescp->fd_ofiles[*fdp++]; *rp++ = fp; FILE_LOCK(fp); fp->f_count++; fp->f_msgcount++; FILE_UNLOCK(fp); unp_rights++; } FILEDESC_UNLOCK(fdescp); break; case SCM_TIMESTAMP: *controlp = sbcreatecontrol(NULL, sizeof(*tv), SCM_TIMESTAMP, SOL_SOCKET); if (*controlp == NULL) { error = ENOBUFS; goto out; } tv = (struct timeval *) CMSG_DATA(mtod(*controlp, struct cmsghdr *)); microtime(tv); break; default: error = EINVAL; goto out; } controlp = &(*controlp)->m_next; if (CMSG_SPACE(datalen) < clen) { clen -= CMSG_SPACE(datalen); cm = (struct cmsghdr *) ((caddr_t)cm + CMSG_SPACE(datalen)); } else { clen = 0; cm = NULL; } } out: m_freem(control); return (error); } struct mbuf * unp_addsockcred(struct thread *td, struct mbuf *control) { struct mbuf *m, *n, *n_prev; struct sockcred *sc; const struct cmsghdr *cm; int ngroups; int i; ngroups = MIN(td->td_ucred->cr_ngroups, CMGROUP_MAX); m = sbcreatecontrol(NULL, SOCKCREDSIZE(ngroups), SCM_CREDS, SOL_SOCKET); if (m == NULL) return (control); sc = (struct sockcred *) CMSG_DATA(mtod(m, struct cmsghdr *)); sc->sc_uid = td->td_ucred->cr_ruid; sc->sc_euid = td->td_ucred->cr_uid; sc->sc_gid = td->td_ucred->cr_rgid; sc->sc_egid = td->td_ucred->cr_gid; sc->sc_ngroups = ngroups; for (i = 0; i < sc->sc_ngroups; i++) sc->sc_groups[i] = td->td_ucred->cr_groups[i]; /* * Unlink SCM_CREDS control messages (struct cmsgcred), since * just created SCM_CREDS control message (struct sockcred) has * another format. */ if (control != NULL) for (n = control, n_prev = NULL; n != NULL;) { cm = mtod(n, struct cmsghdr *); if (cm->cmsg_level == SOL_SOCKET && cm->cmsg_type == SCM_CREDS) { if (n_prev == NULL) control = n->m_next; else n_prev->m_next = n->m_next; n = m_free(n); } else { n_prev = n; n = n->m_next; } } /* Prepend it to the head. */ m->m_next = control; return (m); } /* * unp_defer indicates whether additional work has been defered for a future * pass through unp_gc(). It is thread local and does not require explicit * synchronization. */ static int unp_defer; static int unp_taskcount; SYSCTL_INT(_net_local, OID_AUTO, taskcount, CTLFLAG_RD, &unp_taskcount, 0, ""); static int unp_recycled; SYSCTL_INT(_net_local, OID_AUTO, recycled, CTLFLAG_RD, &unp_recycled, 0, ""); static void unp_gc(__unused void *arg, int pending) { struct file *fp, *nextfp; struct socket *so; struct file **extra_ref, **fpp; int nunref, i; int nfiles_snap; int nfiles_slack = 20; unp_taskcount++; unp_defer = 0; /* * before going through all this, set all FDs to * be NOT defered and NOT externally accessible */ sx_slock(&filelist_lock); LIST_FOREACH(fp, &filehead, f_list) fp->f_gcflag &= ~(FMARK|FDEFER); do { KASSERT(unp_defer >= 0, ("unp_gc: unp_defer %d", unp_defer)); LIST_FOREACH(fp, &filehead, f_list) { FILE_LOCK(fp); /* * If the file is not open, skip it -- could be a * file in the process of being opened, or in the * process of being closed. If the file is * "closing", it may have been marked for deferred * consideration. Clear the flag now if so. */ if (fp->f_count == 0) { if (fp->f_gcflag & FDEFER) unp_defer--; fp->f_gcflag &= ~(FMARK|FDEFER); FILE_UNLOCK(fp); continue; } /* * If we already marked it as 'defer' in a * previous pass, then try process it this time * and un-mark it */ if (fp->f_gcflag & FDEFER) { fp->f_gcflag &= ~FDEFER; unp_defer--; } else { /* * if it's not defered, then check if it's * already marked.. if so skip it */ if (fp->f_gcflag & FMARK) { FILE_UNLOCK(fp); continue; } /* * If all references are from messages * in transit, then skip it. it's not * externally accessible. */ if (fp->f_count == fp->f_msgcount) { FILE_UNLOCK(fp); continue; } /* * If it got this far then it must be * externally accessible. */ fp->f_gcflag |= FMARK; } /* * either it was defered, or it is externally * accessible and not already marked so. * Now check if it is possibly one of OUR sockets. */ if (fp->f_type != DTYPE_SOCKET || (so = fp->f_data) == NULL) { FILE_UNLOCK(fp); continue; } FILE_UNLOCK(fp); if (so->so_proto->pr_domain != &localdomain || (so->so_proto->pr_flags&PR_RIGHTS) == 0) continue; /* * So, Ok, it's one of our sockets and it IS externally * accessible (or was defered). Now we look * to see if we hold any file descriptors in its * message buffers. Follow those links and mark them * as accessible too. */ SOCKBUF_LOCK(&so->so_rcv); unp_scan(so->so_rcv.sb_mb, unp_mark); SOCKBUF_UNLOCK(&so->so_rcv); } } while (unp_defer); sx_sunlock(&filelist_lock); /* * XXXRW: The following comments need updating for a post-SMPng and * deferred unp_gc() world, but are still generally accurate. * * We grab an extra reference to each of the file table entries * that are not otherwise accessible and then free the rights * that are stored in messages on them. * * The bug in the orginal code is a little tricky, so I'll describe * what's wrong with it here. * * It is incorrect to simply unp_discard each entry for f_msgcount * times -- consider the case of sockets A and B that contain * references to each other. On a last close of some other socket, * we trigger a gc since the number of outstanding rights (unp_rights) * is non-zero. If during the sweep phase the gc code unp_discards, * we end up doing a (full) closef on the descriptor. A closef on A * results in the following chain. Closef calls soo_close, which * calls soclose. Soclose calls first (through the switch * uipc_usrreq) unp_detach, which re-invokes unp_gc. Unp_gc simply * returns because the previous instance had set unp_gcing, and * we return all the way back to soclose, which marks the socket * with SS_NOFDREF, and then calls sofree. Sofree calls sorflush * to free up the rights that are queued in messages on the socket A, * i.e., the reference on B. The sorflush calls via the dom_dispose * switch unp_dispose, which unp_scans with unp_discard. This second * instance of unp_discard just calls closef on B. * * Well, a similar chain occurs on B, resulting in a sorflush on B, * which results in another closef on A. Unfortunately, A is already * being closed, and the descriptor has already been marked with * SS_NOFDREF, and soclose panics at this point. * * Here, we first take an extra reference to each inaccessible * descriptor. Then, we call sorflush ourself, since we know * it is a Unix domain socket anyhow. After we destroy all the * rights carried in messages, we do a last closef to get rid * of our extra reference. This is the last close, and the * unp_detach etc will shut down the socket. * * 91/09/19, bsy@cs.cmu.edu */ again: nfiles_snap = openfiles + nfiles_slack; /* some slack */ extra_ref = malloc(nfiles_snap * sizeof(struct file *), M_TEMP, M_WAITOK); sx_slock(&filelist_lock); if (nfiles_snap < openfiles) { sx_sunlock(&filelist_lock); free(extra_ref, M_TEMP); nfiles_slack += 20; goto again; } for (nunref = 0, fp = LIST_FIRST(&filehead), fpp = extra_ref; fp != NULL; fp = nextfp) { nextfp = LIST_NEXT(fp, f_list); FILE_LOCK(fp); /* * If it's not open, skip it */ if (fp->f_count == 0) { FILE_UNLOCK(fp); continue; } /* * If all refs are from msgs, and it's not marked accessible * then it must be referenced from some unreachable cycle * of (shut-down) FDs, so include it in our * list of FDs to remove */ if (fp->f_count == fp->f_msgcount && !(fp->f_gcflag & FMARK)) { *fpp++ = fp; nunref++; fp->f_count++; } FILE_UNLOCK(fp); } sx_sunlock(&filelist_lock); /* * for each FD on our hit list, do the following two things */ for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) { struct file *tfp = *fpp; FILE_LOCK(tfp); if (tfp->f_type == DTYPE_SOCKET && tfp->f_data != NULL) { FILE_UNLOCK(tfp); sorflush(tfp->f_data); } else { FILE_UNLOCK(tfp); } } for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) { closef(*fpp, (struct thread *) NULL); unp_recycled++; } free(extra_ref, M_TEMP); } void unp_dispose(struct mbuf *m) { if (m) unp_scan(m, unp_discard); } static int unp_listen(struct socket *so, struct unpcb *unp, int backlog, struct thread *td) { int error; UNP_LOCK_ASSERT(); SOCK_LOCK(so); error = solisten_proto_check(so); if (error == 0) { cru2x(td->td_ucred, &unp->unp_peercred); unp->unp_flags |= UNP_HAVEPCCACHED; solisten_proto(so, backlog); } SOCK_UNLOCK(so); return (error); } static void unp_scan(struct mbuf *m0, void (*op)(struct file *)) { struct mbuf *m; struct file **rp; struct cmsghdr *cm; void *data; int i; socklen_t clen, datalen; int qfds; while (m0 != NULL) { for (m = m0; m; m = m->m_next) { if (m->m_type != MT_CONTROL) continue; cm = mtod(m, struct cmsghdr *); clen = m->m_len; while (cm != NULL) { if (sizeof(*cm) > clen || cm->cmsg_len > clen) break; data = CMSG_DATA(cm); datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; if (cm->cmsg_level == SOL_SOCKET && cm->cmsg_type == SCM_RIGHTS) { qfds = datalen / sizeof (struct file *); rp = data; for (i = 0; i < qfds; i++) (*op)(*rp++); } if (CMSG_SPACE(datalen) < clen) { clen -= CMSG_SPACE(datalen); cm = (struct cmsghdr *) ((caddr_t)cm + CMSG_SPACE(datalen)); } else { clen = 0; cm = NULL; } } } m0 = m0->m_act; } } static void unp_mark(struct file *fp) { if (fp->f_gcflag & FMARK) return; unp_defer++; fp->f_gcflag |= (FMARK|FDEFER); } static void unp_discard(struct file *fp) { UNP_LOCK(); FILE_LOCK(fp); fp->f_msgcount--; unp_rights--; FILE_UNLOCK(fp); UNP_UNLOCK(); (void) closef(fp, (struct thread *)NULL); }